بررسی تأثیر مقدار فلакс بر فرا پایین تصفیه مذاب آلومینیم

امید مجیدی، سعید شیستری و محمد رضا ابوطالبی

چکیده: در پژوهش حاضر، فلакс حاوی 90 درصد وزنی از ترکیب NaCl-KCl به همراه 8 درصد وزنی A319 و 3 درصد وزنی CaF₂ به مذاب آلومینیم حلالی از این فلاینال/ایزوالسینیک در اصابت به استحکام در مواد الکترولیتی (SEM, رادیوکمپیوتر اکتیویوی) فشار کمیاب یافته. نتایج نشان داد که مقدار فلакс بر روند عملیات تصفیه از طریق ازماتی cakesh به بیان نشان می‌دهد که مقدار فلакс بر فرا پایین تصفیه مذاب آلومینیم، می‌تواند به بهبود شکل و کیفیت تقلبی مواد الکترولیتی اثر بیشتری داشته باشد.

واژه‌ها کلیدی: مذاب آلومینیم، فلакс، فرا پایین، تصفیه، بزابایی.
جدول 1. ترکیب شیمیایی فلакс مورد استفاده در تصمیم‌گیری

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>نوع فلакс</th>
<th>درصد وزنی (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>ذوب تراشه‌های الیزاتیزهای رشته‌ای اصل فلакс (100 درصد)</td>
<td>25</td>
</tr>
<tr>
<td>S1</td>
<td>ذوب تراشه‌های الیزاتیزهای رشته‌ای اصل فلакс به میزان 10 درصد</td>
<td>25</td>
</tr>
<tr>
<td>S2</td>
<td>ذوب تراشه‌های الیزاتیزهای رشته‌ای اصل فلакс به میزان 30 درصد</td>
<td>25</td>
</tr>
<tr>
<td>S3</td>
<td>ذوب تراشه‌های الیزاتیزهای رشته‌ای اصل فلакс به میزان 40 درصد</td>
<td>25</td>
</tr>
<tr>
<td>W0</td>
<td>ذوب گرکن‌های الیزاتیزهای بایاس 40 نای فلакс</td>
<td>8</td>
</tr>
<tr>
<td>W1</td>
<td>ذوب گرکن‌های الیزاتیزهای بایاس 60 نای فلакс</td>
<td>8</td>
</tr>
<tr>
<td>W2</td>
<td>ذوب شمش‌های الیزاتیزهای بایاس 60 نای</td>
<td>2</td>
</tr>
</tbody>
</table>

روش تحقیق

در این پژوهش تأثیر مقدار فلакс بر چگالی و خواص مکانیکی آلیاژ برای بررسی از نظر علمی و مهندسی از طریق استاندارد ASTM-B108 (Reduced Pressure Test) تا مقدار ذوب در حالت حرارتی تمرکب 15 کیلوگرم‌های شدت. در این آزمایشی از آزمایش حدود 100 نمونه‌سنجی (900 mm تقریبی در میان) 15 کیلوگرم‌های شدت به طریق ذوب در حالت حالت حرارتی تمرکب 15 کیلوگرم‌های شدت. سپس توسط ذوب گرکن با مدول گرایش، ذوب شدن عمليات فلаксSiC به طریق مناسب در مهار گاز آرگون به درون مداد همراه با هوا مدیده، به همراه کاهش آرامش‌ها با مقدار مختلف فلакс انجام گرفت. در شکل 1 به طور شماتیک نحوه انجام کانال شده شده است. این مقادیر با ترکیب 2011/03/20 و 24 درصد وزنی کل مقدار انتخاب شدند.

YP از اعمال فلакс و سیره به گری، باлагاصی‌های نمونه‌هایی با دستگاه انجام داده شد. نمونه‌های آزمون کشی 200 درجه دای، برنامه‌ریزی‌های مورد استاندارد ASTM-B108 به همراه گرگت نشان دهنده تا مقدار حداقل گرگت نشان دهنده (Reduced Pressure Test) استفاده شده است. سپس به همراه کاهش آرامش‌ها با مقدار مختلف فلакс انجام گرفت. در شکل 1 به طور شماتیک نحوه انجام کانال شده شده است. این مقادیر با ترکیب 2011/03/20 و 24 درصد وزنی کل مقدار انتخاب شدند.

همچنین برای بررسی و بررسی میزان تأثیر عملیات اعمال فلакс در مورد گرگت نشان دهنده الیزاتیزهای خاصی است. ۳۶۳۲ یک سری آزمایش با اعمال در مقدار ذوب فلакс انجام گرفت و نشان دهنده با دوز گرگت ها بدون اعمال فلакс و ذوب شدن‌های لوله ۶۰۳ کریکتی اعمال شدند. شرکت ترکیب شیمیایی فلакс مورد استفاده از طریق آزمایش XRD و XRF و محاسبه در حدود ۱ آمر این شد. همچنین کد ذاکری نمونه‌ها با اساس درصد وزنی فلакс در حدود ۲/۳ ۲/۳
نمودهای آلیاژ ریختگی

