Assistance Professor of Railway Eng-Iran University of Science and Technology ، yaghini@iust.ac.ir
چکیده: (11805 مشاهده)
مساله خوشه بندی به منظور کمینه کردن مجموع مجذور انحراف، یک مساله غیر خطی و غیر محدب بوده و دارای تعداد زیادی نقاط بهینه محلی است. هدف از این مقاله، ارائه روشی ترکیبی با استفاده از الگوریتم ژنتیک و K-Means برای خروج از نقاط بهینه محلی است.استفاده از الگوریتم ژنتیک برای خروج از نقاط بهینه محلی، توسط محققین بسیاری انجام شده است. در این مقاله روش های جدیدی برای عملگرهای بازترکیبی و جهش ارائه شده است. منطق روش های پیشنهادی بر این امر استوار است که اگر عملگرهای تغییر به جای آنکه بطور تصادفی در کل فضای جواب اعمال گردند، در یک منطقه محدود از پیش تعریف شده، انجام شوند، به جواب های بهتری دست خواهیم یافت. برای ارزیابی الگوریتم پیشنهادی، از سه نوع عملگر جهش و پنج نوع عملگر بازترکیبی بر روی مجموعه دادههای استاندارد استفاده شده است. مقایسه نتایج بدست آمده با سایر روش ها، به ازای Kهای متفاوت، نشان میدهد میتوان با استفاده از عملگر بازترکیبی ساده یک نقطه ای و عملگر جهش ارائه شده در این مقاله با نام "عملگر جهش منطقه ای خوشه ای"، به جواب های بهتری دست یافت.