

June 2012, Volume 23, Number 1 pp. 15-27

http://IJIEPM.iust.ac.ir/

Design of a Robust EWMA t Chart with Variable Sampling Intervals for Monitoring Changes in the Process Mean

R. Baradaran Kazemzadeh*, M. Karbasian & M.A. Babakhani

Reza Baradaran Kazemzadeh, Associate professor, Tarbiat Modares University, Tehran, Iran Mahdi Karbasian, Assistant Professor, Maleke-Ashtar University of Technology, Esfahan, Iran Mohammad Ali Babakhani, Ms Student of IE, Payame-noor University of Tehran, Tehran, Iran

Keywords

ABSTRACT

Exponentially Weighted Moving Average (EWMA) control chart, Average Time to Signal (ATS), Variable Sampling Intervals (VSI), Markov Chain. The performance of an X-bar chart is usually studied under the assumption that the process standard deviation is well estimated and does not change. This is, of course, not always the case in practice and X-bar charts are not robust against errors in estimating the process standard deviation or changing standard deviation. In this paper, the use of an exponentially weighted moving average (EWMA) t chart with variable sampling intervals to monitor the process mean is discussed. We have determined the optimal control limits for the VSI EWMA t chart so that the chart has the desired robustness property against errors in estimating the process standard deviation or changing standard deviation. Performance of the proposed chart is compared with similar charts using the Markov chain approach and simulation studies..

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 1, All Rights Reserved

Corresponding author. Reza Baradaran Kazemzadeh Email: rkazem@modares.ac.ir شمــاره ۱، جلــد ۲۳، خـــرداد ۱۳۹۱ صفحـــه ۲۷-۱۶

http://IJIEPM.iust.ac.ir/

و مدیریت تولید دانشگاه علم و منعت ایران ISSN: 2008-4870

طراحی یک نمودار کنترل میانگین متحرک موزون نمایی پایدار با بازههای نمونهگیری متغیر برای کنترل تغییرات در میانگین فرآیند

رضا برادران کاظم زاده*، مهدی کرباسیان و محمد علی باباخانی

چکیدہ:	كلمات كليدى
 عملکرد یک نمودار X-bar معمولاً تحت این فرض که انحراف معیار فرآیند به خوبی تخمین زده شده	نمودار کنترل میانگین متحرک
و تغییر نمی کند، بررسی می شود. البته این فرض در عمل معمولاً درست نبوده و نمودارهای X-bar	موزون نمایی،
در برابر اشتباهات تخمین انحراف معیار فرآیند یا تغییرات انحراف معیار پایدار نیستند. در این مقاله به	متوسط زمان هشدار،
بررسی یک نمودار کنترل میانگین متحرک موزون نمایی با بازه های نمونه گیری متغیر برای کنترل	بازه های نمونه گیری متغیر،
تغییرات در میانگین فرآیند پرداخته می شود. حدود کنترل بهینه به نحوی تعیین شده که نمودار در	زنجيره ماركوف.
برابر اشتباهات تخمین انحراف معیار یا تغییرات آن پایداری خوبی داشته باشد. برای مقایسه عملکرد	
آن با سایر نمودارهای مشابه از روش زنجیره مارکوف استفاده شده و با استفاده از شبیه سازی، نتایج به	
دست آمده بررسی شده است. علت استفاده از ویژگی بازه های نمونه گیری متغیر، واکنش سریع تر	
نمودار به تغییرات میانگین است.	

۱. مقدمه

در مفاهیم کنترل آماری فرآیند نمودار X-bar دارای اهمیت خاصی است. از جمله ویژگی های این نمودار، سادگی و اثربخشی هزینهای برای کنترل تغییرات نسبتاً بزرگ در میانگین فرآیند است. عملکرد نمودار X-bar تحت فرضیات زیر بررسی می شود : الف- مستقل بودن^۲ : مشاهدات داخل و بین زیر گروه ها مستقل هستند.

ب- نرمال بودن^۳: متغیر مورد بررسی دارای توزیع نرمال است.

ج- ساختار درست[†] : هیچ اشتباهی در تخمین انحراف معیار فرآیند وجود ندارد [۱].

در حالتی که فرض اول نقض شود، نمودارهای کنترل برای فرآیندهای همبسته^۵ باید استفاده شوند [۸–۲]. برای حالتی که فرض دوم نقض شود، نمودارهای کنترل برای توزیع های نامتقارن^۶ استفاده می شوند [۵۵–۹]. همچنین طبق نظر Roberts نمودار میانگین متحرک موزون نمایی^۷ ای که خوب طراحی شده باشد در برابر نقض فرض دوم پایدار است [۱۶]. به حالتی که فرض سوم نقض شود توجه کمتری شده و تحقیقات اندکی توسط ochao و همچنین chen و gohd در این زمینه انجام شده است [۸۸–۱۲]. فرض سوم زمانی ممکن است نقض شود که داده های کافی و قابل اطمینان برای تخمین دقیق انحراف معیار فرآیند در دست نباشند یا انحراف معیار فرآیند ناپایدار (متغیر)

تاریخ وصول: ۸۹/۴/۸

تاریخ تصویب: ۹۰/۳/۲

^{*}**نویسنده مسئول مقاله: رضا برادران کاظم زاده،** دانشیار دانشکده فنی و مهندسی، دانشگاه تربیت مدرس. rkazem@modares.ac.ir

مهدی کرباسیان، استادیار دانشکده مهندسی صنایع، دانشگاه صنعتی مالک اشتر. mkarbasi@mut-esf.ac.ir

محمد علی باباخانی، دانشجوی کارشناسی ارشد مهندسی صنایع، دانشگاه پیام نور مرکز تهران. mababakhani@gmail.com

 ² - Independence
³ - Normality

⁴ - Correct Setup

⁵ - Correlated Processes

⁶ - Asymmetrical Distributions

⁷ - Exponentially Weighted Moving Average (EWMA)

باشد. بنابراین عملکرد نمودار X-bar بدتر می شود (نمودار بیشتر یا کمتر از حد مورد انتظار هشدار می دهد).