نتایج و بحث

1- نمودهای آلیاژ ریختگی

نتایج آزمایش شیمیایی نمونه‌های ریختگی در شرایط مختلف تصفیه در چهار مدل مختلف نمونه، درصد دیگر از آنزیم خلاصه‌بندی طولی این نمودهای ریختگی کاملاً متفاوت است. شش‌گاه گرمه نمودهای این اثر پردازش‌های آلیاژی آب‌سیمانی می‌باشد. به یکی از همه این‌ها در این مدل انتقال میدان از نظر اثر ترکیب شیمیایی در محدوده نزدیک به یکدیگر قرار دارند. همگونی که در شکل‌های 3 و 4 ملاحظه می‌شود، نمونه‌های این مدل، به‌طور کلی، از اثرات اصلی و یا اثرات اکسترا محدوده اثر منجر به سایر نمونه‌ها دارا می‌باشد. در قسمت‌های درصد ورودی نمونه‌ها با افزایش درصد مناسب، استحکام کششی و ذرات اکسترا را به سایر نمونه‌ها دارد. %

جدول 3- آنالیز شیمیایی نمونه‌های ریختگی

<table>
<thead>
<tr>
<th>%</th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>Fe</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>Cu</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>Mn</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Mg</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Zn</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Al</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>
در برخی از سایر نقاط از همراه باSEM در تصاویر ماتالوگرافی و SEM معمولاً در همسایگی آخال و اکسیدها، حفرات و تخلخل بسیار مشاهده می‌شود. حضور همین حفرات و تخلخل‌ها نیز علائم بر اینستحکام و انعطاف‌پذیری نمونه‌ها بر اندیس چگالی تاثیر مثبت و موجب کاهش آنها می‌گردد. همانطور که در نمونه‌های مربوط به استحکام کشنده و درصد ازدید طول قابل، اندیس چگالی مشاهده شد.

مطلق تحقیقات انجام گرفته توسط محققین مختلف روش شده است که فلاکس‌پلیکان سدیم (Na₅SiF₆) و فلوراید کلسیم (CaF₂) باعث ترکیبی با ترکیب NaCl-KCl از آن رقابت و ترکیب سخت‌تر ممکن می‌شود. اتاق کلیکال برای این تحقیق به دست آمده است. با اکسید اورمروف و اکسید اورمروف به شکل زیر است:

$$6Na₂SiF₆ + 2Al₂O₃ → 4NaAlF₄ + 3SiO₂ + 3SiF₄_{(gas)}$$

و اکتش فوک طوری که گزارش دوم با افراش دما، سپرای افراش بایته و سطوح نماس بین فلاکس و ماده مشتر شده و در نتیجه زاویه نماس بین آخال و ماده زاید می‌شود. به عبارتی، ترکیب آخال و ماداب در اورمروف مشتر کاهش می‌یابد. این امر جدید سری‌های آثار خالی از ماداب را باعث می‌شود. همچنین گزارش‌های سیلیسیم (SiF₄) حاصل از انجام این واکنش می‌تواند با جنبه‌های به آخال و شناور کردن آنها از نظر شکست نمونه S₅ و S₈ بر EDS.

شکل 5. تصویر از مقطع شکست نمونه S₈

شکل 6. تصویر از مقطع شکست نمونه S₅

شکل 7. ریز ساختار مربوط به نمونه S₅
In some cases, the text may contain mathematical or chemical symbols that are not directly translatable into text. Here is a natural representation of the text:

Table 1: Analysis of Alloys

<table>
<thead>
<tr>
<th>W₀</th>
<th>W₁</th>
<th>W₂</th>
<th>Si %</th>
<th>Fe %</th>
<th>Cu %</th>
<th>Mn %</th>
<th>Mg %</th>
<th>Zn %</th>
<th>Al %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.368</td>
<td>0.396</td>
<td>0.257</td>
<td>0.811</td>
<td>0.834</td>
<td>0.252</td>
<td>0.200</td>
<td>0.240</td>
<td>0.431</td>
<td>0.449</td>
</tr>
<tr>
<td>0.252</td>
<td>0.120</td>
<td>0.264</td>
<td>0.193</td>
<td>0.193</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
</tr>
</tbody>
</table>

Equation 3

\[
\Gamma^i = -\left(\frac{1}{RT} \right) \left(\frac{\partial y}{\partial \text{ln} a_i} \right)
\]

Equation 4

\[
\text{W₀ + W₁ + W₂ = 1}
\]

In other cases, the text may contain symbols or words that are not directly translatable into text. Here is a natural representation of the text:

For some coverage, the text may contain mathematical or chemical symbols that are not directly translatable into text. Here is a natural representation of the text:
4. نتیجه‌گیری
الف) با افزایش میزان فلاکس افزوده شده (فلاکس خاکی Na2SiF6 و NaF) درصد وزنی مذاب را از تصفیه مذاب بطور پیوسته درصد ازدیابی طول نسبی آلایژ 2024 و 7075 نسبت به فلز کنار به ترتیب 25/3% و 25/4% افزایش داد.
ب) استحکام کشی درصد ازدیابی طول نسبی آلایژ 2024 و 7075 نسبت به فلز کنار به ترتیب 25/3% و 25/4% افزایش داد.

مراجع

