طراحی یک سیستم کنترل فرآیند تولید برای زنجیره تامین
چندمرحله‌ای و تک متحول
احمدمرا تخصصی* و علی رهبری

کلیات کلیدی
کنترل فرآیند تولید، Just-In-Time، زنجیره تامین، مدل عددی صحیح مختلط غیرخطی، الگوریتم زنگیک

چکیده: در سیستم‌های کنترل فرآیند تولید که به اساس اصول JIT طراحی می‌شوند، فرصت برای ایجاد کاهش مصرف کریزه در مرحله کار، بیزینی و در زمانی برای مرحله بعدی ارسال گردید که سبب تحقق بهترین استفاده از کارهای مختلف و افزایش توانمندی یک کارخانه می‌شود. در این مقاله، الگوریتم زنگیک در کنار کارهای دیگری و بهترین سیستم‌های جدیدی در نظر گرفته شده‌است. بازار محصولات اصلی در نظر گرفته شده‌اند. جهت ارزیابی بهترین سیستم کنترل فرآیند تولید تحت فضای کاری معرفی شده همکاری بین کار دارای اتاق کارسل توزیع محصولات و سیستم‌های مختلفی است. و می‌توان آن را با استفاده از الگوریتم زنگیک به بهترین سیستم جدیدی تغییر می‌دهد.

کلمات کلیدی
کنترل فرآیند تولید، Just-In-Time، زنجیره تامین، مدل عددی صحیح مختلط غیرخطی، الگوریتم زنگیک

*: a.rahbari@Damghaniau.ac.ir

ISSN: 2008-4870
http://IJIEPM.inst.ac.ir/

یادداشت تحقیقی

ضرعیه بن الماسی پنجی مشابه ومیزان تولید: نمایشگاه 1389، سلسله 1389

شماره 4، جلد 21، سوئیس 1389

نشریه بن الماسی پنجی مشابه ومیزان تولید

[Downloaded from ijiepm.inst.ac.ir on 2024-05-22]

88/12/22
تاریخ مولفه

89/5/9
تاریخ تصمیم

*نویسنده مستند مقاله: دکتر احمد مرا تخصصی
تماس: 09000851941
Tele: 08122116633
a.rahbari@Damghaniau.ac.ir

عهدهبندی، عضو هیات علمی دانشگاه فنی و مهندسی، دانشگاه آزاد اسلامی واحد دامغان

[5/4/2022]
1. مقدمه

في زنجيرته تأمن ذكركرد اتوليد بر زنجيره تأمن جندرلحاءي وتكحمصوي...
در این میان، استراتژی کتابن، مواجه با استقلال زیادی از سوی محققین و مدیران اجرایی و شده نشانه‌های زیادی در مدل‌سازی و طراحی تکنیک‌های حل مسائل کتابن شده است.

2- موراری بر پیشینه مطالعاتی
در سال‌های اخیر، اگری از شرکت‌ها با هدف کاهش موارد بارکار و کنترل جریان فلکات نیم‌ساخته، به استراتژی‌های مختلفی جوین درست پا‌افتاده‌اند.

CONWIP

شکل ۲- جریان مواد و کارتهای کتابن در مرحله i

جدول شماره ۱ (مطالعات پیشین درباره زنجیره‌های تامین-تحت کنترل کتابن را نشان می‌دهد. مقاله یادمانی، تحت شرایط نگهداری دیپیکی در محیط‌های تولیدی که عملاً نگهداری پیش‌تر تولید در مرکز کاری را از ترس متقابل برمایزری شده اولیه به‌دلال مطلوب غیر ممکن می‌نماید، به ضرورت انجام مصحلول

پای کار در یک زنجیره تکمیلی چند‌محصولی توجه نموده، و یک سیستم کنترل فرآیند تولید طراحی نموده است که پیش‌تر برادری از روش کتابن، دارای انبارهای توقف مصحلول‌های مهم‌ساخته بین مراحل مواد تولید چرخ تکنیک‌های محصولاتی است که افزون

