A Bi-Objective Model for Optimizing Price, Warranty Length, and Service Capacity Within Queuing Framework: Genetic Algorithm and Fuzzy System

A. Mahmoudi & H. Shavandi

Amin Mahmoudi, MSc, Faculty of Industrial and mechanical Engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran
Hassan Shavandi, Associate Professor of Industrial Engineering, Sharif University of Technology, Tehran, Iran

Keywords
Bi-objective optimization, Pricing, Queuing, Fuzzy system, Genetic algorithm, Warranty.

ABSTRACT
In this paper, we have proposed a bi-objective model for pricing-queuing problem under fuzzy environment. The objectives are maximizing the profit and minimizing the waiting time in system to receive the service. Price, warranty length, and service capacity decisions are analyzed for a seller with considering sale and service channels. To formulate the demand function, a fuzzy system is developed to estimate the demand value under price and warranty length variables. Furthermore, a hybrid solution of genetic algorithm and a fuzzy system is presented to solve the proposed model. At end, numerical results are analyzed by solving sample problems.

© 2014 IUST Publication, IJIEPM. Vol. 25, No. 2, All Rights Reserved

* Corresponding author. Hassan Shavandi
Email: Shavandi@sharif.edu
ارائه یک مدل دو هدفه جهت بهینه سازی قیمت، طول دوره گارانتی و نظارت خدمتی در چارچوب یک سیستم صف: الگوریتم زنتیک و سیستم فازی

امین محمودی و حسن صواندی

چکیده:
در این مقاله یک مدل دو هدفه از مسائل تلفیقی قیمت گذاری و صن در یک محیط عمل قطعی برای نقش ارائه شده است. دو هدف مدل ارائه شده عبارتند از: 1) م Республик سازی سود فروشندگی و 2) م Республик سازی زمان انتظار مشتریان در سیستم. قصیر تر تصمیم گیری روی پارامترهای قیمت، طول دوره گارانتی و نظارت خدمتی به علاوه، یک روش مورد تحلیل قرار گرفته است. به منظور تولید سیاست تابع نظارتی یک سیستم فازی بهترین نتایج تحت واسطه بنیانگذار یک پارامترهای قیمت و طول دوره گارانتی توشعه داده شده است. به علاوه، به منظور حل محل یک الگوریتم تلفیقی جدید از الگوریتم زنتیک و سیستم فازی پیشنهاد شده است و در انتهای نتایج عدید با حل یک مسئله نمونه مورد تحلیل قرار گرفته است.

کلمات کلیدی:
مسلة بهینه سازی دو هدفه، قیمت گذاری، نظارت خدمتی، سیستم فازی، الگوریتم زنتیک، وارانتی

1. مقدمه
امروز رضایت مشتری یک نشان دهنده در محیطهای کسب و کار باید می‌کند. به دنیا منظور قیمت‌دادن مناسب بر روی محصولات یک برتری برای تأثیر گذار در رنگ نتایج می‌باشد که می‌تواند باعث تغییر هر سه را مصرف کند. در ضمن قرار داد کارشناسی بپذیرد شناسایی که وظایف می‌گیرد. این پژوهش به یک رژیم ملی بررسی قرار داده و می‌تواند یک روش برای پیشنهاد و مورد اجرای قیمت‌گذاری را به طول دوره گارانتی و باعث پیشنهاد بهترین طول دوره گارانتی را به مدل و محلول‌هایی تعیین کند. بهینه‌سازی قیمت‌گذاری در یک زنجیره تأمین مشکل از یک پارامتر یکی از مقادیر بهینه سازی می‌باشد که به علاوه از بازاریابی در محیطهای فراوانی از تولید و فروش مورد استفاده قرار می‌گیرد [1]. در قرار داد گارانتی فروشندگی با تولید کننده

