بررسی تعدادی از روشهای آماری جهت ترسیم نمودار کنترل مشاهدات انفرادی برای فرایندهای اتورگرسیو

عباس سقیایی، پاسر صمیمی، و کامران پی‌نیا

چکیده: تاکنون مقالاتی زیادی درباره تأثیر خودهمیستگی مشاهدات بر عملکرد نمودارهای کنترل شوهرات به روش تحریک در آمده است. پیش‌تریکه‌های بایرسی خودکار که امکان‌های مزیتی و ارزیابی مشخصه‌های کیفی محصولات را همگام با روند تولید افراد فراهم ساخته است نیز روز به روز برمی‌گردد. این موضوع می‌تواند گاهی از روشهای مختلف نمودارهای کنترل وحشی ویژه‌ای قرار گیرد. فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرایندهای خودهمیستگی، مهندسین و کاربران را بر این استفاده می‌فرآیند و نظراتی بر فرا

واژه‌های کلیدی: کنترل فرایند آماری، خودهمیستگی سری زمانی، نمودار کنترل مشاهدات انفرادی

1. مقدمه

برای استفاده از نمودارهای کنترل شوهرات فرض می‌شود همگام با فرآیند نمودارهای کنترل شوهرات استفاده نمود. همچنین می‌توان از نمودارهای کنترل شوهرات استفاده نمود. مهندسین مشاغل برای استفاده از نمودارهای کنترل فرض استقلال مشاهدات را جهت ویژگی کم‌سربازی می‌بینند. کاربران نمودارهای کنترل مرسوم را در مخلوط خواهند نمود. باید اینکه خودهمیستگی مثبت در مشاهدات، منجر به افزایش قابل توجه علائم شدید شناسایی و وجود خودهمیستگی مثبت سبب افزایش نرخ نتایج در نمودارهای کنترل خواهند شد [2].

منطقه مستقل استفاده مشاهدات حاصل از بروز تغییرات نسبی در فرآیندهای شیمیایی، خودکار و ناهنجاری‌ها، مشاهدات متغیر می‌باشد. فرآیند، وقایع از هم‌سازی کیفیت در فرآیند و رهبری خودکار که امکان‌های مزیتی و ارزیابی مشخصه‌های خودهمیستگی را همگام با روند تولید افراد فراهم ساخته است نیز روز به روز برمی‌گردد. این موضوع می‌تواند گاهی از روشهای مختلف نمودارهای کنترل وحشی ویژه‌ای قرار گیرد.

در این رابطه یک تغییرات تصادفی است که بر توزیع نموداری می‌تواند با میانگین صفر و احتمال معادل σ_0 در این مقدار داشته باشد. این مقدار داشته باشد.

این مقاله در تاریخ 28/12/2018 دریافت و در تاریخ 25/03/2019 به ترتیب، به ترجمه نهایی رسیده است.

دکتر عباس سقیایی، پاسر صمیمی، کامران پی‌نیا

کامران پی‌نیا، دانشکده مهندسی صنایع، دانشگاه صنعتی خواجه نصیرالدین طوسی

k_peynabar@mail.iust.ac.ir
۲. تأثیر خودهمیگستگی مشاهدات بر عملکرد نمودارهای کنترل شوره‌های

تأثیر خودهمیگستگی بر عملکرد نمودارهای کنترل توسط تعدادی از محققین مانند مرافک و وودال، ایوان و رابین، ووگنی و فریدمن بررسی شده است که جفت‌بندن، بی‌توجهی و وجود خودهمیگستگی از نمودارهای کنترل شوره‌های مشاهده‌ای این نمودارهای X - MR یا X - S توان مقدار احتمال خطای نوع اول حاصل را در جدول ۱ ملاحظه نمود.

