

September 2012, Volume 23, Number 2 pp. 149-160

http://IJIEPM.iust.ac.ir/

Modelling a Novel Multi-Objective Open-Shop Scheduling Problem and Solving by a Scatter Search Method

N. Amiri, R. Tavakkoli-Moghaddam*, Y. Gholipour-Kanani & S.A. Toarbi

Nafiseh Amiri, Department of Industrial Engineering, Research & Science Branch, Islamic Azad University, Tehran, Iran.
Reza Tavakkoli-Moghaddam, Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Yosouf Gholipour-Kanani, Faculty of Management, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
Seyed Ali Torabi, Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran

Keywords

Open shop scheduling problems, Tardiness and earliness time, Makespan, Setup cost, NSGA-II, Multi-objective scatter search

ABSTRACT

This paper proposes a novel, multi-objective integer programming model for an open-shop scheduling problem (OSSP). Three objectives are to minimize the makespan, total job tardiness and earliness, and total jobs setup cost. Due the complexity to solve such a hard problem, we develop a meta-heuristic algorithm based on multi-objective scatter search (MOSS), and a number of test problems are solved by this proposed algorithm. Finally, to prove its efficiency, the related results are compared with the results obtained by the well-known multi-objective evolutionary algorithm, called NSGA-II. The results confirm the efficiency and the effectiveness of our proposed MOSS to provide good solutions, especially for medium and large-sized problems.

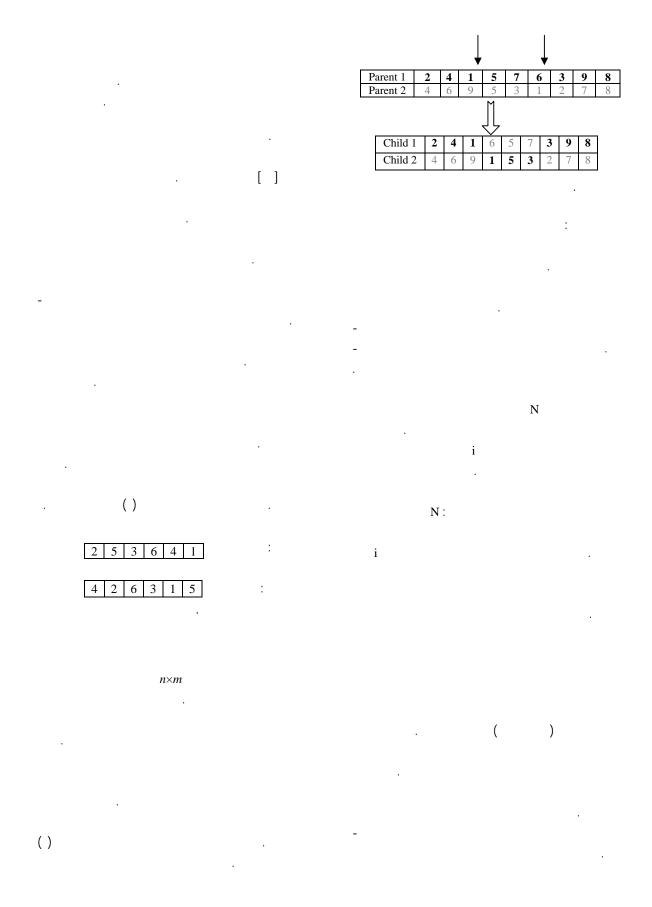
© 2012 IUST Publication, IJIEPM. Vol. 23, No. 2, All Rights Reserved

Email: tavakoli@ut.ac.ir

			*		
				:	
		NP-h	ard		
	NSGA-II				NSGA-II
	.[].				
			.[].		
	.[]				.[].
n m	m				/ / : / / :
					nafiseh_amiri@yahoo.com :
[]		[]	ta	vakoli@ut.ac.ir gl	nolipourkanani@yahoo.com

satorabi@ut.ac.ir .