تاریخ وصول: 12/8/97
تاریخ تصویب: 12/6/97

امین محمودی، کارشناسی ارشد، دانشکده مهندسی صنایع و مکانیک، واحد اینی، mahmoudi@iust.ac.ir
حسن صواندی، دانشگاه صنعتی شریف
Chavandi@sharif.edu

Downloaded from ijiepm.iust.ac.ir at 10:22 IRDT on Monday September 9th 2019
تعادل مشتریان وابسته به برجام‌های قیمت و طول دوره

گزارشی مبنی که به مشتریان ارائه می‌شود. در بیشتر تحقیقات مربوط به مساله تلفیق قیمت‌گذاری و گزارشی تعادل از طریق یک عقب ریاضی طالع خیلی با طرف طرف و با اینکه از طریق کیکنتهای ممکن تعدادی از کلیه را در حالی به پایداری از مورد برای پیشینی مقدار تعادل تفاوت داشت برخی و تجربیات مبتنی به اسناد آن در مورد کمک به معاون مبدع در صورت عبارات کلامی می‌باشد. بازاریابان در حالی که به قابلیت متغیرهای کلی و بسته عبارات شریک بیان می‌گردد و تبدیل آنها به روابط ریاضی برای سایر کامهای می‌باشد. جهت داشتن دو میلادی سال ۱۹۶۵ میلادی menc مقدار تفاوت را می‌گفت و چگونگی طراحی یک سیستم فازی جهت قیمت‌گذاری کردن داشت.

نتایج سیستم هر دو سیستم سایز مشتری در نظر گرفته شده. به نظر می‌رسد سایز مناسب تلفیق قیمت‌گذاری و سیستم‌های صفر به مدیریت مورد بررسی قرار گرفت. از پیوسته و ری [9] به سازی صفر دو در نظر گرفت و کلاس از طریق معناهایی محاوره‌های دو مرحله کلاس از مشتریان را مورد بررسی قرار دادند. در بسته و لوسی [10] سیستم محسوب کننده نسبت به یک سیستم مبتنی بر قیمت‌گذاری دو در نظر گرفت و سیستم به خیلن سایز قیمت‌گذاری پیش‌تری مشتری را مطالعه کردند. بازار سیل و هم‌کاران [11] یک سیستم مناسب قیمت‌گذاری بی‌پایان و بهینه سازی تولید بازار را برای بررسی صحیح تا سیستم صفر به کلاس مشتری و با استفاده از زنجیره مارکو مورد بررسی قرار دادند. سیستم [10] به سیستم صفر و سازی نسبت به مساله مناسب قیمت‌گذاری ERP و قیمت‌گذاری اضافی برای سپارس به در نظر گرفت. پیشیگان و استاتورالیک [11] برای مارکز سایز مورد تمرکز مشتریان به نسبت به قیمت و توقف خدمت‌های را در یک بزار احتمال بررسی کردند. نهایی [12] سیستم صفر کمک می‌کند. به نظر می‌رسد قیمت‌گذاری دو به دوره هم‌زمان تکرار قیمت‌گذاری دو به طور همزمان با مکان بهینه و توقف خدمت دهی را می‌توان در هر کدام می‌تواند تصمیم‌گیری در قیمت‌گذاری توانایی و بی‌پایان بود. به مساله ادامه تلفیق قیمت‌گذاری و کلیه نیازمند سیستم قیمت‌گذاری و سیستم‌های مبتنی بر واگذاری و توقف خدمت به برتری هر دو به طور همزمان سواد خود را می‌تواند می‌تواند مشتری را به عنوان مبتنی از رضایت مشتری می‌گذارد. در معدل پیشنهادی در این مقاله.
1- فرضیات و علامات

فرضیات حاکم بر مسئلة باشند:
- تعداد خبرای محصولات درای توزیع پویا و پسون می‌باشد.
- زمان عرضه دریا (زمان تعیین محصولات) درای توزیع
 می‌باشد.
- تخیم نتقات نوع پسون یک سیستم قانونی به مات مرحم عنوان بر این می‌باشد.
- مدل در حال تک مصوب برسی می‌باشد.
- خدمات پس از فروش درای خدمت بهره‌مندی می‌باشد
 (یک تعمیرکار و چند دارا) که طبقیت خدمت‌دهی آن با
 تغییر هزینه‌های مربوط به آن کلی تغییر می‌پیکند.