جدول ۱ - مقادیر مختلف ضریب خودهمیگستگی

<table>
<thead>
<tr>
<th>ضریب</th>
<th>احتمال خطای نوع اول</th>
<th>مقدار انحراف معیار در برآورد</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.9</td>
<td>0.00010</td>
<td>0.00016</td>
</tr>
<tr>
<td>-0.8</td>
<td>0.00016</td>
<td>0.00024</td>
</tr>
<tr>
<td>-0.7</td>
<td>0.00013</td>
<td>0.00019</td>
</tr>
<tr>
<td>-0.6</td>
<td>0.00002</td>
<td>0.00024</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.00003</td>
<td>0.00020</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.00006</td>
<td>0.00047</td>
</tr>
<tr>
<td>-0.3</td>
<td>0.00007</td>
<td>0.00063</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.00015</td>
<td>0.00090</td>
</tr>
<tr>
<td>-0.1</td>
<td>0.000149</td>
<td>0.00061</td>
</tr>
<tr>
<td>0</td>
<td>0.000290</td>
<td>0.00121</td>
</tr>
<tr>
<td>0.1</td>
<td>0.000429</td>
<td>0.00183</td>
</tr>
<tr>
<td>0.2</td>
<td>0.000715</td>
<td>0.00266</td>
</tr>
<tr>
<td>0.3</td>
<td>0.001258</td>
<td>0.00333</td>
</tr>
<tr>
<td>0.4</td>
<td>0.002054</td>
<td>0.00616</td>
</tr>
<tr>
<td>0.5</td>
<td>0.003426</td>
<td>0.00543</td>
</tr>
<tr>
<td>0.6</td>
<td>0.005987</td>
<td>0.00733</td>
</tr>
<tr>
<td>0.7</td>
<td>0.009880</td>
<td>0.01242</td>
</tr>
<tr>
<td>0.8</td>
<td>0.018330</td>
<td>0.01368</td>
</tr>
<tr>
<td>0.9</td>
<td>0.034356</td>
<td>0.02175</td>
</tr>
</tbody>
</table>

۳. تریسم نمودار کنترل برای مشاهدات خودهمیگستگی

۱-۱ رفع خودهمیگستگی

اولین رویکرد برای تریسم نمودار کنترل شوره‌های برای یک فرآیند خودهمیگستگی از مشاهدات است. ساده‌ترین راه برای مقایسه با خودهمیگستگی در نمونه‌های مختلف، افزایش فاصله زمانی بین نمونه‌ها است.

کاهش توانا نمودهای گروه با حذف جدولی رفع خودهمیگستگی در داده‌های مدل مورد نظر می‌تواند از ریکرد‌هایی اول‌اً قبل از داده‌های استفاده از این ریکرد را در پی خواهد داشت و تا نیاً افزایش فاصله زمانی میان نمونه‌ها، زمان لازم جهت کشف و شناسایی تغییرات در فرآیند را برای بالاتر توجیه افزایش خواهد داد.

بمنظر پایش فرآیندهای خودهمیگستگی روش‌های مؤثرتری موجود دارد که در دو گروه شامل رویکردی برای مدل و رویکردی مستقل از دست مبنایی می‌شود. گروه اول به رویکرد برای مدلی که در این مقاله مورد بحث واقع شده، شد خود شامل سه رویکرد ۱- اصلاح کنترل شوره‌های X - X و رویکرد تریسم نمودار بکلیمانده و ۲- روشکرد استفاده از تقریب توسط آماره EWMA می‌باید در ادامه به تشریح روشهای مذکور می‌پردازیم.
جدول 2 مقادیر متوسط طول دنباله برای نمودار کنترل خود همیسیگنی (۱) برای مشاهدات خود همیسیگنی

<table>
<thead>
<tr>
<th>φ</th>
<th>σ_φ</th>
<th>E[MR/d_Σ]</th>
<th>ARL_0 (μ = μ_0)</th>
<th>ARL_1 (μ = μ + σ_φ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.9</td>
<td>2.2942</td>
<td>3.1623</td>
<td>45179.41</td>
<td>1743.99</td>
</tr>
<tr>
<td>-0.6</td>
<td>1.2500</td>
<td>1.5811</td>
<td>7125.77</td>
<td>396.39</td>
</tr>
<tr>
<td>-0.3</td>
<td>1.0483</td>
<td>1.1952</td>
<td>1604.25</td>
<td>128.71</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0000</td>
<td>1.0000</td>
<td>370.22</td>
<td>43.84</td>
</tr>
<tr>
<td>0.3</td>
<td>1.0483</td>
<td>0.8771</td>
<td>85.60</td>
<td>17.28</td>
</tr>
<tr>
<td>0.6</td>
<td>1.2500</td>
<td>0.7906</td>
<td>22.84</td>
<td>8.60</td>
</tr>
<tr>
<td>0.9</td>
<td>2.2942</td>
<td>0.7255</td>
<td>8.15</td>
<td>3.86</td>
</tr>
</tbody>
</table>