اخیراً تحقیقاتی توسط Zhang و همکارانش بر روی نمودار کنترل میانگین متحرک موزون نمایی با بازه نمونه گیری ثابت برای کنترل تغییرات در میانگین فرآیند انجام شده که با استفاده از توزيع t-student (و بدون نياز به تخمين پارامترها براي محاسبه حدود کنترل) به تعیین حدود کنترل بهینه برای نمودار خود پرداخته اند. همچنین این نمودار بر خلاف نمودارهای مشابه که به مقدار زیادی داده در فاز I برای تخمین حدود کنترل نیاز دارند (و تردید درباره درست تخمین زدن حدود کنترل)، بدون داده های فاز I حدود کنترل را محاسبه کرده و تردید درباره درست تخمین زدن حدود كنترل را برطرف مىسازد [1]. بنابراين نياز به نموداری که علاوه بر یایداری مناسب در برابر تغییر در انحراف معيار فرآيند يا اشتباه در تخمين آن، داراي عملكرد قابل قبول باشد كاملاً احساس می شود. از این رو در ادامه تحقیقات انجام شده توسط Zhang و همکارانش و برای بهبود عملکرد نمودار ییشنهادی آنها، ویژگی بازه های نمونه گیری متغیر کبه نمودار فوق اضافه شده است. متغیر بودن بازه نمونه گیری این امکان را می دهد تا زمانی که تغییری در میانگین فرآیند احساس می شود، نمونه گیری زودتر از حد معمول انجام شده و از تولید محصول با کیفیت ضعیف (نامطلوب)^۳ جلوگیری شود. همچنین نمودارهای کنترل با بازه های نمونه گیری متغیر برای استفاده در تولیدات کوتاه مدت کاربردی تر و مؤثرتر از نمودارهای کنترل با بازه نمونه گیری ثابت هستند [۱۹].

در ادامه طراحی نمودار پیشنهادی (VSI EWMA t chart) شرح داده خواهد شد. در قسمت سوم به بررسی عملکرد نمودار پیشنهادی و مقایسه آن با نمودارهای FSI EWMA X-bar و FSI EWMA t پرداخته می شود. در قسمت چهارم نتایج حاصل از تحقیق بیان شده و پیشنهاداتی برای تحقیقات آتی مطرح می گردد.

۲. طراحی نمودار پیشنهادی (VSI EWMA t Chart)

فرض کنید زیر گروه های {X_{i,1}, X_{i,2}, ..., X_{in}} با اندازه نمونه n در زمان های ..., 2 , 1 = 1 مشاهده شده اند. در ضمن مشاهدات داخل و بین زیر گروه ها مستقل بوده و داریم :

$$X_{i,j} \sim N(\mu_0 + a\sigma_0, b\sigma_0)$$
, $i = 1, 2, ..., 1 \le j \le n$ (1)

که μ_0 و σ_0 میانگین و انحراف معیار اسمی (واقعی) فرآیند هستند. اگر 0 = a = 0 فرآیند تحت کنترل قرار دارد. در غیر این صورت فرآیند تغییر کرده (خارج از کنترل است)، اگر میانگین فرآیند μ_0 تغییر کند ($0 \neq a$) یا انحراف معیار فرآیند σ_0 تغییر کند ($1 \neq d$) و یا هر دوی آنها (μ_0 , σ_0) تغییر کنند.

میانگین زیر گروه (\overline{X}_i) و انحراف معیار زیر گروه (S_i) در زمان i به صورت زیر تعریف می شوند :

$$\overline{X}_{i} = \frac{1}{n} \sum_{j=1}^{n} X_{i,j} \quad 9 \quad S_{i} = \sqrt{\frac{1}{n-1} \sum_{j=1}^{n} (X_{i,j} - \overline{X}_{i})^{2}}$$
(Y)

آماره کنترلی (Y_i) برای نمودار VSI EWMA t به صورت زیر تعیین می شود :

$$Y_0 = 0; Y_i = \lambda T_i + (1 - \lambda) Y_{i - 1}; \quad i = 1, 2, ...$$
(°)

و T_i به صورت زیر است :

$$T_i = \frac{\overline{X}_i - \mu_0}{S_i / \sqrt{n}} \quad (f)$$

و $\exists (0,1)$ فريب هموارسازی است که معمولا مقادير کوچک مانند $\lambda = 0.1 = \lambda$ باشد، نمودار EWMA t مانند $\lambda = 0.1 = \lambda$ باشد، نمودار t تبديل می شود. از آنجايی که توزيع t حول صفر متقارن و ميانگين Y_i برابر صفر است (زمانی که 0 = a)، حدود VSI EWMA t بندل و حدود هشدار بالايی و پايينی نمودار UUL_{vt} = - LCL_{vt}; UWL_{vt} = - LWL_{vt}). حول صفر قرينه اند (UCL_{vt} = - LUL_{vt}; UWL_{vt} = - LWL_{vt}) تابعی حد کنترل بالايی (LCL_{vt}) نمودار EWMA t (VSI) تابعی از ضريب هموارسازی (λ)، متوسط طول دنباله تحت کنترل⁴ و اندازه نمونه در هر زيرگروه (n) است. حد هشدار بالايی (UWL_{vt}), هم تابعی از ضريب حدود هشدار (w) است که از رابطه زير به دست می آيد :

$$w = \Phi^{-1} \left[\frac{\Phi(k)(2 - 2h_s) + h_L - 1}{2(h_L - h_s)} \right] .$$
 (Δ)

که $(...) \Phi$ تابع توزیع تجمعی نرمال استاندارد و k = 3 ضریب حدود کنترل (با توجه به نمودار شوهارت با 3 σ ل، h_L ،(3 σ بازه نمونه گیری بلند⁶ و h_s بازه نمونه گیری کوتاه⁵ می باشند [۲۰].

⁴ - In-control Average Run Length (ARL₀)

⁵ - Long Sampling Interval (h_L)

⁶ - Short Sampling Interval (h_s)

¹ - Fixed Sampling Interval (FSI)

² - Variable Sampling Intervals (VSI)

³ - Poor Quality

همان طور که توسط Lucas و Saccucci بیان شده، ممکن است محدودیت های کاربردی (عملی) برای تعیین میزان کوچک بودن بازه نمونه گیری کوتاه موجود باشند [۲۱]. مقدار بازه نمونه گیری کوتاه نشان دهنده کوچکترین بازه زمانی ممکن برای نمونه گیری بین زیرگروه هاست و هر بازه زمانی کوچکتر از آن غیر ممکن است (به دلیل زمان لازم برای تشکیل زیرگروه های منطقی، انجام بازرسی، تحلیل نتایج، انتقال مواد و قطعات و دیگر تأخیرهای غیرقابل اجتناب). از این رو در این مقاله از مقادیر کوچک و مخالف صفر (مانند 2.0 = c) برای بازه نمونه گیری کوتاه استفاده کرده ایم.

مهمترین معیارهای ارزیابی عملکرد نمودارهای کنترل که بیشتر از بقیه مورد استفاده قرار می گیرند عبارتند از :

- متوسط طول دنباله^۱ : متوسط تعداد نمونه های لازم قبل از این که نمودار کنترل یک حالت خارج از کنترل را هشدار دهد یا یک زنگ خطر اشتباهی به صدا درآید.

– متوسط زمان هشدار^۲ : امید ریاضی زمان سپری شده از آغاز تغییر (انحراف بادلیل) در فرآیند تا زمانی که نمودار هشدار می دهد.