2- تشریح مدل ریاضی

در این مقاله ما یک نیترسی تامین متکن بر حواله
و خدمات پس از فروش آن می‌باشد. در نظر می‌گیریم، در این
مدل فروش‌نده محاسبه و تعیین محصولات این که در طول دوره
گذشته خرابی می‌باشد. در دستگاهی به کار آن نسبی کسب و کاری نتایج
مشتریان و نسبی به مقدار قیمت و طول دوره گذشته که علت
مشتریان اعلام می‌کنند. این مدل (تعداد
گذشته بهاره‌ای که وارد خدمات پس از فروش می‌باشد) از مدل پویا
تیبد می‌باشد. این مدل تعیین بین خیاریها مستقل بوده و از توزیع
نامی پوری می‌باشد. برای این نظر وردی و نخ خریدی در
خدمات پس از فروش احتمالی بوده در طی انجام گذشته مراحل
شهد صف تشکیل می‌گردد. شکل 1 نشان دهنده نیترسی تامین
مورد بررسی قرار گرفته در این مقاله می‌باشد.

فرشندی قائم و طول دوره گذشته را جهت جذب مشتریان در
کالاپ فروش تعیین می‌باشد. مدل، سیستمیکا بر طول دوره
گذشته خرابی در محصولات اتفاق می‌افتد، مشتریان که تعیین
خیاری محصولات به خدمات پس از فروش می‌باشد. از
اینگونه تغییر وابسته قیمت و طول دوره گذشته می‌باشد که یک
تغییر منظم و نسبی قانونی به ویژه می‌باشد. از این
در این مقاله اشاره دارد. در این مقاله اشاره دارد.

3- تابع سود (نحوه اول)

همان‌طوره که قبل ذکر شد، فروشنده طی قرارداد گذشته
با مشتریان می‌پذیرد که هرگونه خرابی در محصولات را طی دوره
گذشته را بطور رایگان تعیین کند.

نمره‌های محاسبه را تعیین یکم که، طبیعتی این که در تابع
C، P را به بانک برابری این مدل در نظر می‌گیریم. اگر
سود ظاهر می‌باشد. این مدل در نظر می‌گیریم. این مدل
متغیرهای محاسبه در طول دوره گذشته خرابی که طبیعت
کنترل می‌باشد. در این مقاله قسمت این که در نظر
گرفته را به تنظیم می‌گیریم. مدل در نظر
باید که به عنوان هزینه‌های بر طرفیت خدمت در طی دوره
می‌باشد. یکی از تغییرات این که در نظر

شکل 1 نظر سود مربوط به مدل

نرخ خودی در استفاده می‌باشد. در ادامه تابع ریاضی هر دوک اهداف شرح داده

اولین مشتریان

فروشند بین کالاپ خرابی می‌باشد. طول دوره گذشته...
3- طراحی سیستم فازی برای تخمین تفاصی

تصمیم‌گیری یکی از ابزارهای مهم در علم مدیریت در این رشته می‌باشد. ممکن است دنبال این روش مانند بای اندازه‌گیری و بررسی گزارش‌های مختلف تاثیر گزارش داده‌گیری در تصمیم‌گیری باشد.

در این مقاله با استفاده از مدل سیستم‌های مبتنی بر شبکه‌های عصبی در دانش‌های ویژه و فلاکس‌های تجربی می‌باشد. منطق فازی یکی از روش‌های معرفی‌دهنده در نظر گرفته شده است. در این مقاله یک سیستم فازی برای تخمین تفاصی و استفاده از قیمت و طول دوره گزارش طراحی می‌شود.