رویکرد همبسته مبتنی بر مدل مدل در ترسیم نمودار کنترل (۲) برای مشاهدات خود همیسیگنی

در این نقطه به مطالعه دسته‌ای از فرآیندهای خود همیسیگنی در دامنه کاری آن، نمونه‌گیری دیگر نمونه‌گیری دیگر که در نظر گرفته شده که در دامنه کاری آن، نمونه‌گیری دیگر

\[
E(\text{MR}) = 2\sigma_x \left(1 - \phi \sqrt{\frac{1}{\pi}}\right)
\]

\[
\text{ARL}_0 = \frac{1}{|1 - \phi|} \left(\frac{\mu}{\sigma_x}\right)^2
\]

\[
\text{ARL}_1 = \frac{1}{\sigma_x} \left(\frac{\mu + \sigma_\phi}{\sigma_x}\right)^2
\]
همچنان که مشاهده می‌شود مقدار ARL با افزایش قابل توجه مقدار ϕ از 0.6 به زیر رابطه $1 < \phi < 3$ نشان می‌دهد نمودار اصلاح مشاهده اصلی از ابتدای نیت است. به این ترتیب نمودار متغیرهای تصادفیهای محدود سطح نامناسب‌ترین درب‌های ARL مشاهده است.

\[\phi = 0 \] NID

\[\phi = \frac{1}{\delta}, \quad \delta = 1 \]
شکل 1. برای نمودار X با حدود سه انحراف معیار (انحراف معیار واقعی فرایند) ARL.
شکل 4. برای نمودار X با حدود $\mu \pm h\sigma$, مقدار ϕ در چهار وضعیت به ازای مقدار $\phi = -0.9$, $\phi = 0.9$, $\phi = 0$ و $\phi = 0.5$.

شکل 5. برای نمودار X با حدود $\mu \pm h\sigma$, مقدار ϕ در پایان این قسمت، نتایج برای نمودار X به ازای وضعیت $\phi = -0.9$, $\phi = 0.9$, $\phi = 0$ و $\phi = 0.5$.

در رابطه 6، مقدار ضریب نمودار کنترل اصلاح شده را نشان می‌دهد که برای مقدار مشخص محاسبه شده است. همچنین تابع توزیع تجمعی نرمال استاندارد را تعیین می‌کند، $\phi(\delta, s)$.

$$P_\phi(\delta, s) = P_\phi(|\delta + (1 - \phi) 37.5 sigma + \epsilon| > h_\phi 75 sigma) = 1 - \Phi[h_\phi 75 sigma - \delta s - (1 - \phi) 37.5 sigma] + \Phi[-h_\phi 75 sigma - \delta s - (1 - \phi) 37.5 sigma]$$

در رابطه 5، مقدار نیروی میریابند برای نمودار X به ازای وضعیت $\phi = -0.9$, $\phi = 0.9$, $\phi = 0$ و $\phi = 0.5$.
واسته نیست. در صورتی که مقدار ضرب همبستگی منفی در
فاراند موارد سایین اگر برای مقادیر $\mu < \phi$ احتمال بررسی علائم خارج از کنترل در برد بیشتر از مقادیر نسبتاً زیادی برخوردار
باشد.

برای تفسیر این پدیده باید توجه کرد که اگر مقادیر ϕ_s از
میانگین فاراند متغیر باشد، وجود ضرب همبستگی منفی بین
می‌شود که ماهده به نظر ϕ_s با احتمال زیادی از مقادیر
بیش از میانگین برخوردار باشد. این امر به ندرت وجود یک شیفت
مشت در میانگین فاراند باعث احتمال بررسی علائم خارج از کنترل
از افزایش خواهد داد.

