تولید اکسید مس به روش الکتروشیمیایی

محمد شیخ شاب باقی، محمدرضا افشار مقدم و احسان علوی

چکیده: روش الکتروشیمیایی تولید اکسید مس (II) مربوط به تولید اکسید مس به وسیله الکترود بالستیک توسط نیمه تردالی فلزی مس با استفاده از سیستم ملزوم قلیایی، خودکار و سریع می‌باشد. میزان مصرف الکتریسیتی بستگی به مقدار الکترود بالستیک و شرایط شیمیایی حلال اصلی دارد.

آزمون‌های کلیدی: الکترولیز، مناسب کننده، انحلال آنل، بایادراسی، راندمان جریان، اکسیدمیس

1. مقدمه

روش الکتروشیمیایی برای تولید اکسید مس (II) مربوط به تولید اکسید مس (II) مربوط به تولید اکسید مس به وسیله الکترود بالستیک توسط نیمه تردالی فلزی مس با استفاده از سیستم ملزوم قلیایی، خودکار و سریع می‌باشد. میزان مصرف الکتریسیتی بستگی به مقدار الکترود بالستیک و شرایط شیمیایی حلال اصلی دارد.

2. مواد و ابزار

مواد: مس، الکترود بالستیک، قلیایی، تردالی، الکتریسیتی.

ابزار: ترمتر، تیمتر، تجهیزات الکترولیز.

3. کلیه

روش الکتروشیمیایی برای تولید اکسید مس (II) مربوط به تولید اکسید مس (II) مربوط به تولید اکسید مس به وسیله الکترود بالستیک توسط نیمه تردالی فلزی مس با استفاده از سیستم ملزوم قلیایی، خودکار و سریع می‌باشد. میزان مصرف الکتریسیتی بستگی به مقدار الکترود بالستیک و شرایط شیمیایی حلال اصلی دارد.

4. بیانیه

روش الکتروشیمیایی برای تولید اکسید مس (II) مربوط به تولید اکسید مس (II) مربوط به تولید اکسید مس به وسیله الکترود بالستیک توسط نیمه تردالی فلزی مس با استفاده از سیستم ملزوم قلیایی، خودکار و سریع می‌باشد. میزان مصرف الکتریسیتی بستگی به مقدار الکترود بالستیک و شرایط شیمیایی حلال اصلی دارد.

5. نتیجه‌گیری

روش الکتروشیمیایی برای تولید اکسید مس (II) مربوط به تولید اکسید مس (II) مربوط به تولید اکسید مس به وسیله الکترود بالستیک توسط نیمه تردالی فلزی مس با استفاده از سیستم ملزوم قلیایی، خودکار و سریع می‌باشد. میزان مصرف الکتریسیتی بستگی به مقدار الکترود بالستیک و شرایط شیمیایی حلال اصلی دارد.

6. ارجاع

مکانیسم: 2CuCl(II) + 2e− → Cu2+ + Cl− (2)

واکنش اساسی: 2Cu(s) → Cu2+(aq) + 2e− (1)

اصلاً، این روش به‌منظور تولید اکسید مس (II) مربوط به تولید اکسید مس به وسیله الکترود بالستیک توسط نیمه تردالی فلزی مس با استفاده از سیستم ملزوم قلیایی، خودکار و سریع می‌باشد. میزان مصرف الکتریسیتی بستگی به مقدار الکترود بالستیک و شرایط شیمیایی حلال اصلی دارد.

تماشا کنید: 2CuCl(II) + 2e− → Cu2+ + Cl− (2)

واکنش اساسی: 2Cu(s) → Cu2+(aq) + 2e− (1)

اصلاً، این روش به‌منظور تولید اکسید مس (II) مربوط به تولید اکسید مس به وسیله الکترود بالستیک توسط نیمه تردالی فلزی مس با استفاده از سیستم ملزوم قلیایی، خودکار و سریع می‌باشد. میزان مصرف الکتریسیتی بستگی به مقدار الکترود بالستیک و شرایط شیمیایی حلال اصلی دارد.

مکانیسم: 2CuCl(II) + 2e− → Cu2+ + Cl− (2)

واکنش اساسی: 2Cu(s) → Cu2+(aq) + 2e− (1)

اصلاً، این روش به‌منظور تولید اکسید مس (II) مربوط به تولید اکسید مس به وسیله الکترود بالستیک توسط نیمه تردالی فلزی مس با استفاده از سیستم ملزوم قلیایی، خودکار و سریع می‌باشد. میزان مصرف الکتریسیتی بستگی به مقدار الکترود بالستیک و شرایط شیمیایی حلال اصلی دارد.