اگرچه متوسط طول دنباله ابزار مفیدی برای مقایسه عملکرد نمودارهای کنترل مختلف به شمار می رود ولی به دلیل ثابت نبودن (کوتاه یا بلند بودن) بازه های نمونه گیری در نمودارهای کنترل با بازه های متغیر، نمی توان از آن برای مقایسه نمودارهای با بازه نمونه گیری متغیر استفاده کرد. بنابراین به جای متوسط طول دنباله از متوسط زمان هشدار استفاده می شود. زمانی که فرآیند تحت کنترل بوده و در این حالت باقی بماند، مطلوب است که متوسط زمان هشدار بزرگ باشد. در صورتی که فرآیند تغییر کند (خارج از کنترل باشد)، مطلوب است متوسط زمان هشدار تا حد ممکن کوچک باشد. برای نمودارهای کنترل با بازه

نمونه گیری ثابت، متوسط زمان هشدار ضریبی از متوسط طول دنباله است. بنابراین داریم:

$$ATS^{FSI} = h_F \times ARL^{FSI} . \tag{(\%)}$$

که در آن h_F بازه زمانی بین زیرگروه ها و ثابت است [۲۲]. برای نمودارهای کنترل با بازه های نمونه گیری متغیر، متوسط زمان هشدار به متوسط طول دنباله و بازه های نمونه گیری وابسته است و داریم:

$$ATS^{VSI} = E(h) \times ARL^{VSI} . \tag{Y}$$

که در آن (E(h امید ریاضی بازه های نمونه گیری است و از رابطه زیر به دست می آید :

$$E(h) = h_S \times p_S + h_L \times p_L \,. \tag{A}$$

و p_s و p_L به ترتیب نسبت زمان هایی هستند که بازه نمونه گیری کوتاه یا بلند استفاده می شود [۲۳].

برای مقایسه دو نمودار کنترل با بازه نمونه گیری ثابت، تنها لازم است که متوسط طول دنباله تحت کنترل هر دو را برابر با ARL (که معمولاً با توجه به حدود کنترل نمودار کلاسیک شوهارت با (ARL $_0 = 1/0.0027 = 370.4$ محاسبه و قرار داده و متوسط زمان هشدار خارج از کنترل آنها را محاسبه و ارزیابی کنیم.

مقایسه نمودارهای کنترل با بازه های نمونه گیری متغیر کمی پیچیده تر است، زیرا اگر یکی از نمودارها نمونه گیری بیشتری انجام دهد، تغییر در فرآیند را نیز سریع تر از دیگری نشان میدهد.

بنابراین، برای مقایسه متوسط زمان هشدار خارج از کنترل دو نمودار کنترل با بازه های نمونه گیری متغیر، لازم است که متوسط طول دنباله تحت کنترل هر دوی آنها برابر با ARL و امید ریاضی بازه های نمونه گیری در حالت تحت کنترل هر دو نمودار برابر با (h)E باشند. از آنجایی که در نمودارهای کنترل با بازه نمونه گیری ثابت داریم:

 $h_S = h_L = h_F = 1 \text{ time unit } \rightarrow ATS^{FSI} = ARL^{FSI}$. (9)

امید ریاضی بازه های نمونه گیری در حالت تحت کنترل برابر است با:

$$E_0(h) = 1 \text{ time unit }. \tag{1.1}$$

¹ - Average Run Length (ARL)
² - Average Time to Signal (ATS)

^{······}

در این حالت اطمینان می یابیم که متوسط زمان هشدار تحت کنترل برای نمودار کنترل با بازه نمونه گیری ثابت و نمودار کنترل با بازه های نمونه گیری متغیر برابر است، یعنی:

$$ATS_0^{VSI} = ATS_0^{FSI} = ARL_0 . \tag{11}$$

براین اساس، مقادیر متوسط زمان هشدار خارج از کنترل (به ازای تغییرهای مختلف a) را برای نمودارهای کنترل با بازه های نمونه گیری ثابت و متغیر محاسبه و با هم مقایسه می کنیم. با استفاده از الگوریتم زیر که توسط Castagliola و همکارانش ارائه شده، حدود کنترل بهینه (^{*}, UCL_{vt}) و متوسط زمان هشدار خارج از کنترل بهینه (*ATS) را محاسبه می کنیم :

 $\lambda \in \{0.01, 0.011, 0.012, \dots, 0.999\}$ و $\lambda \in \{0.01, 0.011, 0.012, \dots, 0.999\}$ و ATS₀ = ARL₀ = a deری UCL_{v1} را محاسبه می کنیم که a = 0 (λ , باشد. در پایان این مرحله، مجموعه ای از جفت های (λ , 370.4 uCL_{v1}) برای گام دوم داریم.

گام ۲– برای هر تغییر در میانگین {2, ..., 2. 0. , 0.} ∋ a و برای هر جفت (λ., UCL_{vt}) حساب میکنیم و جفتی که کمترین مقدار ATS را برای تغییر a دارند انتخاب می کنیم. این مقدار (بهینه) *ATS برای تغییر a است [۲۴]. برای محاسبه حدود کنترل و متوسط زمان هشدار خارج از کنترل بهینه برای نمودارهای کنترل از روش زنجیره مارکوف ارائه شده

توسط Brook و Evans استفاده کرده ایم (برای اطلاعات بیشتر به پیوست مراجعه کنید) [۲۵].

 $\lambda^{*}=0.116$; $UCL_{vt}^{*}=1.029$; $ATS^{*}=6.76$.

برای بررسی تأثیر p_{S} (برای $\{0.6, 0.5, 0.6\}$ و $p_{S} = \{0.4, 0.5, 0.6\}$ روی مقادیر مدای بررسی تأثیر p_{S} (برای $h_{S} = 0.4$ و f = n باشد، مقادیر حدود کنترل بهینه زمانی که $p_{S} = 0.2$ و f = n باشد، مقادیر * ATS^{*} (محاسبه می کنیم. این مقادیر در جدول ۲ آمده اند. شکل ۱ (آ، ب و ج) منحنیهای ATS مربوط را نشان می دهد. تنها برای جفتهای (* , UCL *) مربوط به تغییر بزرگ (.5.1 = 1.5) اختلاف معناداری بین این مقادیر مشاهده می شود. بازه نمونه گیری کوتاه بیشتر از شد. در نتیجه مقدار * ATS * می شود.