		[]	
NP-Hard			[]
		[].	
		[]	
			[]
	·	·	. []
NSGA-II .	NSGA-II	[]	
	[]	[]	
PAES	222		
	. SPEA NSGA-II	. [] .	[]
NSGA-II		[] .	
			. []
			[]
:	•		·
	•		


```
Min Z_1
                                                                     ( )
                                                                     ()
 Min Z_2
                                                                     ( )
 Min Z_3
 s. t.
                                                   \forall t, k
 Z_1 \ge c(t,k)
                                                                     ()
 i\;,k,lc(i,k)-t(i,k)+M(1-a_{ilk})c(i,l)\;\forall
c(j,k)-t(j,k)+M\big(1-x_{ijk}\big)\geq c(i,k)\,\forall\,i\,,j,k \qquad (\ )
a_{ilk} + a_{ikl} = 1
                                                      \forall i, k, l ()
x_{ijk} + x_{jik} = 1
                                                     \forall t, j, k ()
c(i,k)-t(i,k)\geq 0
                                                      ∀i,k ()
                                                                                           i=\{1,\ldots,n\}
                                                                                                                                                        :j i
                                       ∀i,k ( )
mc(i) = max\{c(i,k)\}
                                                                                                   j = \{1, ..., m\}
                                                                                                                                                           : k
 \mathbf{Z}_2 = \textstyle \sum_{i=1}^n \max\{|\mathrm{mc}(i) - d(i)|\}
Z_3 = \textstyle \sum_{k=1}^m \sum_{j=1}^n \sum_{i=1}^n s_i \left(j,k\right) x_{ijk}
                                            ()
                                                        ()
                                       ()
                                                                                                                                                          :T_{ik}
                                                     Max
                                                                                                                                                           :d_i
                                   Z_1
                                               Z_1
                                                                                                                                                         :O_{ik}
        () ()
                                                                                                                                                     :S_i(j,k)
                                                              Max
                                                                                                                                          i k
                                                      ()
                                                                                                                     k
                                                                                                                                                         :C_{ik}
                     ()
                                                                                                                                                         :mc_{i}
                                                                                                   \left\{ egin{array}{ll} 2 & 2 (i) & (i) & (i) & (i) & (i) \\ 0 & (i) & (i) & (i) \\ 0 & (i) & (i) & (i) \end{array} \right. باشد
  ()
                                                                     ()
       ()
                                                                                           دروی مائین \chiدر صورتی که گار قبلی روی مائین \chiدر صورتی که گار قبلی روی مائین \chiوی بائند \chi_{ijk}
                                                           ( )
                                                                   ( )
                                                                   ( )
```

```
. ( )
                                      ].
                                            ]
                                                       [ ]
                                           [ ]
                                               [ ]
          b
                                                   p-medium
                                                                 [ ]
                                                                 [ ]
                        (
                                          )
b
(3b-7)/2
.
```

```
()
    n
                          m
                                              m \times n
                                                                                  )
                                       i
                 k
                                                                                  N
                    N
                                                                                                  b<sub>1</sub>)
                                                                                                                                    b_2 \\
```

...

[Downloaded from ijiepm.iust.ac.ir on 2025-07-19]


```
2
                                                                                                 6
                                                                                                      3
                                                                                                                   5
                                                                                                 6
                                                                                                      3
                                                                                                            4
                                                                                            2
                                                                                                                  5
                                                                                            2
                                                                                                 6
                                                                                                      3
                                                                                                            4
                                                                                                 6
                                                                                                      3
                                                                                                 3
                                          (S_1, S_2, S_3)
           Refset1
                                                          : S_1
                                          |b_1-1|
           Refset2
                                                          : S_2
                                         |b_2-1|
                                                                               N
                                                                                                [ ]
  Refset1
                                                           :S_3
                                                     Refset2
                        Refset1
                               Refset2
b_1
                        OX
                                                                                   XP
             .[ ].
                                                                           i
                                                                                                  ΙP
                                                                               .[ ]
(
                                                                                          ) Refset2 (
                                                                                                                           ) Refset1
                                                                              |Refset| = b \le b_1 + b_2
                                                                                                                                    b_1
                                                                                 Refset1
                                                                                        b_1
New trial solution 1 : 9 8 6 \begin{vmatrix} 1 & 4 & 7 & 2 & 3 & 5 \\ 1 & 4 & 7 & 2 & 4 & 6 \end{vmatrix}
New trial solution 2 : 1 7 8 3 9 5 2 4 6
                                                                                                                     Refset1
                                                                                                                           b_1 \\
                                                                                                               b<sub>2</sub> Refset2
                                                                                                                Refset1
New trial solution 1: 9 8 1 7 3 5
                                                                              Refset2
                                                                                                                   Refset1
New trial solution 2:1\quad 7\quad 8\quad 9\quad 4\quad 6
```

```
[0.2p_{\text{mean}}, 0.3p_{\text{mean}}]
                                                               Final trial solution 1:981246735
             [p(1-t-r/2), p(1-t+r/2)]
                                                               Final trial solution 2: 1 7 8 2 3 5 9 4 6
                  p=p_{mean}(n+m-1)
            p_{mean}
        t
                                  t=0.4 r=\{0.2,0.6\}
                                                                         \omega
                      refset2
                                          refset1
                                                                                                        \varpi=N
                         1
                                                                                               N
                                                                                                        \varpi \succ N
                                       Local_iteration
            NSGA-II
                                                                                                        \varpi \prec N
                    Local_iteration .
                                                                                                               N-\varpi
refset2
                  refset1
                       Local_iteration .
NSGA-II
     1
               Local_iteration /
                                                                                   NSGA-II
NSGA-
                                                                                              Local_iteration .
                                                    II
                                                                 [1,40]
                                                                             [1,100]
```