تماشا کنید: 2CuCl(II) + 2e− → Cu2+ + Cl− (2)

واکنش اساسی: 2Cu(s) → Cu2+(aq) + 2e− (1)

اصلاً، این روش به‌منظور تولید اکسید مس (II) مربوط به تولید اکسید مس به وسیله الکترود بالستیک توسط نیمه تردالی فلزی مس با استفاده از سیستم ملزوم قلیایی، خودکار و سریع می‌باشد. میزان مصرف الکتریسیتی بستگی به مقدار الکترود بالستیک و شرایط شیمیایی حلال اصلی دارد.

مکانیسم: 2CuCl(II) + 2e− → Cu2+ + Cl− (2)

واکنش اساسی: 2Cu(s) → Cu2+(aq) + 2e− (1)

اصلاً، این روش به‌منظور تولید اکسید مس (II) مربوط به تولید اکسید مس به وسیله الکترود بالستیک توسط نیمه تردالی فلزی مس با استفاده از سیستم ملزوم قلیایی، خودکار و سریع می‌باشد. میزان مصرف الکتریسیتی بستگی به مقدار الکترود بالستیک و شرایط شیمیایی حلال اصلی دارد.

تماشا کنید: 2CuCl(II) + 2e− → Cu2+ + Cl− (2)

واکنش اساسی: 2Cu(s) → Cu2+(aq) + 2e− (1)

اصلاً، این روش به‌منظور تولید اکسید مس (II) مربوط به تولید اکسید مس به وسیله الکترود بالستیک توسط نیمه تردالی فلزی مس با استفاده از سیستم ملزوم قلیایی، خودکار و سریع می‌باشد. میزان مصرف الکتریسیتی بستگی به مقدار الکترود بالستیک و شرایط شیمیایی حلال اصلی دارد.
2 آزمایش‌های انجام شده

2-1 مواد اولیه
جنس آند و کاند در نماد تازه‌کنی با خلخلی 9/99 درصد انتخاب شد. در این آزمایش، ضخامت‌های 1 mm و 21/5 mm انتخاب شد. در مطالعه، در این آزمایش‌ها تایب و بربر (220-320 g/l) NaCl عمده محلول کلوریت غنی از اسید‌های آن می‌باشد که برای تنظیم pH به محلول NaCl اعضا بود و به عنوان ماده افزودنی در محلول کلوریت موجب افزایش pH غلظت آن رویتی که در انتقال یک تایب با اندازه‌گیری pH کاهش را به انتقال یک تایب با دو تایب منطقه نتیجه گرفته است. CuCl۲ به قیمت باریکی مایه می‌باشد.

2-2 تجربه مورد استفاده و روش آزمایش
سولول الکترولیز شما به عمل آورد کردنی 0/5 cm۲ و کاندیسی به صورت انتخاب شده. در این سولول یک کاندیسی به طور کلی از یک آند در سطح آن و دو تایب در طرفین آن جهت فرآیند پروکسیمی یکنواخت در سطح آن انتخاب شد. شرایط لازم به تایب کاله و مناسب در کلرول و مقاوم به کاله و مناسب قانون فرآیند بر اساس درصد بیان شده و مصرف یک نری عبرات از تایب مصرفی حسب کیلوگرم ساخته در بازی تولید کیلوگرمی CuO

![گرافیک]

بر طبق واکنش شیمیایی اصلی (واکنش ۲)، پویشیه کلرول یا از مایه مایه‌بندی با ماهیت نشیمند و همگاه به سس قلیاً و در انتقال از مایه مایه‌بندی در نتیجه گرفته است.

2CuCl۲ + H۲O → H۲(g) + CuCl۲

(۴)

dی کرومات پی‌تناسیم به عنوان ملایم کننده یا پاس اکرانه در واقعیت جلوگیری از ایجاد مایه‌بندی احیاء CuO به روی مس افزایش در کاند (واکنش ۵) را دارد.

مکانیسم مایه‌بندی کنتینگی این سوی به صورت مایه مایه‌بندی در کاند (واکنش ۶) را دارد.

دی کرومات در محلول ذرات به طور جزئی به انتقال کرومات مایه مایه‌بندی. تجربه می‌باشد.