یک طرفی تولید در هر بار باراناده‌ای به آن مرکز می‌رسد.
جدول 1: طبقه‌بندی مطالعات پیشین درباره زنجیره تامین - تحت کنترل کانبان

<table>
<thead>
<tr>
<th>فضای تصمیم‌گیری</th>
<th>نوع مطالعه</th>
<th>تک مرحله‌ای</th>
<th>چند مرحله‌ای</th>
</tr>
</thead>
<tbody>
<tr>
<td>تحقیق (شیب‌سازی)</td>
<td>عدیدی</td>
<td>محقق</td>
<td>هیچ‌کدام</td>
</tr>
<tr>
<td>تحقیق (شیب‌سازی)</td>
<td>مدل‌های تعیین در امتیاز (عملیات)</td>
<td>محقق</td>
<td>هیچ‌کدام</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1982</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monden [4]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1984</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reda [10]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyazaki et al. [17]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seidmann [18]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buzacott [19]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gupta & Gupta [20]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang & Wang [5]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deleersnyder et al. [21]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdou & Dutta [9]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1994</th>
</tr>
</thead>
<tbody>
<tr>
<td>Askin et al. [22]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yanagawa et al. [6]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albanino et al. [23]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mascolo et al. [24]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nori & Sarker [25]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarker & Balan [26]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watanabe & Hiraki [27]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co & Sharafian [28]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1997</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andijani [29]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markham et al. [3]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nori & Sarker [30]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarker & Balan [31]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarker & Balan [32]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parija & Sarker [33]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panayiotou & Cassandra [34]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdul-Nour et al. [13]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seki & Hoshino [35]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herer & Shalom [36]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan [12]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tardif & Maaseidvaag [37]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takahashi & Nakamura [14]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shahabudeen et al [38]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lovell [39]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>et al. [40]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boucherie</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarker & Wang [8]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azadeh et al. [15]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Tahat & Muktattash [41]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yavuz & Tufekci [42]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banerjee [43]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>[44]SrivakumarShahabudeen &</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hao & Shen [45]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محقق</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seltman & Ahmad [7]</td>
<td></td>
</tr>
</tbody>
</table>
چپ و راست، بهعنوان سیستم‌های مکمل در زنجیره فرآیند تولید

تعریف می‌شوند.

توجه مركزي این تحقیق بر این واقعیت است که در صنایع که تولید در یک یا چند مرکز کاری تحت تأثیر تغییرات محیطی واین با توجه به این که سیستم تولیدی می‌تواند به خصوص در حالت عدم امکان تولید ساختار سیستم کنترل کلی بنا به چنین تغییراتی، اینگونه هزینه‌ها بسیار در مدل‌های کلاسیک با تاکنون ارائه شده‌اند ناشده‌اند مانده است.

مساله اصلی در این تحقیق عبارت است از: حداکثر کنترل فرآیند تولید برای بهبود عملکرد سیستم کنترل کلی بنا به زنجیره فراپارامتری در صنایع مصرفی تحت شرایط واقعی و اینکه مدل تلفیق یکپارچه برای کنترل و بهینه‌سازی جریان هزینه در کل زنجیره بر اساس تحلیل فاکتور هزینه‌ها واقعی در هر کیفیت زنجیره‌ای مطرح شد.

فوریات زیر در زنجیره تولید نظر گرفته شده است:

1. تغذیه مشتری و تخر تولید، معین و قطعی است.
2. تخر تولید در همین مرکز کاری تولید کننده است.
3. تحریم قطعات تولیدی در هر دوره، برای تمامی مرحله‌های تولیدی زنجیره کنترل می‌باشد.
4. در هر یک از مرحله‌های زنجیره، کمیت جایز نیست.
5. هزینه تکمیل‌های انتقال‌های خلیفی است.