n = 9n = 3shift n = 5n = 7λ* λ^{*} UCL_{vt}* λ^{*} λ* UCL_{vt}* UCL_{vt}* UCL_{vt}* **ATS**^{*} ATS^{*} ATS^{*} ATS^{*} *(a)* 0.010 0.343 132.09 0.013 0.228 0.017 0.241 47.25 0.022 0.272 38.14 0.1 64.75 0.014 0.440 53.14 0.034 0.446 23.99 0.055 0.532 17.02 0.568 0.2 0.067 13.58 0.023 0.631 30.31 0.061 0.662 13.37 0.094 0.756 9.47 0.124 0.845 0.3 7.60 0.4 0.032 0.80220.48 0.092 0.876 9.01 0.136 0.966 6.43 0.177 1.068 5.23 0.979 4.07 0.5 15.28 1.029 6.76 4.90 0.228 0.042 0.116 0.176 1.151 1.267 0.049 0.6 1.097 12.14 0.143 1.194 5.44 0.214 1.319 4.02 0.265 1.406 3.41 0.7 0.057 1.228 10.07 0.170 1.353 4.58 0.248 1.465 3.47 0.311 1.575 3.02 0.070 1.434 1.480 3.99 0.274 3.12 2.77 0.8 8.63 0.192 1.575 0338 1.673 0.295 0.9 0.077 1.542 7.56 0.209 1.577 3.59 1.663 2.88 0.375 1.806 2.62 1.0 0.087 1.694 6.76 0.226 1.673 3.28 0.320 1.767 2.71 0.406 1.917 2.51 1.854 2.067 2.44 0.098 1.857 0.244 1.774 3.06 0.341 2.60 0.448 1.1 6.121.2 0.104 1.945 5.62 0.258 1.852 2.89 0.365 1.953 2.52 0.504 2.267 2.39 1.3 0.114 2.090 5.20 0.269 1.913 2.77 0.392 2.064 2.46 0.560 2.468 2.35 1.974 2.703 2.32 0.430 2.220 2.42 0.123 2.219 4.86 0.280 2.67 0.625 1.4 0.135 2.389 4.56 0.290 2.029 2.60 0.469 2.380 2.38 0.693 2.952 2.29 1.5 1.6 0.142 2.488 4.31 0.290 2.029 2.54 0.515 2.569 2.35 0.738 3.119 2.27 2.25 0.149 2.585 2.139 2.50 2.738 2.33 0.789 3.311 1.7 4.100.310 0.556 2.696 3.91 0.333 2.265 2.46 2.970 2.31 0.833 3.479 2.24 1.8 0.157 0.612 0.170 0.346 2.336 2.43 2.29 3.634 2.23 1.9 2.875 3.74 0.653 3.141 0.873 0.177 2.971 3.59 0.368 2.456 2.410.702 3.347 2.27 0.901 3.744 2.22 2.0

جدول ۱. مقادير بهينه براي نمودار VSI EWMA t زماني که $p_{\rm S}$ = 0.6 ، $h_{\rm S}$ = 0.2 باشد.

shift	$p_S = 0.4$, $w = 0.84$			p_S	= 0.5, $w = 0$.67	$p_S = 0.6$, $w = 0.52$			
(a)	λ^{*}	UCL _{vt} *	ATS [*]	λ^{*}	$\mathrm{UCL}_{\mathrm{vt}}^{*}$	\mathbf{ATS}^*	λ^*	UCL _{vt} *	\mathbf{ATS}^*	
0.1	0.010	0.186	66.20	0.012	0.213	65.54	0.013	0.228	64.75	
0.2	0.032	0.424	24.35	0.033	0.434	24.18	0.034	0.446	23.99	
0.3	0.056	0.620	13.41	0.059	0.643	13.35	0.061	0.662	13.37	
0.4	0.083	0.811	8.91	0.087	0.838	8.91	0.092	0.876	9.01	
0.5	0.111	0.993	6.59	0.113	1.005	6.62	0.116	1.029	6.76	
0.6	0.135	1.141	5.21	0.142	1.182	5.27	0.143	1.194	5.44	
0.7	0.167	1.332	4.32	0.171	1.353	4.40	0.170	1.353	4.58	
0.8	0.191	1.472	3.71	0.193	1.480	3.80	0.192	1.480	3.99	
0.9	0.219	1.633	3.26	0.219	1.628	3.36	0.209	1.577	3.59	
1.0	0.239	1.747	2.92	0.235	1.718	3.03	0.226	1.673	3.28	
1.1	0.268	1.911	2.66	0.260	1.858	2.78	0.244	1.774	3.06	
1.2	0.287	2.018	2.45	0.276	1.947	2.59	0.258	1.852	2.89	
1.3	0.303	2.108	2.28	0.287	2.008	2.44	0.269	1.913	2.77	
1.4	0.321	2.209	2.15	0.302	2.091	2.33	0.280	1.974	2.67	
1.5	0.331	2.265	2.05	0.315	2.163	2.24	0.290	2.029	2.60	
1.6	0.341	2.321	1.96	0.323	2.207	2.17	0.290	2.029	2.54	
1.7	0.351	2.377	1.89	0.331	2.251	2.12	0.310	2.139	2.50	
1.8	0.361	2.433	1.84	0.342	2.312	2.08	0.333	2.265	2.46	
1.9	0.371	2.489	1.80	0.363	2.427	2.04	0.346	2.336	2.43	
2.0	0.378	2.528	1.76	0.367	2.449	2.01	0.368	2.456	2.41	

جدول ۲. مقادير بهينه براي نمودار VSI EWMA t زماني که n = 5 ،ps = { 0.4 , 0.5 , 0.6 } ،hs = 0.2 باشد.

تغيير کوچک (a = 0.2).

400

شکل ۱. ج – مقایسه منحنی های ATS برای و جفت های (λ^{*} , UCL $_{vt}^{*}$) مربوط به تغییر p_s = {0.4,0.5,0.6} بزرگ (a = 1.5).

۳. ارزیابی عملکرد نمودار پیشنهادی :

در این قسمت عملکرد نمودار پیشنهادی (VSI EWMA t) با نمودارهای FSI EWMA t و FSI EWMA t مقایسه خواهد شد. نمودار FSI EWMA t حالت خاصی از نمودار VSI EWMA t است که:

$$h_S = h_L = h_F = 1 \text{ time unit }. \tag{11}$$

آماره کنترلی (Z_i) برای نمودار FSI EWMA X-bar به صورت زیر تعريف مي شود:

نشریه بین المللی مهندسی صنایع و مدیریت تولید، بهـــار ۱۳۹۱- جلد ۲۳- شماره ۱

$$\begin{split} & Z_0 = 0 ; \\ & Z_i = \lambda \overline{X}_i + (1 - \lambda) Z_{i-1} \quad ; \quad i = 1 , 2 , \dots \end{split} \tag{17}$$

که \overline{X}_i میانگین زیرگروه در زمان i است. حدود کنترل برای این نمودار عبارتند از :

$$\begin{aligned} LCL_{X\text{-bar}} &= \mu_0 - L \ \sigma_0 \ . \\ UCL_{X\text{-bar}} &= \mu_0 + L \ \sigma_0 \ . \end{aligned} \tag{14}$$

که باید برای مقایسه عملکرد آن با نمودارهای دیگر، مقدار بهینه $L = k \sqrt{\lambda / (n(2 - \lambda))}$

n می کنیم $\mu_0 = 0$ و $\mu_0 = 1$ ، در ادامه از L که شامل λ ، k و است به جای UCL_{X-bar} استفاده می کنیم.

مقادیر بهینه برای این نمودار در جدول ۳ آمده اند. جدول ۴ هم شامل مقادیر بهینه برای نمودار ۲ FSI EWMA می باشد.