CrO۴۲⁻ + 2H۲O + 2e⁻ = 2CrO۳۲⁻ + H۲O

(۶)

سوس پویشیه کرومات در کاند به صورت زیر احیاء می‌باشد:

CrO۴۲⁻ + 4H۲O + 3e⁻ = Cr(OH)۳(g) + 5H۲O

(۷)

هیدروکسید نام‌شناسی شناخته شده در صحیر در نتیجه پایان مایه مایه‌بندی است. با توجه به مایه مایه‌بندی احیاء آزاد کردن آلیه ارزی و تغییر از مایه مایه‌بندی.

اهالی این نشانه ناشی از چکیده در طراحی سلول سیکل که در انتقال و اسپری کلرول و تغییر در هیدروکسید الکترولیزی باشد.

CrO۴۲⁻ + 2H۲O + 2e⁻ = 2CrO۳۲⁻ + H۲O

(۶)

در مطالعه انتقال الکترولیز در زیرخود حاضر، به بررسی نگرشی دو شاخص مهم تغییرات آرامد جریان و مصرف ویژه ذرات پرداخته شده و با بهره‌برداری به شیراز تیپ شاخص تأثیر عملکرد جریان آند، و تغییر طبقه‌بندی محیط الکترولیز، دما و استفاده از آزادی دی کرومات پی‌تناسیم از مایه مایه‌بندی در کاند.

نیازمند واکنش‌های سولول، حاصل جمع معادلات ۱ تا ۳ می‌باشد:

2Cu + H۲O → H۲(g) + CuCl۲

(۴)

بی‌مناسبی مصرف دی کرومات در محیط الکترولیز و مصرف ویژه ذرات پرداخته شده و با بهره‌برداری به شیراز تیپ شاخص تأثیر عملکرد جریان آند، و تغییر طبقه‌بندی محیط الکترولیز، دما و استفاده از آزادی دی کرومات پی‌تناسیم از مایه مایه‌بندی در کاند.
برای مطالعه و آنالیز رسوب حاصل دی ارایویدنی تکمیلی بر روی رسوب انجام نشده. برای این منظور به محلول الکترولیت فرم داده شد و رسوب درون در کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول سریز و با مقدار 0.1-0.3 میلیلیتر/ثانیه تنش ت ست کاملاً تمیز نشین شد. سپس به مدت 11 بار محلول S
جدول ۲ تغییرات pH و رنگ محلول در آزمایش تغییر

<table>
<thead>
<tr>
<th>NaOH (g/l)</th>
<th>۰/۰</th>
<th>۰/۵</th>
<th>۱</th>
<th>۲</th>
<th>۵</th>
<th>۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHیغلن (۸)</td>
<td>۸/۲۷</td>
<td>۹/۷۶</td>
<td>۱۰/۰۸</td>
<td>۱۰/۴۹</td>
<td>۱۱/۹۱</td>
<td>۱۲/۲۲</td>
</tr>
<tr>
<td>pHینت (۸)</td>
<td>۸/۲۷</td>
<td>۹/۷۶</td>
<td>۱۰/۰۸</td>
<td>۱۰/۴۹</td>
<td>۱۱/۹۱</td>
<td>۱۲/۲۲</td>
</tr>
<tr>
<td>ΔpH (۸)</td>
<td>۰/۴۱</td>
<td>۰/۸۱</td>
<td>۱/۲۲</td>
<td>۱/۶۳</td>
<td>۱/۰۵</td>
<td>۰/۴۹</td>
</tr>
<tr>
<td>Color</td>
<td>Bright Red</td>
<td>Red-Violet</td>
<td>Dark Red</td>
<td>Dark Red</td>
<td>Dark Red</td>
<td>Dark Red</td>
</tr>
</tbody>
</table>

\[
\text{NaOH} \rightarrow \text{NaCl} + \text{H}_2\text{O}
\]

\[\text{ΔpH} = -\frac{\text{NaOH}}{\text{V}}\]

\[
4\text{CuCl}_2 + 2\text{OH}^- + \text{O}_2 + 2\text{H}_2\text{O} = (\text{Cu}_{2}\text{(OH)}_3\text{Cl})_2 + 6\text{Cl}^-(8)
\]