شکل دیگری که به ماهده این نمودارها پویا نمودارهای مربوط به
عکس به نظر می‌رسد است که هنگامیکه در
میانگین فاراند شفاف وقت نیست و مقادیر گزارش
شدن، احتمال احتمال تشخیص شیفت در میانگین فاراند برای وضعیت
$\phi_s > 0$ به وجود می‌آید. می‌تواند پس از وضعیت $0 < \phi < \phi_s$
بازتوپسی عبارت $\delta \sigma_s$ در رابطه 1 بصورت
$\frac{1}{1+\phi} \delta \sigma_s$ نشان دهنده سعت عدد یک، مقدار عبارت مدلی به سمت صفر می‌باشد.

بدین ترتیب طبیعی به نظر می‌رسد احتمال تشخیص شیفت
هنگامیکه ضرب خود همبستگی به سمت یک می‌کند
(1) بسیار کمتر از حالتی باشد که این ضریب به سمت
منفی یک می‌کند (1→-).

شکل 8 حمایت مشاهده‌ی علامت خارج از کنترل
در مشاهده بندی از یک فرایند (1)، بعنوان
تابعی دو متغیر از مقدار شفاف در میانگین فرایند
(\(\phi\)) و مقدار منفی مشاهده فعلي
(\(s \in (\mu - h_s \sigma_s, \mu + h_s \sigma_s)\)) مختلف محاسبه شده است.

\(\phi = -0.9\)
\(\phi = -0.6\)
\(\phi = -0.3\)

\(^1\)Auto regressive-moving average
\(x_t = \mu (1 - \phi_1 - \ldots - \phi_p) + \phi_1 x_{t-1} + \ldots + \phi_p x_{t-p} + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \ldots - \theta_q \varepsilon_{t-q} \) \quad (7)

بطوریکه در رابطه فوق، \(x_{t-i} \) مشخصه کیفی موردنظر در زمان \(t-i \) ضرایب مدل اتورگرسیو \(\mu \) انتخاب می‌شوند. ضرایب مدل میانگین متحرک و خطا \(\varepsilon_t \) از زمان \(t-i \) است. ضرایب مدل اتورگرسیو در زمان \(t-i \) بر اساس فرضیهداری از رابطه \(NID \) انتخاب می‌شوند. AR(p) یک مدل میانگین متحرک است.

\(x_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \ldots - \theta_q \varepsilon_{t-q} \) \quad (8)

\(\varepsilon_t \) که به‌طور تصادفی انتخاب می‌شود.

\(\phi \) توسط رابطه

\[\phi = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

و \(\sigma^{2} \) میانگین متحرک در زمان آن است. ARMA(p,q) یک مدل میانگین متحرک است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.

\[\phi(\phi) = \frac{\sum_{i=1}^{\infty} \rho_i \phi_i}{\sum_{i=1}^{\infty} \rho_i} \]

\(\phi(\phi) \) میانگین متحرک در زمان آن است.
نمودارهای کنترل برای باقیمانده‌های مدل فویق در شکل 11 رسماً شده است. همانطور که مشاهده می‌شود در این نمودارها هیچ علامت خارج از کنترل مشاهده نمی‌شود و این مسئله از هر نظر اولین نسبت زیاد در نمودار شکل 8 حاکی‌دارد.

SCC

پیشنهاد می‌کند که در یک فرآیند خود‌بیشینه، نمودار SCARل‌تار احترام تجاری (SCC) ارائه‌شده نمودار مشاهده‌های اصلی فرآیند را در کنار مقادیر پیشینی حاصل از مدل نشان می‌دهد. جهت آشکار کردن این اطلاعات از مدل‌های سری زمانی و تحلیل‌های مناسب کار را در قالب شکل 7 نشان می‌دهند [8] به عنوان یک مشاهده از نمودار باقی‌مانده، فرآیند را در نظر گرفته که در شکل 8 نمودار کنترل 100 مشاهده از آن نشان داده شده است. شکل 9 نمودار متعلق به این مشاهدات و شکل 10 نمودار را برای آن تعریف و تحلیل نمودارهای مذکور از خطوط بافتکن و جنبه‌های مدل سری زمانی نگاشتی‌گردنده و پارامترهای مدل تخمین زده می‌شود.