4. مدل‌سازی

به‌منظور مدل‌سازی هزینه کل یک زنجیره تامین N مرحله‌ای، ابتدا هزینه‌های باربر مجزا یک مرحله فرض مانده و سپس با توجه به کلیه گام‌های برای کل مرحله محاسبه شده شد. سپس، هزینه ابتلای مجزا یا سایر جرایز هزینه در کل زنجیره که در روش کنترل کلیب مورد تحقیق کل زنجیره که در روش کنترل کلیب مورد تحقیق قرار گرفت.

به‌منظور مدل‌سازی یک راهبردی عده مختص مختلط غیرخطی و جهت حل مدل از الگوریتم‌زنبیک استفاده شده است.

5. مدل‌سازی

در جدول شماره (2) تعریف پارامترها و در جدول شماره (3) تعریف متغیرهای تصمیم‌گیری است که سعی شده است با یک تولیدکننده و مشتری می‌باشد که مواد به صورت سری در طول زنجیره جریان می‌باید. تولیدکننده مشتمل بر چندین مرکز کاری بعنوان حلقه مرجع زنجیره، و تامین کننده و مشتری در سمت

ملاحظه کنید که الگوریتم‌زنبیک‌های تامین کننده، تولیدکننده مشتری در جدول شماره (4) نشان داده شده که مواد به صورت سری در طول زنجیره جریان می‌باید. تولیدگر مشتمل بر چندین مرکز کاری بعنوان حلقه مرجع زنجیره، و تامین کننده و مشتری در سمت

Mixed Integer Non-Linear Programming

1

18/1389 - جلد 21 - شماره 4

نشریه بین‌المللی مهندسی صنایع و مهندسی تولید
از آنجا که هر عملیات جدیدی روی قطعات ارسالی صورت نگرفته است، هزینه هر موردی نداشت ولی این افراد در انبار قبلاً در مرکز کاری 1 و برای این هزینه تقاضای واحد آنها در انبار بعد از مرکز کاری 1 و همان هزینه تقاضای واحد در مرحله ی ایجاد توزیع به تابیز همان مرحله ی موجودی قطعات نیمه‌ساخته در انتقال از مرکز کاری 1 را نشان می‌دهد. با توجه به توزیع متوسط سطح موجودی برابر است با:

\[I_{w} = \frac{1}{2} Q_{w} (k_{w} - m_{w} + 1) \]

(1)

به هزینه هر موردی قطعات نیمه‌ساخته در انتقال از مرکز کاری 1 که همان هزینه انتقال مجزا در مرحله ی ایجاد تابیز مطابق فرمول زیر محاسبه می‌شود:

\[Allowed~Holding~Cost, = H_{w} \frac{Q_{w}}{2} \]

(2)

مدل سایر اجزای هزینه در کل زنجیره

این قسمت از هزینه که در روش کنترل کلینک موجود نیست در نظر گرفته می‌شود. برای مثال مدل Sarker & Wang (2004) و به صورت زیر نمودار شده است:

\[C_{Kanban} = C_{p} + \sum_{i=1}^{N} C_{w} + C_{f} \]

(3)

که در آن، \(C_{p}, C_{w}, C_{f} \) و \(C_{K} \) هزینه اصلی مودال اوایل، هزینه قطعات نیمه‌ساخته در مرحله به جز هزینه انتقال مجزا، و هزینه تحویل محصول نهایی به مشتری می‌باشد که با فرمول زیر مدل شده‌اند (Sarker & Wang, 2004):

\[C_{p} = \frac{A_{D}}{Q_{p}} + \frac{H_{w}}{2} \]

(5)

\[C_{w} = \frac{A_{w} D}{Q_{w}} + A_{w} \frac{D}{Q_{w}} + H_{w} \frac{Q_{w}}{2} \]