..

NSGA-II

. () ()

		t=0.4	, r=0.2		t=0.4, r=0.6						
MOSS	NSGA-II	MOSS	NSGA- II	MOSS	NSGA-II	MOSS	NSGA-II	MOSS	NSGA- II	MOSS	NSGA-II
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1

		t=0	.4 , r=0.2			t=0.4, r=0.6						
Moss	NSGA-II	MOSS	NSGA-II	MOSS	NSGA-II	MOSS	NSGA-II	MOSS	NSGA-II	MOSS	NSGA-II	
1	/	1	1		1	1	1	/	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1	1	1		

		t=0.	.4 , r=0.2		t=0.4, $r=0.6$						
MOSS	NSGA-II	MOSS	NSGA-II	MOSS	NSGA-II	MOSS	NSGA-II	MOSS	NSGA-II	MOSS	NSGA-II
 1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1			1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	,	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1

- Sule, D.R., "Industrial Scheduling", PWS Publishing Company, 1997.
- Baker, K.R., Trietsch, D., "Principles of Sequencing and Scheduling", John Wiley & Sons, 2009.
- [3] Low, C., Yeh, Y., "Genetic Algorithm-Based Heuristics for an Open Shop Scheduling Problem with Setup, Processing, and Removal times Separated", Robotics and Computer-Integrated Manufacturing, Vol. 25, 2009, pp. 314–322.
- [4] Sha, D.Y., Hsu, C.Y., "A New Particle Swarm Optimization for the Open Shop Scheduling Problem", Computers & Operations Research, Vol. 35, No. 10, 2008, pp. 3243–3261.
- [5] Andresen, M., Bräsel, H., Tusch, J., Werner, F., Willenius, P., "Simulated Annealing and Genetic Algorithms for Minimizing Mean Flowtime in an Open Shop", Mathematical and Computer Modeling, Vol. 48, Nos. 7-8, 2008, pp. 1279–1293.
- [6] Chen, R., Huang, W., Tang, G., "Dense Open-Shop Schedules with Release Times", Theoretical Computer Science, Vol. 407, Nos. 1-3, 2008, pp. 389-399.
- [7] Low, C., Yeh, Y., "Genetic Algorithm-Based Heuristics for an Open Shop Scheduling Problem with Setup, Processing, and Removal Times Separated" Robotics and Computer-Integrated Manufacturing, Vol. 25, No. 2, 2009, pp. 314-322.