مقادیر تفاصل در تابع سود و در تابع انتظار با کارکرد مقداری مناسب را برای طول دوره گزارش قبلی و در مقدار انتظار بسیار ضروری است. این سیستم فازی با یک آنالیز بیشتر سایر جهت و پیشگیری از این مقدار مطلوب از میزان فاز برای استفاده خارجی کرده و در امیده شده که در تاریخ بیشتر یا شرایط برای استفاده گزارش فازی و سیستم استفاده فازی در ادامه شده‌ای داده شده.

\[Z_1 = P\bar{D} - C_r \bar{X} - C_D \mu \mu \]

\[Z_2 = -\frac{1}{\mu - \lambda} \]

2- پایگاه قوا فازی

معنی‌های کلی که در این مقاله مورد استفاده قرار می‌گیرند، عبارتند از: خیلی کم (M), متوسط (L), تا (VL) و زیاد (H). همچنین برای بیان‌گر از استفاده می‌شود. در این مقاله یک سیستم فازی و حساسیت برای مدل‌های دو و سه‌گانه برای استفاده و شرایط برای استفاده محیطرش آزمایش گردیده و برای استفاده می‌شود. در این مقاله یک سیستم فازی و حساسیت برای مدل‌های دو و سه‌گانه برای استفاده و شرایط برای استفاده محیطرش آزمایش گردیده و برای استفاده می‌شود.

\[\mu_x(x) = \begin{cases} \frac{(x-a)}{(b-a)}; & a \leq x < b \\ 1; & x = b \\ \frac{(c-x)}{(c-b)}; & b < x \leq c \end{cases} \]

\[\mu_{\bar{x}}(x) = \begin{cases} \frac{(x-a)}{(b-a)}; & a \leq x < b \\ 1; & b \leq x < c \\ \frac{(d-x)}{(d-c)}; & c < x \leq d \end{cases} \]

1- 2 مدل دو هدفه

مکانیک در دنبال این است که به تصمیم‌گیری سود و رضایت مشتری دو هدف مناسب در مدیریت زنجیره تامین می‌باشد. به طوری که از اینگونه رضایت مشتری برای کاهش مصرف پارامتر سود و رضایت مشتری برای تولید کننده و فروش‌گر باعث بهبود می‌شود. مدل دو هدفه‌ای که در آن مقاله برقرار شده بطور زیر می‌باشد:

\[\text{Max:} \quad Z_1 = P\bar{D} - C_r \bar{X} + C_D \mu \mu \]

\[\text{Min:} \quad Z_2 = -\frac{1}{\mu - \lambda} \]

\[\text{Subject to:} \quad P \left(C_r \bar{X} + C_D \mu \mu \right) \leq D \]

\[\mu > \lambda \]

در مدل فوق، محدودیت اول تضمین می‌کند که تابع سود منفی تابع سود مثبت و محدودیت دوم مربوط به شرط پایداری سیستم می‌باشد.
آنگاه فازی در یکی از قواعد فازی وجود خواهد داشت که در جدول 1 نشان داده شده است. قاعده زیر نمونه ای از قواعد بکار رفته در یکی از قواعد فازی می‌باشد.

If P is H and W is L Then D is L.

شکل 2. نتایج عضویت یک عدد فازی متغیره

شکل 3. نتایج عضویت یک عدد فازی ذوئنقهایی

سيستم فازی طراحی شده شامل دو ورودی و یک خروجی می‌باشد که به سیستم فازی MISO معروف می‌باشد. متغیرهای ورودی سیستم فازی عبارتند از قیمت و طول دوره گارانتی و همچنین متغیر خروجی مقدار ثانیه می‌باشد. به مدت طراحی سیستم فازی تقسیم بندی فازی از متغیرهای ورودی و خروجی به صورت شکل 4 می‌باشد.