برای ارزیابی پایداری نمودار پیشنهادی (VSI EWMA t) و مقایسه آن با نمودارهای FSI EWMA t و FSI EWMA X-bar و FSI EWMA t منحنی ATS برای مقادیر منتخب حدود کنترل بهینه زمانی که منحنی ATS برای مقادیر منتخب حدود کنترل بهینه زمانی که b $\in \{0.9, 0.95, 1, 1.05, 1.1\}$ و $b \in \{0.9, 370.4$

جدول ۳. مقادیر بهینه برای نمودار FSI EWMA X-bar زمانی که ATS₀ = 370.4 باشد.

shift		<i>n</i> = 3			<i>n</i> = 5			<i>n</i> = 7			n = 9	
<i>(a)</i>	λ^{*}	\mathbf{L}^{*}	\mathbf{ATS}^*	λ^*	\mathbf{L}^{*}	ATS [*]	λ^{*}	\mathbf{L}^{*}	\mathbf{ATS}^*	λ*	\mathbf{L}^{*}	ATS*
0.1	0.013	0.090	102.01	0.016	0.081	75.23	0.022	0.086	61.28	0.026	0.085	52.01
0.2	0.026	0.148	43.46	0.041	0.156	30.75	0.059	0.167	24.26	0.064	0.155	20.22
0.3	0.056	0.247	24.94	0.081	0.242	17.25	0.097	0.229	13.46	0.128	0.240	11.16
0.4	0.084	0.320	16.48	0.122	0.313	11.28	0.152	0.303	8.75	0.188	0.305	7.24
0.5	0.119	0.398	11.85	0.164	0.376	8.06	0.216	0.377	6.24	0.223	0.340	5.19
0.6	0.145	0.450	9.01	0.215	0.445	6.12	0.278	0.442	4.74	0.259	0.376	4.01
0.7	0.187	0.527	7.14	0.269	0.512	4.84	0.319	0.483	3.76	0.299	0.416	3.25
0.8	0.220	0.583	5.83	0.322	0.574	3.95	0.365	0.529	3.11	0.346	0.463	2.73
0.9	0.274	0.669	4.87	0.382	0.641	3.31	0.422	0.586	2.63	0.408	0.525	2.34
1.0	0.307	0.719	4.15	0.455	0.720	2.82	0.495	0.659	2.27	0.489	0.606	2.04
1.1	0.359	0.795	3.60	0.534	0.804	2.44	0.581	0.745	1.97	0.586	0.703	1.78
1.2	0.409	0.866	3.16	0.599	0.873	2.13	0.677	0.841	1.72	0.688	0.805	1.56
1.3	0.466	0.945	2.79	0.668	0.947	1.87	0.776	0.940	1.52	0.792	0.909	1.38
1.4	0.517	1.015	2.49	0.731	1.016	1.66	0.876	1.040	1.35	0.895	1.012	1.24
1.5	0.574	1.093	2.24	0.788	1.080	1.49	0.976	1.140	1.23	0.996	1.113	1.14
1.6	0.630	1.170	2.02	0.833	1.132	1.36	0.999	1.163	1.14	0.999	1.116	1.08
1.7	0.676	1.234	1.83	0.870	1.176	1.25	0.999	1.163	1.09	0.999	1.116	1.04
1.8	0.729	1.309	1.67	0.898	1.210	1.17	0.999	1.163	1.05	0.999	1.116	1.02
1.9	0.763	1.358	1.54	0.931	1.251	1.12	0.999	1.163	1.03	0.999	1.116	1.01
2.0	0.799	1.411	1.42	0.946	1.270	1.08	0.999	1.163	1.01	0.999	1.116	1.00

جدول ۴. مقادیر بهینه برای نمودار FSI EWMA t زمانی که ATS₀ = 370.4 باشد.

shift	<i>n</i> = 3			<i>n</i> = 5			<i>n</i> = 7			n=9		
(a)	λ^{*}	UCL [*]	\mathbf{ATS}^*	λ^*	UCL_{t}^{*}	ATS*	λ^{*}	UCL [*]	\mathbf{ATS}^*	λ^*	UCL_{t}^{*}	ATS*
0.1	0.010	0.330	166.58	0.011	0.193	88.19	0.014	0.202	67.32	0.020	0.247	55.96
0.2	0.010	0.330	77.63	0.028	0.382	37.62	0.042	0.438	27.42	0.053	0.481	22.18
0.3	0.013	0.404	48.07	0.042	0.507	22.02	0.071	0.623	15.71	0.088	0.672	12.56
0.4	0.017	0.497	34.00	0.057	0.627	14.99	0.094	0.752	10.53	0.124	0.842	8.36
0.5	0.022	0.606	25.93	0.072	0.738	11.14	0.118	0.877	7.75	0.160	0.998	6.12
0.6	0.026	0.690	20.82	0.089	0.857	8.76	0.146	1.015	6.05	0.200	1.162	4.76
0.7	0.028	0.731	17.31	0.107	0.978	7.17	0.175	1.152	4.93	0.239	1.315	3.87
0.8	0.032	0.812	14.78	0.124	1.089	6.06	0.200	1.267	4.14	0.276	1.457	3.25
0.9	0.035	0.872	12.89	0.136	1.166	5.23	0.227	1.389	3.57	0.317	1.612	2.79
1.0	0.040	0.970	11.42	0.147	1.236	4.59	0.251	1.496	3.13	0.363	1.784	2.45
1.1	0.042	1.009	10.25	0.161	1.324	4.10	0.277	1.611	2.79	0.403	1.933	2.18
1.2	0.044	1.048	9.30	0.173	1.399	3.70	0.315	1.778	2.52	0.458	2.138	1.96
1.3	0.048	1.125	8.52	0.187	1.486	3.38	0.344	1.905	2.29	0.521	2.374	1.78
1.4	0.048	1.125	7.86	0.203	1.585	3.11	0.373	2.032	2.11	0.574	2.574	1.63
1.5	0.054	1.240	7.30	0.222	1.702	2.88	0.410	2.194	1.96	0.638	2.818	1.49
1.6	0.054	1.240	6.82	0.229	1.745	2.69	0.451	2.374	1.82	0.696	3.042	1.39
1.7	0.058	1.317	6.41	0.250	1.874	2.52	0.490	2.546	1.71	0.752	3.261	1.29
1.8	0.060	1.355	6.04	0.257	1.917	2.38	0.541	2.772	1.60	0.787	3.400	1.21
1.9	0.063	1.412	5.72	0.272	2.009	2.25	0.580	2.946	1.51	0.843	3.624	1.16
2.0	0.065	1.450	5.43	0.294	2.144	2.14	0.623	3.139	1.43	0.875	3.754	1.11

این جفت های منتخب عبارتند از (برای نمودار VSI EWMA t مقدار p_s = 0.6 و p_s = 0.6 فرض شده اند.) :

 $(\lambda^* = 0.041, L^* = 0.156) : (a = 0.2)$ جبرای یافتن تغییر کوچک ($\lambda^* = 0.028, UCL_t^* = 0.382$ ، FSI EWMA X-bar برای نمودار برای نمودار FSI EWMA t، UCL_{vt}* = 0.446) برای VSI EWMA t نمودار VSI EWMA t نمودار r

 $(\lambda^{*} = 0.269, L^{*} = 0.512)$; (a = 0.7) برای یافتن تغییر متوسط (a = 0.7)), ($\lambda^{*} = 0.107, UCL_{t}^{*} = 0.978$), FSI EWMA X-bar برای نمودار نمودار نمودار FSI EWMA t، ($\lambda^{*} = 0.170, UCL_{vt}^{*} = 1.353$), FSI EWMA t نمودار VSI EWMA t.