Common cause chart

با استفاده از نرم‌افزار Minitab مشاهده‌های بصورت

\[x_t = 22.0952 + 0.746 x_{t-1} \]

برآورده شده است. پس از محاسبه باقی‌مانده‌های مدل، حاصل از براورد مشاهده‌ای به‌طور زمانی 10 به مشاهدات، برقراری روابط NID \(R(1) \) و باگر کفایت مدل‌پذیری در مورد باقی‌مانده‌های بررسی شده و شایستگی مدل به آن‌ها رسیده است.

\[E(R_t) = \begin{cases} 0 & ; T > t \\ a & ; t - 1 < T \leq t \\ (1- \phi)a & ; T \leq t - 1 \end{cases} \]

1 Common cause chart
دنباله برای نمودار باقیمانده در یک فرآیند $AR(1)$ از رابطه 12

$AR_L = 1 + \frac{1 - \Phi(1)}{\Phi(2)}$ نتایج زیر:

$P(1) = 1 - \Phi(3 - \frac{a}{\sigma^2}) + \Phi(-3 - \frac{a}{\sigma^2})$

$P(2) = 1 - \Phi(3 - \frac{(1-\phi)}{\sigma^2}) + \Phi(-3 - \frac{(1-\phi)}{\sigma^2})$

راپطه 11 این موضوع را بیان می کند که استفاده از نمودار باقی‌مانده‌های $AR(1)$ به بهترین شناسایی شایع‌ترین فرآیندهای مبتنی بر حالات شرایط HD مناسب است.

شکل 2. بررسی فرضیات ترغیبی نمودار کنترل شوهرت و نحوه بکارگیری مدل‌های سری زمانی جهت ترغیبی نمودار مفادات باقی‌مانده‌ها

ارایه شده.
در شکل 12 مقدار متوسط طول دنباله برای ضریب خودهمستگی NID و ضریب خودهمستگی تغییرات کوچک یا متوسط در بیانگان فرایند، ثابت به وضعیت NID و وضعیت به مراتب ضعیف‌تر می‌باشد.

ارایه شده احتمال تشخیص شیفت توسط نمونه‌ای در ده‌ها دنیای حاوی‌ها است. این می‌تواند به نمونه‌ای در دو دنیای حاوی‌ها باشد است. نمونه‌ای در دو دنیای حاوی‌ها باشد است. نمونه‌ای در دو دنیای حاوی‌ها باشد است.
جدول 3. بررسی تأثیر شیفت به اندماج یک انحراف معیار در میانگین فرایند (AR(1))
نمودار باقیمانده‌ها با حدود $3\sigma_r$ ± به ایزی مقادیر مختلف خود همبستگی

<table>
<thead>
<tr>
<th>ϕ</th>
<th>$\mu_1 = \mu_0 + k \sigma_1$</th>
<th>احتمال تغییر توسط توزیع مشاهده بین</th>
<th>احتمال تغییر توسط مشاهده بین</th>
<th>ARL</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1.0</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>-0.9</td>
<td>-0.93</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>-0.8</td>
<td>-0.85</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>-0.6</td>
<td>-0.64</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>-0.3</td>
<td>-0.34</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.3</td>
<td>0.34</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.6</td>
<td>0.64</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.8</td>
<td>0.85</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.85</td>
<td>0.88</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.9</td>
<td>0.92</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.92</td>
<td>0.94</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.95</td>
<td>0.97</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.97</td>
<td>0.99</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

در جدول 4، با انحراف گرفتن مقدار شیفت در میانگین مقادیر خروجی همبستگی آزمایش یافته، مقدار ARL نمودار باقیمانده‌ها با حدود $3\sigma_r$ ± به ایزی مقادیر مختلف خود همبستگی

جدول 4. محاسبه نقطه تغییر جهت نمودار

<table>
<thead>
<tr>
<th>ϕ</th>
<th>$\mu_1 = \mu_0 + k \sigma_1$</th>
<th>نقطه تغییر جهت</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.9468</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.9373</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.9164</td>
<td></td>
</tr>
</tbody>
</table>
شکل ۱۴. مقایسه نمودار باقیمانده‌ها با نمودار شوهارت اصلاح شده به ارزی مقدار مختلف ضریب همبستگی ϕ
شکل 15. تصمیم گیری برای انتخاب نمودار مناسب از بین نمودار باقی‌مانده‌ها و نمودار شوهرت اصلاح شده در فرآیند (1)