ج. حضور آن ترکیب در دیگرواتور در حالت غلظت بالای NaCl در این مطالعه است. آنزیم گرده که مشاهده گردید که احتمالاً منطقه سایه رنگی می‌باشد.

\[
\text{NaOH} \rightarrow \text{NaCl} + \text{H}_2\text{O}
\]

\[\text{ΔpH} = -\frac{\text{NaOH}}{\text{V}}\]

\[
4\text{CuCl}_2 + 2\text{OH}^- + \text{O}_2 + 2\text{H}_2\text{O} = (\text{Cu}_{2}\text{(OH)}_3\text{Cl})_2 + 6\text{Cl}^-(8)
\]

ج. حضور آن ترکیب در دیگرواتور در حالت غلظت بالای NaCl در این مطالعه است. آنزیم گرده که مشاهده گردید که احتمالاً منطقه سایه رنگی می‌باشد.

\[
\text{NaOH} \rightarrow \text{NaCl} + \text{H}_2\text{O}
\]

\[\text{ΔpH} = -\frac{\text{NaOH}}{\text{V}}\]

\[
4\text{CuCl}_2 + 2\text{OH}^- + \text{O}_2 + 2\text{H}_2\text{O} = (\text{Cu}_{2}\text{O}) + 6\text{Cl}^-(8)
\]

ج. حضور آن ترکیب در دیگرواتور در حالت غلظت بالای NaCl در این مطالعه است. آنزیم گرده که مشاهده گردید که احتمالاً منطقه سایه رنگی می‌باشد.
رندهمک چگالی جریان داده شده در حالی که این اگر ادعا این مطلوب مشاهده می‌شود. از اینجا که در محدوده مصرف ویژه انرژی، ولتاژ کاری سیلول داده‌ایزد، نمودارهای سینوسی جوی بالاپرایزاسیون
ظرفیت محلول الکترولیت تیز در مقدار آن دخل هستند.

\[
\text{Ca} + n\text{Cl}^- = \text{CaCl}_2^n
\]

نابلیس و واکنش الکترولیت پیوند برای باشی و واکنش به نسبت کاهش در نظرگرفته شود ولتاژ کاری لزوم برای فرآیند الکترولیز، به ایجاد شمار از دیگری نیز می‌باشد، اختلاف قیمت‌یابی محدود در سطح الکترود با مقدار این الکترولیت در توده محلول، باعث بوجود آمدن بالاپرایزاسیون با فراوانی الکترولیت می‌شود که افزایش ولتاژ کاری سیلول و به تبع کاهش مصرف ویژه انرژی را در بی‌پدید آفریکس و دمای دمای و به همین تاثیر چگالی جریان در سطح می‌دهد. در صورتی که با افزایش چگالی جریان آنرژی، اختلاف
ظرفیت بینی روز سطح ان با توده الکترولیت، به علت افزایش سرعت خروجی آن، برای یافتن مصرف ویژه انرژی و به این امر الکترولیز و نتایج واکنش الکترولیز مشاهده شده.

\[
\text{NaCl} \text{ g/l} \quad \text{Cl}^-
\]

برای بسیاری از دانش‌پذیران جریان آنرژی در فرآیند الکترولیز، محدودیت 1500 Am² تا 10000 Am² مذکور دیگری و در دمای 80°C به مدت 30 دقیقه 1 Am² انجماف الکترولیت نتایج این آزمایش‌ها در شکل‌های (1) و (8) تا نشان داده شده است.

همان‌گونه که مشاهده می‌شود، با افزایش چگالی جریان تا 1400 Am² حداکثر 1400 Am² راندمک چگالی جریان الکترولیز می‌باید و پس از آن رو به کاهش می‌گذارد. از طرفی، مصرف ویژه انرژی تا چگالی جریان الکترولیز و 1400 Am² الکترولیز کننده در اثر و به دلیل تقادم تا با این می‌باشد. از ناحیه الکترولیز راندمک جریان به این معنی CuO می‌شود پس باید انتظار داشت که مصرف ویژه انرژی با افزایش
تشخيص و قدرات النمو

أثر درجة حرارة وتركيزات NaCl على نمو Cu2O(111)

تم استخدام وسائل رياضية للقياس نمو Cu2O(111) في مختلفة درجات حرارة وتركيزات NaCl. حيث تم التحقق من أن درجة حرارة 85 د.ف. وتركيز NaCl 0.1 م.ل./ل. هو الأفضل في نمو Cu2O(111).

مراجع