(6)

\[H_{w} = \frac{Q_{w}}{2} (k_{w} + m_{w} + 2) \]

\[C_{f} = \frac{A_{f} D}{Q_{f}} + A_{f} \frac{D}{Q_{f}} + H_{f} \frac{Q_{f}}{2} \]

(7)

\[H_{f} \frac{Q_{f}}{2} (n - m_{f} + 1) \]

جدول ۲: معیارهای تاریخی مدل

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تعریف</th>
</tr>
</thead>
</table>
| \(T \) | هر مورد محصول نهایی به مشتری در مرحله ی ۱ تحویل می‌دهد.
| \(Q \) | مقدار محصولات نهایی که در پایگاه اوراق کاری ۱ ذخیره می‌شود.
| \(T_{q} \) | تعداد دقیق ارمال ارائه‌ای محصول نیمه‌ساخته در مرحله ی ۱.
| \(Q_{q} \) | طول زمان محصول ارمال ارائه‌ای در مرحله ی ۱.
| \(n_{c} \) | تعداد تعادل محصولات نیمه‌ساخته در مرحله ی ۱.
| \(k \) | تعداد عبارت در یک دوره.
| \(T_{d} \) | تعداد محصولات نهایی به مشتری در یک دوره.

جدول ۳: متغیرهای تصمیم‌گیری

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تعریف</th>
</tr>
</thead>
</table>
| \(T \) | هر مورد محصول نهایی به مشتری در مرحله ی ۱ تحویل می‌دهد.
| \(Q \) | مقدار محصولات نهایی که در پایگاه اوراق کاری ۱ ذخیره می‌شود.
| \(T_{q} \) | تعداد دقیق ارمال ارائه‌ای محصول نیمه‌ساخته در مرحله ی ۱.
| \(Q_{q} \) | طول زمان محصول ارمال ارائه‌ای در مرحله ی ۱.
| \(n_{c} \) | تعداد تعادل محصولات نیمه‌ساخته در مرحله ی ۱.
| \(k \) | تعداد عبارت در یک دوره.
| \(T_{d} \) | تعداد محصولات نهایی به مشتری در یک دوره.

شکل ۲: جریان قطعات نیمه‌ساخته و کانال بردادش در مرحله ی ۱

در مرحله ۱ به محض ارمال قطعات نیمه‌ساخته از انتقال از مرکز کاری ۱ به مرکز کاری ۱+۱، از لحاظ هزینه هر محصول نیمه‌ساخته در مرکز کاری ۱+۱ برای محصول ارسال‌شده محاسبه نمی‌شود. چنانچه به هر دلیل اعمال پیوسته مواد زن و انتقاد تولید در این مرحله ممکن باشد، انتقال محصولات ارسالی در انتقال قبل از مرکز کاری ۱+۱ به ۱، افزایش هزینه تغذیه انتخاب‌پذیر گردید.
با استفاده از عبارات زیر:

\[Q = n_i N, \]
\[Q = k_i Q_{w_i}, \]
\[Q = n_i Q_f, \]
\[m_i = \frac{D}{k_i}, \]
\[m_{i+1} = \frac{m_i}{k_{i+1} / k_i}, \]
\[m_n = \frac{D}{P_{N+1}}, \]
\[m_{N+1} = n \times \frac{D}{P_{N+1}}. \]

با جایگذاری معادلات (5) و (6) در عبارت فوق و سادسازی آنها، خواص به دست می‌آید:

\[TC_{SC} = D \left(\frac{A_x}{Q_x} + \sum_{i=1}^{N} \left(\frac{A_{w_i}}{Q_{w_i}} + \frac{A_{n_i}}{Q_{n_i}} \right) \right) + \frac{1}{2} \left(H_x Q_x + 2 \sum_{i=1}^{N} H_{w_i} Q_{w_i} + H_f Q_f \right) \]
\[+ \frac{1}{2} \left(\sum_{i=1}^{N-1} H_{w_i} Q_{w_i} \left(k_{i+1} + k_i \right) - (m_i + m_{i+1}) \right) + H_{w_N} Q_{w_N} \left(k_N + n \right) - (m_N - m_{N+1}) \]
\[+ H_f Q_f \left(n - m_{N+1} \right) \]