3-2-3 استفاده از مدل تقریبی میانگین متحرک موژون EWM (نام‌های)

مدل‌های در ساختار پیمانه باکس جکنسن، گالا، Rouhot و مشکل محصول می‌شود. دنیایی و مسیرالعلوم روشنی تقریبی برای ساختار فرآیند خود‌محض‌سازی بررسی استفاده از آمارaً پیش‌نهاد کرده‌اند که ترسیم نمودار باقی‌مانده‌ها را تسهیل EWMMAA نموده است. اگر \(I(t) = 1 \) جهت که در پایان پرودک به عمل آمده است، مطلوب رکردکند مکروارد مشخصی کمی در پرودک بود صورت را نشان می‌دهد که پیش‌نهای EWMMAA

\[
Z_t = \alpha x_t + (1-\alpha)Z_{t-1}
\]

به‌عنوان یک نمونه از این روش برای ترسیم نمودار کنترل برای 100 مشاهده از فرآیند خود‌محض‌سازی با مدل

\[
x_t = 0.7x_{t-1} + \epsilon_t
\]

استفاده می‌کنیم. برای تعبیه نمودار بازارت از روش کنینه SARI مبتنی از طبقه‌بندی است. نمودار پرودکت در شکل 16 در نرم افزار Excel به روش گفته است. اصلاح می‌شود که مشاهده می‌شود کمترین مقدار خط با ارزی \(\lambda = 0.9 \) حالت شده است. شکل 17 نشان داده که تعادل EWMMAA علامت‌های از کنار را نشان می‌دهد. این نشان می‌دهد که تولید خالقی از تجزیه‌کننده باید چنین بینی یک پرودکت (با باقی‌مانده‌ها)

\[
P(-3\sigma_i \leq R_i \leq -3\sigma_i) = 0.9973
\]

\(R_i \)

1Run chart

\(\sigma_i \)

1Integrated Moving Average
شکل 16. نمودار مقادیر مربعات باقیماندها در مقابل مقادیر مختلف پارامتر λ.

$\lambda = 0.9$ ـ EWMA

شکل 17. نمودارهای کنترل مشاهدات افرادی برای باقیماندههای مدل EWMA با پارامتر $\lambda = 0.9$.

شکل 18. نمودار کنترل میانگین متحرک موزون نما، با خط مرکز متحرک بر مبنای مدل EWMA با پارامتر $\lambda = 0.9$.

\[P[-3\sigma_x \leq x - \hat{x}_i(t - 1) \leq 3\sigma_x] = 0.9973 \]

(18)

\[P(\hat{x}_i(t - 1) - 3\sigma_x \leq x \leq \hat{x}_i(t - 1) + 3\sigma_x) = 0.9973 \]

(19)

By setting this value as a white noise, we obtain:

\[UCL_{x_i} = Z_t + 3\sigma_x \]

(20)

\[LCL_{x_i} = Z_t - 3\sigma_x \]

(21)

Montgomery and Runger model the EWMA to the following equation:

\[EWMA_\alpha = \alpha x + (1 - \alpha) EWMA_{\alpha} \]

(22)

where \(\alpha \) is the smoothing constant. For \(\alpha = 0.1 \), the EWMA becomes equivalent to the moving average model (MA). For \(\alpha = 0.2 \), the EWMA becomes equivalent to the exponential smoothing model (ES). For \(\alpha = 0.5 \), the EWMA becomes equivalent to the least squares (LS) method.

The EWMA model can be used to detect changes in the process mean and variance. The EWMA statistic is given by:

\[EWMA_\alpha = \alpha x + (1 - \alpha) EWMA_{\alpha} \]

(23)

where \(\alpha \) is the smoothing constant. For \(\alpha = 0.1 \), the EWMA becomes equivalent to the moving average model (MA). For \(\alpha = 0.2 \), the EWMA becomes equivalent to the exponential smoothing model (ES). For \(\alpha = 0.5 \), the EWMA becomes equivalent to the least squares (LS) method.