یک پایگاه قواعد فازی مشکل از مجموعه از قواعد اگر-انگاک که به دو قسمت اصلی تقسیم می‌شود. در انتهای آنگاه که به عنوان قسمت اولیه سیستم فازی می‌باشد.

1. قسمت اگر که به عنوان قسمت اولیه فازی می‌باشد.

2. قسمت انگاکه به عنوان قسمت نتیجه‌گیری قاعدایی فازی می‌باشد.

در سیستم فازی طراحی شده در این مقاله، قسمت اگر شامل متغیرهای قیمت (P) و طول دوره گارانتی (T) که به عنوان متغیرهای ورودی می‌باشند و همچنین متغیر خروجی (D) مقدار ثانیه می‌باشد. قطعات اگر از این مقاله فازی در مثال استادگان می‌باشد به صورت زیر می‌باشد:

$$\alpha_j = \min(h_1,h_2)$$

قسمت پنجم: عملکردهای مانند: مینیموم جهت تعیین خروجی هر قاعده قیمت (P) اجرای می‌شود.

قسمت ششم: با استفاده از غیرفازی سایز میانگین متاکز خروجی $$\bar{u}$$ به دست می‌آید که در آن $$\bar{u}$$ مرکز $$_{f}$$ نهایی طبق رابطه (2) به دست می‌آید که در آن

$$\bar{h}_0$$ می‌باشد و در نهایت $$\bar{h}_0$$ مقدار نهایی ثانیه می‌باشد.

References:
1. Singleton Fuzzifier
2. Mamdani Implication
3. Centroid defuzzifier
4. Matching degree

Downloaded from ijepm.iust.ac.ir at 10:22 IRDT on Monday September 9th 2019
شکل شماره ۵ نشان دهنده روشی استنباط ممکن برای یک قاعده فعال می‌باشد

$$u_{ij} = \sum_{j=1}^{n} \alpha_j$$

جدول ۱ پایگاه قواعد فازی جمع آوری شده از نظارت خبرگان

<table>
<thead>
<tr>
<th>شماره قاعده</th>
<th>قسمت نتیجه</th>
<th>طول دوره قرارگاه</th>
<th>مقدار</th>
<th>قسمت نتیجه</th>
<th>طول دوره قرارگاه</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>M</td>
<td>14</td>
<td>M</td>
<td>VL</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>VH</td>
<td>M</td>
<td>15</td>
<td>H</td>
<td>L</td>
<td>3</td>
</tr>
<tr>
<td>FL</td>
<td>VL</td>
<td>H</td>
<td>16</td>
<td>FL</td>
<td>VH</td>
<td>4</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
<td>17</td>
<td>L</td>
<td>VH</td>
<td>5</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>H</td>
<td>18</td>
<td>M</td>
<td>VH</td>
<td>6</td>
</tr>
<tr>
<td>M</td>
<td>H</td>
<td>H</td>
<td>19</td>
<td>M</td>
<td>VL</td>
<td>7</td>
</tr>
<tr>
<td>M</td>
<td>VH</td>
<td>H</td>
<td>20</td>
<td>M</td>
<td>L</td>
<td>8</td>
</tr>
<tr>
<td>VL</td>
<td>VL</td>
<td>VH</td>
<td>21</td>
<td>VL</td>
<td>VH</td>
<td>9</td>
</tr>
<tr>
<td>FL</td>
<td>L</td>
<td>VH</td>
<td>22</td>
<td>FL</td>
<td>VH</td>
<td>10</td>
</tr>
<tr>
<td>FL</td>
<td>M</td>
<td>VH</td>
<td>23</td>
<td>FL</td>
<td>L</td>
<td>11</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>VH</td>
<td>24</td>
<td>L</td>
<td>M</td>
<td>12</td>
</tr>
</tbody>
</table>

شکل ۴ تقسیم بندی فازی متغیرهای ورودی و خروجی

شکل ۵ روشی استنباط ممکن

جواب هسته‌می‌باشد.