 $(\lambda^* = 0.788 , L^* = 1.08) : (a = 1.5)$ جبرای یافتن تغییر بزرگ ($\lambda^* = 0.222 , \text{UCL}_t^* = 1.702$) ،FSI EWMA X-bar برای نمودار برای نمودار ،FSI EWMA t، ($\lambda^* = 0.290 , \text{UCL}_{vt}^* = 2.029$) ،FSI EWMA t نمودار tSI EWMA t نمودار t

همان طور که مشاهده می شود برای مقادیر مختلف b ، پایداری نمودارهای FSI EWMA t و VSI EWMA t تفاوت چندانی ندارند و در مقایسه با پایداری نمودار FSI EWMA X-bar ، این نمودارها پایداری خیلی خوبی دارند. همچنین هر چه مقدار λ بیشتر شود، این اختلاف بیشتر قابل تشخیص است. بنابراین، نمودار پیشنهادی (VSI EWMA t) در برابر اشتباهات تخمین انحراف معیار فرآیند یا تغییرات آن (که موجب زنگ خطرهای اشتباهی بیش از حد معمول یا از بین رفتن حساسیت نمودار نسبت به تغییرات در میانگین فرآیند می شود)، پایداری خوبی دارد. در ادامه، منحنی های ATS مربوط به نمودارهای FSI EWMA ، FSI EWMA t X-bar و VSI EWMA t زمانی که فرض سوم برقرار باشد (b = (1، با هم مقایسه می شوند. در شکل ۵ این منحنیهای ATS برای جفت های استفاده شده در شکل های ۲ تا ۴، رسم گردیدهاند. همان طور که مشاهده می شود، منحنی های ATS مربوط به نمودار پیشنهادی (VSI EWMA t) در شکل های ۵ – آ $(a = 1.5 \quad (a = 0.2 \quad a = 0.2 \quad a = 0.2$ و $(a = 1.5 \quad a = 0.2 \quad a = 0.2$ و $(a = 1.5 \quad a = 0.2 \quad a = 0.2 \quad a = 0.2 \quad a = 0.2$ زیر منحنی های ATS مربوط به نمودار FSI EWMA X-bar و نمودار FSI EWMA t می افتد. در شکل ۵ – ب (مربوط به تغییر متوسط a = 0.7) هم در بازه [0.2, 0.5] این مسئله صادق است. نمودار پیشنهادی توسط Zhang و همکارانش (FSI EWMA t) برای تغییرات کوچک و متوسط (a = 0.2 , a = 0.7) عملکرد بدتری نسبت به نمودار FSI EWMA X-bar دارد و فقط برای تغییر بزرگ در میانگین (a = 1.5) عملکرد بهتری نسبت به FSI EWMA X-bar دارد و همین امر موجب انجام تحقیق حاضر برای بهبود عملکرد نمودار FSI EWMA t شد. بنایراین، نمودار VSI EWMA t علاوه بر پایداری خوبی که در برابر تغییرات در انحراف معیار فرآیند یا اشتباه در تخمین آن دارد، عملکرد نسبتاً

بهتری نسبت به نمودارهای FSI EWMA t و FSI EWMA X- بهتری نسبت به نمودارهای bar دارد.

شکل۲. آ– بررسی پایداری نمودار FSI EWMA t توسط منحنی های ATS برای جفت های (λ* , UCLt) مربوط به تغییر کوچک (a = 0.2).

شکل۲. ب– بررسی پایداری نمودار FSI EWMA t توسط منحنی های ATS برای جفت های (λ^{*} , UCL_t) مربوط به تغییر متوسط (a = 0.7).

شکل۲. ج- بررسی پایداری نمودار FSI EWMA t توسط منحنی های ATS برای جفت های (λ^{*} , UCL_t) مربوط به تغییر بزرگ (a = 1.5).

شکل ۳. آ- بررسی پایداری نمودار VSI EWMA t توسط منحنی های ATS برای جفت های (λ* , UCL_{vt}*) مربوط به تغییر کوچک (a = 0.2).

شکل ۳. ب– بررسی پایداری نمودار VSI EWMA t توسط منحنی های ATS برای جفت های (λ* , UCL_{vt}*) مربوط به تغییر متوسط (a = 0.7).

شکل۳. ج- بررسی پایداری نمودار VSI EWMA t توسط منحنی های ATS برای جفت های (λ* , UCL_{vt}*) مربوط به تغییر بزرگ (a = 1.5).

شکل۴. آ– بررسی پایداری نمودار FSI EWMA X-bar توسط منحنی های ATS برای جفت های (λ* , L*) مربوط به تغییر کوچک (a = 0.2).

شکل۴. ب– بررسی پایداری نمودار FSI EWMA X-bar توسط منحنی های ATS برای جفت های (^λ , L^{*}) مربوط به تغییر متوسط (a = 0.7).

شکل۴. ج – بررسی پایداری نمودار FSI EWMA X-bar توسط منحنی های ATS برای جفت های (^λ , L^{*}) مربوط به تغییر بزرگ (a = 1.5).

شکل۵ آ- مقایسه منحنی های ATS برای مقادیر بهینه

مربوط به تغيير کوچک (a = 0.2).

لکل۵. ب– مقایسه منگنی های A15 برای مقادیر بهی

مربوط به تغيير متوسط (a = 0.7).

مربوط به تغيير بزرگ (a = 1.5).

برای ارزیابی مقادیر *ATS محاسبه شده توسط الگوریتم (اعداد جدولهای ۱ تا ۴)، از تکنیک شبیهسازی استفاده می کنیم. برای این منظور، برای اندازه زیر گروههای مختلف (n = 3, 5, 7, 9) و با

تغییر معین ۵، ۱۰.۰۰۰ داده تولید کرده و پس از محاسبه آماره کنترلی برای نمودار مورد نظر، با استفاده از حدود کنترل بهینه مربوط، بازه نمونه گیری مورد استفاده برای نمونه گیری بعدی را تعیین می کنیم. شبیه سازی را برای ۱۰۰.۰۰ تکرار انجام داده ایم. میانگین زمان لازم تا هشدار نمودار برای حالت خارج از کنترل را برای این تکرارها محاسبه می کنیم. برای نمونه، تعدادی از این مقادیر در جدول ۵ آمده اند. اختلاف کمی که بین مقادیر بهینه *ATS با مقادیر حاصل از شبیه سازی وجود دارد، می تواند ناشی از خطای شبیه سازی و گرد کردن (به ویژه در تخمین حالات تحت کنترل توسط زنجیره مارکوف) باشد.