The EWMA model can be used to detect changes in the process mean and variance. The EWMA statistic is given by:

\[EWMA_\alpha = \alpha x + (1 - \alpha) EWMA_{\alpha} \]

(24)

where \(\alpha \) is the smoothing constant. For \(\alpha = 0.1 \), the EWMA becomes equivalent to the moving average model (MA). For \(\alpha = 0.2 \), the EWMA becomes equivalent to the exponential smoothing model (ES). For \(\alpha = 0.5 \), the EWMA becomes equivalent to the least squares (LS) method.

The EWMA model can be used to detect changes in the process mean and variance. The EWMA statistic is given by:

\[EWMA_\alpha = \alpha x + (1 - \alpha) EWMA_{\alpha} \]

(25)

where \(\alpha \) is the smoothing constant. For \(\alpha = 0.1 \), the EWMA becomes equivalent to the moving average model (MA). For \(\alpha = 0.2 \), the EWMA becomes equivalent to the exponential smoothing model (ES). For \(\alpha = 0.5 \), the EWMA becomes equivalent to the least squares (LS) method.

The EWMA model can be used to detect changes in the process mean and variance. The EWMA statistic is given by:

\[EWMA_\alpha = \alpha x + (1 - \alpha) EWMA_{\alpha} \]

(26)

where \(\alpha \) is the smoothing constant. For \(\alpha = 0.1 \), the EWMA becomes equivalent to the moving average model (MA). For \(\alpha = 0.2 \), the EWMA becomes equivalent to the exponential smoothing model (ES). For \(\alpha = 0.5 \), the EWMA becomes equivalent to the least squares (LS) method.

The EWMA model can be used to detect changes in the process mean and variance. The EWMA statistic is given by:

\[EWMA_\alpha = \alpha x + (1 - \alpha) EWMA_{\alpha} \]

(27)

where \(\alpha \) is the smoothing constant. For \(\alpha = 0.1 \), the EWMA becomes equivalent to the moving average model (MA). For \(\alpha = 0.2 \), the EWMA becomes equivalent to the exponential smoothing model (ES). For \(\alpha = 0.5 \), the EWMA becomes equivalent to the least squares (LS) method.

The EWMA model can be used to detect changes in the process mean and variance. The EWMA statistic is given by:

\[EWMA_\alpha = \alpha x + (1 - \alpha) EWMA_{\alpha} \]

(28)

where \(\alpha \) is the smoothing constant. For \(\alpha = 0.1 \), the EWMA becomes equivalent to the moving average model (MA). For \(\alpha = 0.2 \), the EWMA becomes equivalent to the exponential smoothing model (ES). For \(\alpha = 0.5 \), the EWMA becomes equivalent to the least squares (LS) method.

The EWMA model can be used to detect changes in the process mean and variance. The EWMA statistic is given by:

\[EWMA_\alpha = \alpha x + (1 - \alpha) EWMA_{\alpha} \]

(29)

where \(\alpha \) is the smoothing constant. For \(\alpha = 0.1 \), the EWMA becomes equivalent to the moving average model (MA). For \(\alpha = 0.2 \), the EWMA becomes equivalent to the exponential smoothing model (ES). For \(\alpha = 0.5 \), the EWMA becomes equivalent to the least squares (LS) method.

The EWMA model can be used to detect changes in the process mean and variance. The EWMA statistic is given by:

\[EWMA_\alpha = \alpha x + (1 - \alpha) EWMA_{\alpha} \]

(30)

where \(\alpha \) is the smoothing constant. For \(\alpha = 0.1 \), the EWMA becomes equivalent to the moving average model (MA). For \(\alpha = 0.2 \), the EWMA becomes equivalent to the exponential smoothing model (ES). For \(\alpha = 0.5 \), the EWMA becomes equivalent to the least squares (LS) method.

The EWMA model can be used to detect changes in the process mean and variance. The EWMA statistic is given by:

\[EWMA_\alpha = \alpha x + (1 - \alpha) EWMA_{\alpha} \]

(31)
شکل 19. تصمیم گیری برای انتخاب نمودار مناسب از بین نمودار باقیمانده‌ها و نمودار شوهرات اصلاح شده در فرایند (1)

5. تقدیر و تشریح
نویسنده‌گان مقاله لازم می‌دانند صمیمانه از دقت نظر و پیشنهادات ارزیابی داوران محترم که در جهت ارتقاء کیفی مقاله بهره‌مندی بوده است تشکر نمایند.

مراجع