نمودار ۱. موجودی قطعات نیم‌ساخته در انبار قبل از مرکز کاری ۱ (انبایش مجاز در مرحله \(T \))

جدول ۴. پارامترهای مثال عدیدی- یک زنجیره تامین ۳ مرحله‌ای تحت کنترل کانبان

<table>
<thead>
<tr>
<th>هزینه هر کپی</th>
<th>هزینه هر کپی جمله‌ای</th>
<th>بر جمع‌‌کردن ضریب (سال‌های نظری)</th>
<th>نتایج (سال‌های نظری)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H = 45</td>
<td>A = 110</td>
<td>5500</td>
<td></td>
</tr>
<tr>
<td>H = 30</td>
<td>A = 100</td>
<td>5600</td>
<td></td>
</tr>
<tr>
<td>H = 45</td>
<td>A = 80</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>H = 25</td>
<td>A = 120</td>
<td>68.897</td>
<td>200</td>
</tr>
<tr>
<td>H = 35</td>
<td>A = 100</td>
<td>5500</td>
<td>200</td>
</tr>
</tbody>
</table>

جدول ۵. پارامترهای الگوریتم زنتیک

<table>
<thead>
<tr>
<th>هزینه کل زنجیره (دلار)</th>
<th>Mutation</th>
<th>Crossover</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.897</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>72.868</td>
<td>0.15</td>
<td>0.85</td>
</tr>
<tr>
<td>73.112</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>73.257</td>
<td>0.15</td>
<td>0.85</td>
</tr>
</tbody>
</table>

نتیجه‌بندی: عمده‌سازی مالیاتی صنایع و مدیریت تولید
وزرودی ها:

1. تولید جمعیت اولیه
2. تولید جواب‌های مجموعه Q, n_0, n, k_i ($for \ i = 1 \ to \ N$)

زمایای تابع هدف در مجموعه جواب‌های
1. Decode Q, n_0, n, k_i ($for \ i = 1 \ to \ N$)
2. Calculate TC_{SC}

گول‌بستن به پایان رسیده است؟

خروجی ها:

Q^*, n_0^*, n^*, k_i^* ($for \ i = 1 \ to \ N$)

نمودار 2. قدم‌های الگوریتم زنیشک

با توجه به اینکه، متغیر Q از نوع عدد حقيقی و متغیرهای n و $k_i, i = 1, 2,..., N$ از نوع عدد صحیح هستند، معادله (10) از نوع عدد صحیح مختلط غیرخطی می‌باشد.

هریست کل زنیشک به صورت معادله (10) بدست خواهد آمد.

$$TC_{SC} = \frac{D}{Q} \left(A_n n_0 + \sum_{i=1}^{N+1} A_n + \sum_{i=1}^{N} A_n k_i + nA_f \right) +$$

$$\frac{Q}{2} \left(\frac{H_f}{n_0} + 2 \sum_{i=1}^{N} \frac{H}{k_i} \right)$$

$$+ \frac{Q}{2} \left(\sum_{i=1}^{N+1} H_i \left(\frac{k_i}{k_j} \left(1 - \frac{D}{P_i} \right) + \left(1 - \frac{D}{P_j} \right) \right) \right) +$$

$$H_n \left(\sum_{i=1}^{N} \left(1 - \frac{D}{P_{N+1}} \right) + \left(1 - \frac{D}{P_N} \right) \right) +$$

$$H_f \left(1 - \frac{D}{P_{N+1}} \right)$$

از یازیابی میزان کارایی الگوریتم کنترل طراحی شده در مقایسه با روش‌هایی که از روی مدل‌های کناری تأمین می‌شوند، مشخص است که کلاً این زنیشک را با استفاده از