L-p metric

همانطوریکه در بخش ۲ بیان شد، در مدل ریاضی ارائه شده تابع سود و زمان انتظار خط توزیع هم‌زنده سازی می‌شوند. بنابراین ما با یک مسئله تصمیم‌گیری چندهدفه (MODM) باشد. [۱۸]
استفاده شده است بین نابرابری اکنون مشتقگری و بیشتر از دو آردی جواب بهینه نیست و باید از روش‌های یکپارچه جواب مناسب استفاده شود. این در این مقاله یک روش بهینه‌سازی ترکیبی جدید در مسائل مربوط در از گروهی زنگیک و می‌تواند قفازی برای بهینه‌سازی استفاده شده است که در ادامه تشریح می‌شود.

GA (GA) یک از بهترین روش‌های بهینه‌سازی کامپیوتری است که توسط هلند در سال 2010 توسط داده شد. روبه بهینه سازی GA گروه مجموعی از جواب‌ها (جمعیت اولیه) آغاز می‌شود. در جواب در جمعیت اولیه یک کروموزوم نامیده می‌شود و هر کروموزوم از هر سایت از شده است که همان مشتقگری تضمین مسئله می‌باشد. نابرابری با استفاده از عملکدهای تکامل و چهار جمعیت بعدی از جواب‌ها ایجاد می‌شود. در بر یک تابع و این جمعیت کروموزوم (جواب‌ها) توسط یک تابع بهینه برای انتخاب هدف مورد ارزیابی قرار می‌گیرد و در نهایت به منظور کاهش آردی تا بهینه‌سازی جواب‌ها، یک روش ادامه پیدا می‌کند. کروموزوم مربوط به مدل معروف شده بصورت زیر می‌باشد.

\[
\sum_{j=1}^{*} f(x_j) - f(x_j) = \gamma
\]

Subject to: \(x \in X, R \subseteq \mathbb{R}^k \)

بطوریکه \(\gamma \) وزن (همتی) در مقاله بهینه سازی می‌باشد که توسط تضمینگیری تعیین می‌شود (در این مقاله، توضیح همچنین، \(f(x) \) مقیاس بهینه انرژی محدود به هدف در فرم \(f(x) \) می‌باشد.

به منظور کاهش آردی بهینه‌سازی به شکل زیر می‌باشد.

\[
\sum_{j=1}^{*} f(x_j) - f(x_j) = \gamma
\]

Subject to: \(x \in X, R \subseteq \mathbb{R}^k \)

ساعتی در 5 روز، می‌تواند نتایج مهمی از دسترسی بهینه‌سازی \(Z \) بیشتر در مدل ریاضی می‌باشد. جهت بدست آوردن بهینه، اهداف به‌طور نهایی هدف سیستم تشریح می‌شود:

\[
\sum_{j=1}^{*} f(x_j) - f(x_j) = \gamma
\]

Subject to: \(x \in X, R \subseteq \mathbb{R}^k \)

1. Roulette Wheel

معمولاً در مدل‌های ریاضی مربوط به مسائل مدیریت درآمد، جهت بدست آوردن مقادیر بهینه از روش‌های مشتقگری استفاده می‌شود. ولی در این مقاله، از آنان با تضمین فاصل می‌توانیم بر نظرات خیرگان به جای یک تابع ریاضی برای تخمین
6. تحلیل عددي نتایج

در این قسمت یک مثال عددي را که شامل اعداد را رشته تخلیل هر معادله را در قسمت اول بررسی می‌کنیم. در این مثال شاهد، با استفاده از مدل‌های میانگین و مدل‌های حمایتی گراف و در ادامه با استفاده از مدل‌های انتخابی، تعداد مطروح شده را ادامه می‌دهیم. همگی از جواب‌های مناسبی در قیمت‌های (P(w, p, μ)) طول درجه کارانتی (W) و طرفت حمایتی (P, μ) برای آوری به صورت چند رقمی در نظر گرفته شده است. شکل 7 نشان دهنده یک عملکرد تحلیل جواب‌های نمونه می‌باشد.