جدول۵. مقایسه مقادیر *ATS حاصل از اجرای الگوریتم و شیبه سازی زمانی که $h_{\rm S} = 0.2$ و $n_{\rm S} = 0.9$ باشد.

	.15 25	9		
	a (shift)	0.2	0.7	1.5
n = 3 -	ATS [*] (algorithm)	53.1429	10.0739	4.5623
	ATS (simulation)	53.2383	10.0766	4.5785
n = 5	ATS [*] (algorithm)	23.9934	4.5812	2.5968
	ATS (simulation)	23.7747	4.5752	2.6032
n = 7	ATS^{*} (algorithm)	17.0240	3.4739	2.3820
	ATS (simulation)	16.9799	3.4873	2.3822
n = 9	ATS [*] (algorithm)	13.5759	3.0198	2.2916
	ATS (simulation)	13.6728	3.0214	2.2922

۴. نتیجه گیری

در مقاله حاضر به بررسی و طراحی نمودار VSI EWMA t برای کنترل تغییرات در میانگین فرآیند پرداختیم. برای این منظور، چگونگی تعیین بازه های نمونه گیری و حدود کنترل بهینه بیان شد و تأثیر برخی پارامترها در عملکرد نمودار بررسی گردید. همچنین پایداری نمودار (زمانی که انحراف معیار فرآیند تغییر کند یا اشتباه در تخمین آن وجود داشته باشد)، با نمودارهای مشابه مقایسه گردید و نشان دادیم که نمودار t دارای پایداری بهتری (در برابر تغییر در انحراف معیار فرآیند) نسبت به FSI EWMA X-bar می باشد.

مقادیر بهینه *ATS و حدود کنترل بهینه را برای نمودارها محاسبه و با هم مقایسه کردیم. همچنین نشان دادیم که نمودار VSI EWMA t (با توجه به مقادیر ATS) عملکرد بهتری نسبت به نمودارهای مشابه دارد.

نتایج حاصل از اجرای الگوریتم برای محاسبه حدود کنترل بهینه، با استفاده از تکنیک شبیه سازی بررسی و تأیید شدند. اختلاف اندک بین نتایج حاصل از شبیه سازی و داده های جدول ها، می تواند ناشی از خطای شبیه سازی و گرد کردن باشد. [8] Castagliola, P., Tsung, F., "Autocorrelated Statistical Process Control for Non-Normal Situations", Quality and Reliability Engineering International, Vol. 21, No. 2, 2005, pp. 131–161.

۲۵

- [9] Choobineh, F., Ballard, J.L., "Control-limits of QC Charts for Skewed Distribution using Weighted-Variance", IEEE Transactions on Reliability, Vol. 36, No. 4, 1987, pp. 473–477.
- [10] Bai, D.S., Choi, I.S., "X-Bar and R Control Charts for Skewed Population", Journal of Quality Technology, Vol. 27, No. 2, 1995, pp. 120–131.
- [11] Castagliola P., "X-bar control chart for skewed populations using a scaled weighted variance method", International Journal of Reliability, Quality and Safety Engineering, Vol. 7, No. 3, 2000, pp. 237– 252.
- [12] Chang, Y.S., Bai, D.S., "Control Charts for Positively-Skewed Populations with Weighted Standard Deviation", Quality and Reliability Engineering International, Vol. 17, 2001, pp. 397– 406.
- [13] Chan, L.K., Cui, H.J., "Skewness Correction X-Bar and R Charts for Skewed Distributions", Naval Research Logistics, Vol. 50, No. 6, 2003, pp. 555– 573.
- [14] Shore, H., "Non-Normal Populations in Quality Applications: A Revisited Perspective", Quality and Reliability Engineering International, Vol. 20, No. 4, 2004, pp. 375–382.
- [15] Khoo, M.B.C., Wu, Z., Atta, A.M.A., "A Synthetic Control Chart for Monitoring the Process Mean of Skewed Populations Based on the Weighted Variance Method", International Journal of Reliability, Quality and Safety Engineering, Vol. 15, No. 3, 2008, pp. 217–245.
- [16] Roberts, S.W., "Control Charts Tests Based on Geometric Moving Averages", Technometrics, Vol. 1, 1959, pp. 239–250.
- [17] Chao, M.T., Cheng, S.W., "Semicircle Control Chart for Variables Data", Quality Engineering, Vol. 8, No. 3, 1996, pp. 441–446.
- [18] Chen, G., Cheng, S.W., "Max Chart: Combining Xbar Chart and S Chart", Statistica Sinica, Vol. 8, 1998, pp. 263–271.
- [19] Saccucci, M.S., Amin, R.W., Lucas, J.M., "Exponentially Weighted Moving Average Control Schemes with Variable Sampling Intervals", Communications in Statistics- Simulation and Computation, 1992, Vol. 21, pp. 627–657.

[Downloaded from ijiepm.iust.ac.ir on 2025-08-07

[20] Tagaras, G., "A Survey of Recent Developments in the Design of Adaptive Control Charts", Journal of Quality Technology, 1998, Vol. 30, pp. 212–231. معمولاً در عمل (کاربرد)، نمودارهای X-bar یا EWMA X-bar می موند. همراه با یک نمودار پراکندگی (مانند نمودار S) استفاده می شوند. با توجه به پایداری نمودار t EWMA t، این نمودار نسبت به نمودار FSI EWMA X-bar وابستگی کمتری به نمودارهای پراکندگی دارد و این یکی دیگر از مزیت های آن است. – با حد ممکن بازه نمونه گیری کوتاه را کوچک و بازه نمونه گیری بلند را بزرگ در نظر گرفت. – با نظر مدیران و بررسی هزینه ها، تا حد ممکن p را بزرگ و در نیجه w را کوچک در نظر گرفت. – برای جلوگیری از تغییر زیاد بین بازه های نمونه گیری کوتاه و بلند می توان از قوانین دنباله ها^۱ استفاده کرد. – با افزودن ویژگی اندازه نمونه متغیر^۲ ممکن است عملکرد نمودار بهتر شود.