NP-hard

NSGA-II

NSGA-II NSGA-II

- [22] Glover, F., "A Template for Scatter Search and Path Relinking", Lecture Notes in Computer Science, J. – K. Hao, E. Lutton, E. Ronald, M. Schoenauer and D. Snyers (Eds.), Springer, 1998, pp. 13-54.
- [23] Nowicki. E, Smutnicki. C., "Some Aspects of Scatter Search in the Flow-Shop Problem", European Journal of Operational Research, Vol. 169, 2006, pp. 654–666.
- [24] Diaz. J.A., Fernandez. E., "Hybrid Scatter Search and Path Relinking for the Capacitated p-Median Problem". European Journal of Operational Research, Vol. 169, 2006, 570-585.
- [25] Silva, C.G, Climaco, J., Figueira, J., "A Scatter Search Method for bi-Criteria {0,1}-Knapsack Problems", European Journal of Operational Research, Vol. 169, 2006, 373–391.
- [26] Beausoleil, R.P., "'MOSS'' Multiobjective Scatter Search Applied to Nonlinear Multiple Criteria Optimization", European Journal of Operational Research, Vol. 169, No. 2, 2006, pp. 426-449.
- [27] Cotta, C., "Scatter Search with Path Reliking for Phylogenetic Inference", European Journal of Operational Research, Vol. 169, 2006, pp. 520-539.
- [28] Rahimi-Vahed, A.R., Javadi, B., Rabbani, M., Tavakoli-Moghaddam, R., "A Multi-Objective Scatter Search for bi-Criteria no-Wait Flow Shop Scheduling Problem", Engineering Optimization, Vol. 40, No. 4, 2008, pp. 331-346.
- [29] Jones. D.F., Mirrazavi. S.K., Tamiz. M., "Multi-Objective Meta-Heuristics: An Overview of the Current State-of-the-Art", European Journal of Operational Research, Vol. 137, 2002, pp. 1–9.

- [8] Blum, C., "Beam-ACO Hybridizing Ant Colony Optimization with Beam Search: An Application to Open Shop Scheduling", Computers & Operations Research, Vol. 32, No. 6, 2005, pp. 1565–1591.
- [9] Liaw, C-F., Cheng, C.-Y., Chen, M., "Scheduling Two-Machine Nowait open Shops to Minimize Makespan", Computers & Operations Research, Vol. 32, No. 4, 2005, pp. 901–917.
- [10] Liaw, C.-F., "An Efficient Tabu Search Approach for the Two-Machine Preemptive Open Shop Scheduling Problem", Computers & Operations Research, Vol. 30, No. 14, 2003, pp. 2081–2095.
- [11] Kononov, A., Sviridenko, M., "A Linear Time Approximation Scheme for Makespan Minimization in an Open Shop with Release Dates", Operations Research Letters, Vol. 30, No. 4, 2002, pp. 276–280.
- [12] Breit, J., Schmidt, G. and Strusevich, V. A., "Two-Machine Open Shop Scheduling with an Availability Constraint", Operations Research Letters, Vol. 29, No. 2, 2001, pp. 65–77.
- [13] Liaw, C-F., "A Hybrid Genetic Algorithm for the Open Shop Scheduling Problem", European Journal of Operational Research, Vol. 124, No. 1, 2000, pp. 28–42.
- [14] Kravchenko, S. A., "On the Complexity of Minimizing the Number of Late jobs in Unit Time Open Shop", Discrete Applied Mathematics, Vol. 100(1-2), 2000, pp. 127—132.
- [15] Liaw, C.-F., "A Tabu Search Algorithm for the Open Shop Scheduling Problem", Computers & Operations Research, Vol. 26, No. 2, 1999, pp. 109–126.
- [16] Liaw, C.-F., "Applying Simulated Annealing to the Open Shop Scheduling Problem", IIE Transactions, Vol. 31, 1999, pp. 457–465.
- [17] Seraj, O., Tavakkoli-Moghaddam, R., "A Tabu Search Method for a New Bi-Objective Open Shop Scheduling Problem by a Fuzzy Multi-Objective Decision Making Approach", International Journal of Engineering, Transactions A: Basics, Vol. 22, 2009, pp. 1-14.
- [18] Gonzalez, T., Sahni, S., "Open Shop Scheduling to Minimize Finish Time", Journal of the ACM, Vol. 23, No. 4, 1976, pp. 665–679.
- [19] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., "A Fast and Elitist Multi Objective Genetic Algorithm: NSGA-II", IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, 2002, 182–197.
- [20] Gen, M., Cheng, R., "Genetic Algorithms & Engineering Design", A Wiley Interscience Publication, New York, 1997.
- [21] Hitomi, K., Ham, I., "Operations Scheduling for Group Technology Applications", Annals of the CIRP, Vol. 25, 1976, pp. 419–422.