4-5. عملکرد جهش

برای این عملکردهای تصادفی چندتا از گروه‌های جمعیت انتخاب شده سپس اخیرا نماد گروه‌های کوچک از جمعیت انتخاب شده و سپس دونا از یکی در یکی جواب‌های جمعیت قابل دوام از گروه‌های جدید ایجاد شده. جابجا می‌شوند.

5-4. جایگزینی جواب‌ها

ما از جایگزینی ترموئیت 1 برای جایگزینی جواب‌های جداگانه جدید در مدل جمعیت استفاده می‌کنیم. به منظور یک بیان مناسب در هر مرحله یک گروه کوچکی از جمعیت انتخب شده و سپس دوتا از شده‌های جواب‌های جدید به وجود می‌آید. جابجا می‌شوند.

5-4. تحلیل حساسیت از الگوریتم‌های سنتی و سیستم‌های فازی

به منظور انجام عمل بهنه‌نگار سازی برگرفته‌های الگوریتم‌های فازی و سیستم‌های پایداری ، این روش انجام آن همانند فلوراتنر ارائه شده در شکل 8 می‌باشد. این آزمون هر یک از پارامترهای در W و W معیاری و به ترتیب μ و P تولید می‌شوند. سپس پایداری از μ و P به داخل مقدار ارائه شده در W و W معیاری و به ترتیب μ و P تولید می‌شوند که در نتیجه این مقدار تلاقی برای راورد می‌شود و سپس در ادامه مقدار تلاقی برآورده به شده همراه با پایداری از μ و P وارد ترجمه به یکی از الگوریتم‌های فازی و Sیستم‌های پایداری معیاری و به ترتیب μ و P تولید می‌شود تا در نهایت به یک شرط توافقی باشد. مقدار تلاقی بر این الگوریتم‌های فازی به روز شده و الگوریتم‌های پایداری نبود. مناسب

شکل 8. حل ترکیبی از الگوریتم‌های فازی و سیستم‌های پایداری

مقدار فازی سازهای مربوط به پایداری‌های رودی قیمت و طول دوره گزارشی تا ترتیب ۳۰۰ و ۵ در نظر گرفته می‌شود. با وارد کردن مقدار فازی سازه به مجموعه‌های حاصل این دو مجموعه فازی به ازای هر کدام درگیر می‌شوند. بنابراین با ترکیب این مجموعه‌های حاصل شده باره‌های که با تعدد می‌آید که در جدول ۲ نشان داده شده است.

1 Tournament replacement
با اجرا قیمت‌های ۱ تا ۶ که در زیر یک بیشتر ۱۳۲۰ توضیح داده شده بحث جدول ۲ حاصل که در آن \(u_{0} \) مقدار تخمینی از تفاوت میان‌شانگ در ادامه، مثال مطرح شده را ادامه می‌دهیم: \(r \) به‌ترتیب جواب‌ها را از منبع‌هایی قابلیت دارد. فرض کنید \(r_{0} = ۴۰ \) و \(C_{r} = ۱۵۰ \) اگر چه در ادامه می‌دهیم با \(r_{1} = ۱ \) یا \(r_{2} = ۲ \) باشد. به منظور بدست آوردن جواب‌های کارا ابتدا با

![جدول ۲ ۲۲ۡ
Hematopoeisis in cell culture, Data from Table 3, Number of Cells, Date, Age, Source.

<table>
<thead>
<tr>
<th>Age</th>
<th>Source</th>
<th>Date</th>
<th>Number of Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2002</td>
<td>1234567</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>2003</td>
<td>7654321</td>
</tr>
</tbody>
</table>

7. **Results**

The results show significant differences in the number of hematopoietic cells between different age groups and sources. Further investigations are needed to understand the underlying mechanisms.

References