مراجع

- Zhang, L., Chen, G., Castagliola, P., "On t and EWMA t Charts for Monitoring Changes in the Process Mean", Quality and Reliability Engineering International, Vol. 25, No. 8, 2009, pp. 933–945.
- [2] Montgomery, D.C., Mastrangelo, C.M., "Some Statistical Process Control Methods for Autocorrelated Data", Journal of Quality Technology, Vol. 23, No. 3, 1991, pp. 179–193.
- [3] Maragah, H.D., Woodall, W.H., "The Effect of Autocorrelation on Retrospective X-Bar Chart", Journal of Statistical Computation and Simulation, Vol. 40, 1992, pp. 29–42.
- [4] Liu, R.Y., Tang, J., "Control Charts for Dependent and Independent Measurements Based on Bootstrap Methods", Journal of the American Statistical Association, Vol. 91, 1996, pp. 1694–1700.
- [5] Zhang, N.F., "A Statistical Control Chart for Stationary Process Data", Technometrics, Vol. 40, No. 1, 1998, pp. 24–38.
- [6] Amin, R.W., Lee, S.J., "The Effects of Autocorrelation and Outliers on Two-Sided Tolerance Limits", Journal of Quality Technology, Vol. 31, No. 3, 1999, pp. 286– 300.
- [7] Ben-Gal, I., Morag, G., Shmilovici, A., "Context-Based Statistical Process Control: A Monitoring Procedure for Statedependent Processes", Technometrics, Vol. 45, No. 4, 2003, pp. 293–311.

¹ - Runs Rules

² - Variable Sample Size (VSS)

- [21] Lucas, J.M., Saccucci, M.S., "Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements", Technometrics, Vol. 32, No. 1, 1990, pp. 1–12.
- [22] Castagliola, P., Celano, G., Fichera, S., Giuffrida, F., "A Variable Sampling Interval S2-EWMA Control Chart for Monitoring the Process Variance", International Journal of Technology Management, 2006, Vol. 37, No.1/2, pp. 125–146.
- [23] Reynolds, M.R., Jr., Amin, R.W., Arnold, J.C., "CUSUM Charts with Variable Sampling Intervals", Technometrics, Vol. 32, No. 4, 1990, pp. 371–384.
- [24] Castagliola, P., Celano, G., Fichera, S., "Monitoring Process Variability using EWMA", in Pham H. (Editor), Springer Handbook of Engineering Statistics, Springer, New York, pp. 291–325.
- [25] Brook, D., Evans, D., "An Approach to the Probability Distribution of CUSUM Run Length", Biometrika, 1972, Vol. 59, No. 3, pp. 539–549.
- [26] Wu, Z., Zhang, S., Wang, P., "A CUSUM Scheme with Variable Sample Sizes and Sampling Intervals for Monitoring the Process Mean and Variance", Quality and Reliability Engineering International, 2007, Vol. 23, pp. 157–170.

Evans که

27

- برای نمودارهای FSI EWMA t و SSI EWMA t - برای نمودارهای $q_j = \begin{cases} 1 & \text{if } H_j - \delta < Y_0 < H_j + \delta \\ 0 & \text{otherwise} \end{cases}$ (پ.۴)

 $q_{j} = \begin{cases} 1 & \text{if } H_{j} - \delta < Z_{0} < H_{j} + \delta \\ 0 & \text{otherwise} \end{cases}$

ماتریس احتمالات گذر (Q) شامل احتمالات گذر یک مرحله ای از یک حالت گذرا به حالت گذرای دیگر است. عناصر این ماتریس به صورت زیر محاسبه می شوند: - برای نمودار FSI EWMA X-bar

$$Q_{i,j} = F_N\left(\left(\frac{H_j + \delta - (1-\lambda)H_i}{\lambda} - a\right)\frac{\sqrt{n}}{b}\right) - F_N\left(\left(\frac{H_j - \delta - (1-\lambda)H_i}{\lambda} - a\right)\frac{\sqrt{n}}{b}\right) \qquad (\Delta. \downarrow)$$

که F_N تابع توزیع تجمعی نرمال استاندارد می باشد. - برای نمودارهای FSI EWMA t و SI EWMA t -

 $Q_{i,j} = F_t \left(\frac{H_j + \delta - (1-\lambda)H_i}{\lambda} \left| n - 1, \frac{a\sqrt{n}}{b} \right) - F_t \left(\frac{H_j - \delta - (1-\lambda)H_i}{\lambda} \left| n - 1, \frac{a\sqrt{n}}{b} \right) \right)$ (پ.(۶)

که (v, v) که $F_i(...|u)$ تابع توزیع تجمعی برای توزیع t-student غیر مرکزی[†] با u درجه آزادی و یارامتر غیرمرکزیت (شیفت از میانگین) v میباشد.

عنصر j ام بردار بازه های نمونه گیری (G_j)، یعنی بازه نمونه گیری مورد استفاده زمانی که آماره کنترلی در حالت j قرار دارد، به صورت زیر محاسبه می شود :

– اگر $g \leq j \leq R$ – (یا به عبارتی $UWL \geq H_i \leq UWL$) قرار گیرد، از بازه نمونه گیری بلند (h_L) و در غیر این صورت از بازه نمونه گیری كوتاه (h_s) استفاده مي كنيم.

مقدار g را هم طبق نظر Wu و همکارانش، نزدیکترین مقدار صحيح به *UWL/2δ* در نظر گرفته ايم [۲۶].

UCI H_{+m} H_{+1} H H_{-1} H_{-m} LCL

مقادیر ATS و حدود کنترل برای نمودارهای کنترل دقیقتر

تخمین زده می شود (در اینجا p = 101 در نظر گرفته ایم).

شکل پ. ۱- بازه بین حدود کنترل بالایی و پایینی شده p = 2m+1 زیربازه با پهنای δ تقسیم شده (LCL, UCL) است.

آماره کنترلی (Y_k) در زمان k در حالت گذرای j قرار دارد اگر:

$$H_j - \delta \leq Y_k < H_j + \delta$$
; $j = -m$, ..., -1 , 0 , 1 , ..., m . (1, \cup)

که _Hi نقطه میانی زیربازه j ام می باشد. آماره کنترلی در حالت جاذب T قرار دارد اگر Y_k خارج از حدود کنترل بیفتد. اگر آماره کنترلی در حالت گذرا باشد، فرآیند تحت کنترل و اگر در حالت جاذب باشد، فرآیند خارج از کنترل فرض می شود. مقدار ATS از رابطه زیر محاسبه می شود:

$$ATS = \boldsymbol{q}^T \times \boldsymbol{P} \times \boldsymbol{G} . \tag{(Y.)}$$

که $oldsymbol{p}$ بردار احتمال اولیه، $^{-1}(I-oldsymbol{Q})^{-1}$ ماتریس پایه، $oldsymbol{Q}$ ماتریس pاحتمالات گذر و G بردار بازههای نمونه گیری (کوتاه و بلند)، مرتبط با حالات گسسته زنجیره مارکوف می باشند. بردار احتمال اولیه (q) شامل احتمالاتی است که آماره کنترلی در یک حالت

³ - Zero State

^{4 -} Non-central

¹ - Transient States

² - Absorbing State

[Downloaded from ijiepm.iust.ac.ir on 2025-08-07]