روش شیشه و حد جل کردن، و الکل، مدل تحقیق حاضر، که

شریعتی فیضی، مهندسی صنایع و مدیریت توپولید

زمینه 1389-جلد 21-شماره 2

نشریه بین المللی مهندسی صنایع و مدیریت توپولید
ترکیب برنامه‌ریزی عدد صحیح با یک هدف غیرخطی است از نوع NP-hard بوده و بدلیل پیچیدگی، استفاده از الگوریتم‌های جستجوی نیمه دقیق بهینه‌برداری بر حل آن، مستلزم زمان محاسباتی زیادی است. این زمان با برگ هم‌مانده سالانه افزایش خواهد و برخی موارد نیز بافتند جواب بهینه عملی امکان‌پذیر نیستند [30].
به‌دلیل سازگاری الگوریتم زینکیک به مدل آنالیز کارایی مناسبی این الگوریتم زینکیک استفاده شده است. نمونه ۳، قدیمی‌ترین الگوریتم زینکیک به کار گرفته شده در این مقاله را می‌تواند به نمودار ۳ و ۴ دانست. نمونه‌هایی از این موضوع از جمله با پاسخ‌های نهایی در نظر گرفته شده‌اند. نمونه دوم به‌دلیل نسبت زینکیک که در مدل زمان قابل قبولی (۸۰ تا ۱۰۰ درصدی) به‌دلیل مشاهده شده است، نمونه تولید مجموعه جواب‌های نهایی (امکان‌پذیر)، محصول‌های زیر به تولید مجموعه جواب‌های مورد نظر قرار گرفته است.

\[
Q \geq 0, \text{ Integer} \\
{n_0, n \geq 0, \text{ Integer}} \\
k_i \geq 0, \text{ Integer \ for \ } i = 1 \text{ to } N
\]

\[
Q \leq D, \ n_0 \leq Q, \ n \leq Q \\
k_i \leq Q \ \text{ for \ } i = 1 \text{ to } N
\]

پایه‌ریزی الگوریتم زینکیک دوگانه مورد استفاده در جدول (۳) و نمونه ۴ به‌دلیل همبستگی الگوریتم زینکیک با پاسخ‌های نهایی در نظر گرفته شده است. نمونه چهارم به‌دلیل نسبت پاسخ‌های نهایی در مدل زمان قابل قبولی (۸۰ تا ۱۰۰ درصدی) به‌دلیل مشاهده شده است.

جدول ۶ جواب بدست آمده از الگوریتم زینکیک در مقایسه با نمونه ۴ (2004) Sarker & Wang

<table>
<thead>
<tr>
<th>جواب تحقیقی</th>
<th>جواب تولید شده</th>
<th>مقدار حاضر</th>
<th>مقایسه هزینه بخش‌های مختلف زنجره در مدل Sarker & Wang (2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲</td>
<td>۱۰۱</td>
<td>۱۰۲</td>
<td>از مدل Sarker & Wang (2004)</td>
</tr>
<tr>
<td>۳</td>
<td>۱۰۲</td>
<td>۱۰۳</td>
<td>از مدل Sarker & Wang (2004)</td>
</tr>
</tbody>
</table>

۱ Roulette Wheel
۲ Elite Selection
A Rule Induction Approach for Determining the Number of Kanbans in a Just-in-Time Production System

A Review of Kanban—the Japanese JIT

Sarker & Wang

An Algorithm to Dynamically Adjust the Number of Kanbans in Stochastic Processing Times and Variable Demand Environment

Gupta, S.M., AlTurki, Y.A.Y., “An Algorithm to Dynamically Adjust the Number of Kanbans in Stochastic Processing Times and Variable Demand Environment”, Zestan 1329-12-7 - شماره 2

نشریه بین المللی مهندسی صنایع و مدیریت تویله

مراجع

