جلد 28، شماره 1 - ( 3-1396 )                   جلد 28 شماره 1 صفحات 174-161 | برگشت به فهرست نسخه ها

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

احمدی عباس، دادمحمدی دانیال. یک رویکرد ترکیبی جدید برای آموزش مدل ترکیب سلسله مراتبی شبکه‌های عصبی به منظور رتبه‌بندی اعتباری در صنعت بانکداری . عنوان نشریه. 1396; 28 (1) :161-174

URL: http://ijiepm.iust.ac.ir/article-1-1155-fa.html


دانشگاه صنعتی امیرکبیر ، abbas.ahmadi@aut.ac.ir
چکیده:   (3427 مشاهده)

ریسک اﻋﺘﺒﺎری در صنعت بانکداری ﺑﻪ ﻋﻨﻮان ﺧﻄﺮ ﻧﺎﺷﯽ از اﺣﺘﻤﺎل ﻋـﺪم ﺑﺎزﭘﺮداﺧـﺖ ﺗﻌﻬـﺪات ﺗﻮﺳـﻂ ﻣـﺸﺘﺮیان در ﺳﺮرسید ﺑـﻮده و یکی از ﻣﻬـﻢترین ریسک‌ها در ﺑﺎﻧﮏﻫﺎ و ﻣﺆﺳﺴﺎت ﻣﺎﻟﯽ ﺑﻪ ﺣﺴﺎب ﻣﯽآید. استقرار نظام رتبه‌بندی اعتباری با توجه به حجم انبوه مطالبات معوق بانک‌ها، یکی از مهمترین ابزارهای کنترل این نوع ریسک است. این مقاله با استفاده از شبکه‌های عصبی توانمند در حوزه پیش‌بینی و ترکیب آنها قادر است مشتریان را در دو گروه خوش‌حساب و بد‌حساب دسته‌بندی کند. مدل پیشنهادی که دارای ساختار و آموزش ماژولار است، مدل ترکیب سلسله مراتبی شبکه‌های عصبی نام دارد. در مدل یادشده برای تجزیه مساله میان شبکه‌ها و ترکیب نتایج برای رسیدن به پیش‌بینی نهایی و همچنین شیوه آموزش آن از رویکردی جدید استفاده می‌شود. رویکرد پیشنهادی ابتدا، از الگوریتم گسسته بهینه‌سازی انبوه ذرات برای کاهش ابعادی و تجزیه مساله میان ماژول‌های مختلف استفاده می‌کند، سپس برای آموزش، از تلفیق قانون‌های مختص به هر ماژول و قانون آموزش کلی این شبکه استفاده می‌کند. نتایج در مقایسه با شبکه عصبی پرسپترون چندلایه و شبکه عصبی با اتصالات جانبی بدست آمده است. طبق نتایج بدست آمده مدل پیشنهادی توانسته با دقت بسیار بالا رفتار مشتریان را پیش‌بینی نماید.

متن کامل [PDF 966 kb]   (1532 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: سیستم های هوشمند
دریافت: 1392/10/18 | پذیرش: 1395/1/25 | انتشار: 1396/5/28

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و مدیریت تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق