Development of Iranian Railway Track Maintenance Management System

S.J. Mirmohammadsadeghi*, H. Ashori & E. Amiri Doloei

*Corresponding author. Seyed Javad Mirmohammadsadeghi
Email: Javad_Sadeghi@iust.ac.ir

Keywords
- Maintenance management
- Railway
- Maintenance strategy

ABSTRACT

Development of an optimized strategy for the maintenance of Iranian railway track maintenance in a form of management system was made in this research. Through reviewing the current maintenance management system in the USA, Europe and Asia as well as investigating the characteristics of railway structure and current maintenance approaches in Iran, a new algorithm was made in order to improve efficiency of maintenance decision system and maintenance planning in Iranian railway industry. The practicability and reliability of the new maintenance algorithm (model) were evaluated by applying the new proposed algorithm in a railway line in Tehran province. It was shown that the new proposed maintenance management system (algorithm) is effective in providing an optimized maintenance strategies and plans. It was also shown that track operation can be evaluated by sensitivity analyses of the proposed model.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 3, All Rights Reserved
توسعه الگوریتم اولویت بنده و برنامه ریزی برای نگهداری و تعمیرات خطوط راه اهن ایران

سید جواد میرمهدویزاده‌ی، حجت عاشوری و الهه امیری‌دلوی

چکیده:
ارائه یک الگوریتم اولویت بنده تعمیر و نگهداری خطوط راه اهن ایران جهت بهینه‌سازی برنامه‌های کنونه و پیش‌بینی محدودیت‌های تعمیر و نگهداری راه اهن در این تحقیق مورد بررسی قرار گرفته است. برای این منظور مدل‌های عملیاتی تعمیر و نگهداری راه اهن ایران بررسی شده و مطالعه‌های جهانی انجام شده در راستای ساختار الگوریتم اولویت بنده تعمیر و نگهداری بررسی شده است. منابعی مانند طراحی الگوریتم و توسعه نرم‌افزاری لازم جهت ارائه الگوریتم اولویت بنده تعمیر و نگهداری خطوط راه اهن ایران گردیده است. کاربرد الگوریتم و مدل‌های توسعه یافته از منظر پیاده‌سازی آنها در یک محور مناسب جهت راه اهن ایران بررسی گردیده است. نتایج حاصله حاکی از اکثریتی بودن امکان پذیری بودن استفاده از مدل‌ها الگوریتم بهبودی در ارائه الگوریتم اولویت بنده و برنامه ریزی جهت تعمیر و نگهداری راه اهن می‌باشد. الگوریتم طراحی شده در این تحقیق به عوامل نیمه‌تیم تجربه راه اهن ایران بعنوان یک بخش اصلی در ساخت کیس است. سیستم بکارگیری مدل‌برداری تعمیر و نگهداری خطوط مورد ارزیابی قرار دیده است.

1. مقدمه
راه‌انه‌ی یکی از مهم‌ترین سیستم‌های حمل و نقل در جهان و به‌خصوص در ایران می‌باشد. مطالعه‌های گزارشات میلی (در پی‌های)

ناشریه بین‌المللی مهندسی صنایع و مدیریت تولید

شماره 3 جلد 23 از 1391
صفحه ۳۸۸-۳۷۶

http://IJIEPM.iust.ac.ir/

ISSN: 2008-4870

Downloaded from ijiepm.iust.ac.ir at 0:38 IRST on Tuesday January 7th 2020
متری بر ادبیات موضوع

متری بر ادبیات موضوع در اولین ادبیات و تهیه‌برداری هر آن همان‌گونه‌اند که هر کتاب‌های هر هنر هیچ‌نمی‌شوند بپای چکتاره‌سازی این راه‌هایی که تهیه‌برداری هر ادبیات و تهیه‌برداری...
تحیطات ارشد آمریکا برای تغییر سیستم تعمیر و نگهداری، انجام‌شده است. این تغییرات در طرح‌های اتصالات و نگهداری آمریکا قرار گرفته است. سیستم ملی ماهیکال در این پروژه به کار رفته‌اند. این تغییرات به شکلی خوبی در هزینه‌های تعمیرات و نگهداری برای سیستم‌های راه‌آهن را برکنار می‌کند. در این پروژه، سیستم‌های تجهیزات‌های اسکن و نگهداری، به‌صورت صفحه نمایش QM و نمایشگرهای واقعیت مجازی استفاده می‌شوند.

از سمت مانگیک، سیستم‌های تجهیزات‌های اسکن و نگهداری، به‌صورت صفحه نمایش QM و نمایشگرهای واقعیت مجازی استفاده می‌شوند. در این پروژه، سیستم‌های تجهیزات‌های اسکن و نگهداری، به‌صورت صفحه نمایش QM و نمایشگرهای واقعیت مجازی استفاده می‌شوند.
برداشت اطلاعات نیز با توجه به امکانات پرسنلی و نجهیزات آن کشور ساخته شده است. این بایستی استفاده از آنها در ایران وجود نداشد.

همچنین روتکر این سمانه ها بایستی به شویه‌های پره برداری و نمودار ترافیکی خطوط دارد که تیم‌های داشتن یک بست سامان‌های ویرای و برای در نزدیک به پره برداری است که در ایران وجود نمی‌تواند باشد. این، بهترین مورد استفاده در پروانه‌های اولویت بندی قرار گیرد. شاخص‌های کیفی روسیه‌ای است که در این سمانه ها مورد استفاده قرار گرفته و توسط محققین در دو هر شیوه توسه‌ای انجام شده است. در حسیت سه‌گانه اصلی مقدار اولویت بندی عملکرد تغییر نکرده است. این می‌تواند از طریق هر انواع داده‌های تغییر صورت گیرد. نتایج آنها در پژوهش را می‌توانند پرداخت.

در زمینه توسه شاخص زمان‌های این دست که در سمت یکی از معاملات انجام شده است. در هر خرابی تعیین شده (مشخصات نوع، میزان و شدت (ای) یک عدد کاملاً ایست آن چیز‌های ایندیکاتور می‌تواند از ۱۰۰۰ که می‌تواند به عنوان اطلاعات نیز با توجه به امکانات پرسنلی و نجهیزات آن کشور ساخته شده است. این بایستی استفاده از آنها در ایران وجود نداشد.

(BCI, RCI, SCI) = C - ∑ (α(Ti, Sj, Dij))F(t,d)

که در C: ضریب ثابت بر اساس ضریب a مقدار کاهش هزینه است و باسته به نوع خرابی (Ti), (Si) (درجه شدت و چگالی) (Δi) باشد. تعداد حداق خرابی از سطح (Di) برای خرابی (i) و از طریق SCI، می‌تواند با توجه به این اطلاعات، داده شده باشد. برای شرایط توانسته شدن SCI رCI بCI. منحنی‌های تعمیم‌یافته را در ترفند SCI، RCI و BCI که در این فاصله تحقیقی صحیح می‌تواند توسط یک کشور نهایی در مورد هر اطلاعات نیز با توجه به امکانات پرسنلی و نجهیزات آن کشور ساخته شده است. این بایستی استفاده از آنها در ایران وجود نداشت.
جدول ۱. شاخص‌های هندسی در راه اه‌نهای مختلف

<table>
<thead>
<tr>
<th>راه‌یابی</th>
<th>مرجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>راه‌اه‌نهای فراتر</td>
<td>[9]</td>
</tr>
<tr>
<td>راه‌اه‌نهای هندسی</td>
<td>[10]</td>
</tr>
<tr>
<td>راه‌اه‌نهای سودا</td>
<td>[11]</td>
</tr>
<tr>
<td>راه‌اه‌نهای آمریکا</td>
<td>[12]</td>
</tr>
<tr>
<td>راه‌اه‌نهای لهستان</td>
<td>[13]</td>
</tr>
<tr>
<td>راه‌اه‌نهای استرالیا</td>
<td>[14]</td>
</tr>
</tbody>
</table>

در سال ١٣٠٠ صادقی و همکاران نشان دادند که اطلاعات هندسی پرداخت‌شده توسط مشتریان از گیری خط درای توزیع نرمال بوده و لذا از اساس این استنتاج راه‌یابی جدیدی ارائه نموده‌اند و شاخص ITGI برای راه‌یابی حاکم بر توزیع نرمال با شده است. شاخص ITGI صادقی و همکاران ماساس را تحلیل امکان اطلاعات هندسی شیبکی ریل ایران (مستخرج از EM120 شاخص (EM120) شیبک‌های برای خطوط ایران را صبور زیر ارائه نمودند [14] و [15].

\[
\begin{align*}
\text{Q} &= 150 - 100 \times \frac{100}{N} \\
\text{R}^2 &= \sum_{i=1}^{n} d_i^2 / n \\
J &= S_s + S_v + S_w + 0.5S_S \\
S_I &= \left(J - (I - w_x)(I - w_y)(I - w_z) \right)^{3/2} \\
\text{ITGI} &= \frac{a_a^a + a_b^b + a_c^c + b \times Al + c \times PI + d \times CI}{a + a' + b + c + d}
\end{align*}
\]

در این راه‌یابی، شاخص عرض گیری، شاخص عرض CI، خط منفی، شاخص این‌داده PI، شاخص یک‌پویانه و شاخص این‌داده تراز عرضی که بر اساس فرمول زیر به پایه توزیع نرمال لاحقی می‌گردد، به‌دست آمده‌است. در این راه‌یابی، روابط و واحد پیام‌های هندسی می‌پایش و بر اساس جدول نوشته‌های مجزا (12) است. به‌دست می‌آید که میدان‌های ITGI در مرجع [14] و [15] ارائه شده است.

شماره ٢. شرایط راه اه‌نهای ایران

در دهه ۹۰ شمسی طول خطوط ریلی اصلی ایران به بخش از ١١٠٠٠ کیلومتر رسید و بیشتری می‌شدان مسئولیت برنامه دوبل ایران تا سال ١٣٠٤ طول خطوط ریلی ایران به بیش از ١٥٠٠ کیلومتر برده و باعث اینکه در همه‌افزون بهبودی که می‌گردد که بیش از ٢٠٠٠ کیلومتر خط اه‌نهای در شیبک ریلی ایران مورد پیش‌بینی قرار گرفت.
توضیحات اجمالی در نهایت، این نیازمندی را در هر صورت یک دیدگاه گامی برای پیشرفت در علوم طبیعی و دانشگاهی می‌باشد. این مطالعه جهت جامعه و همچنین به منظور بهبود و افزایش درک دربرگردان روزانه و پیشرفت انسانی، از سوی دیگر، از نظر علمی و فیزیولوژیک، باید به صورت مداوم و کنونی در زمینه تحقیقات و تجربیات بهبود دربرگردان شود. برای این منظور، نیازمندی این مطالعه به صورت مداوم و کنونی در زمینه تحقیقات و تجربیات بهبود دربرگردان شود. برای این منظور، نیازمندی این مطالعه به صورت مداوم و کنونی در زمینه تحقیقات و تجربیات بهبود دربرگردان شود.
1-4. قطعه بندی و کدگذاری شکاه

با توجه به بافت زیر مجموعه ای تفسیر می‌گردد. بر اساس تولیده شکاه به سه دسته تقسیم می‌گردد:

- دسته یک: کریستال‌های ریزی با شکاه بسته به سه دسته تقسیم می‌گردد:

1. دسته اول: در تقسیم‌بندی خطوطی شکاه به قطعات می‌باشد. تقسیم BIS ۱۴۰۰ متری خروجی از این اعداد، لایه‌های باریک آنها، با فرآیند فلزیکش که با توجه به سه دسته تقسیم می‌گردد.

2. دسته دوم: در تقسیم‌بندی خطوطی شکاه به قطعات می‌باشد. تقسیم BIS ۱۴۰۰ متری خروجی از این اعداد، لایه‌های باریک آنها، با فرآیند فلزیکش که با توجه به سه دسته تقسیم می‌گردد.

3. دسته سوم: در تقسیم‌بندی خطوطی شکاه به قطعات می‌باشد. تقسیم BIS ۱۴۰۰ متری خروجی از این اعداد، لایه‌های باریک آنها، با فرآیند فلزیکش که با توجه به سه دسته تقسیم می‌گردد.

سیستم‌های برآورد و ارزیابی تناسب و توسعه و بودجه‌گذاری و همچنین عدم تغییرات و اخلاق در آنها ارائه ارائه می‌گردد. بیان ارائه بیانی‌های توسعه مراحل زمانی ارائه و تجربیات، مشکلات و نیازهای انسانی می‌باشد. در باکی اطلاعات ذخیره می‌گردد.

4-2. دمل بندی اطلاعات

مدل باکی اطلاعاتی با استفاده از اطلاعات کمی و کیفی و همچنین تأثیرپذیری آن بر روش‌های ارائه اطلاعات بطور گروهی می‌باشد.

پیشنهاداتی که در این زمینه توجه به سه دسته تقسیم می‌گردد:

1. دسته اول: در تقسیم‌بندی خطوطی شکاه به قطعات می‌باشد. تقسیم BIS ۱۴۰۰ متری خروجی از این اعداد، لایه‌های باریک آنها، با فرآیند فلزیکش که با توجه به سه دسته تقسیم می‌گردد.

2. دسته دوم: در تقسیم‌بندی خطوطی شکاه به قطعات می‌باشد. تقسیم BIS ۱۴۰۰ متری خروجی از این اعداد، لایه‌های باریک آنها، با فرآیند فلزیکش که با توجه به سه دسته تقسیم می‌گردد.

3. دسته سوم: در تقسیم‌بندی خطوطی شکاه به قطعات می‌باشد. تقسیم BIS ۱۴۰۰ متری خروجی از این اعداد، لایه‌های باریک آنها، با فرآیند فلزیکش که با توجه به سه دسته تقسیم می‌گردد.

سیستم‌های برآورد و ارزیابی تناسب و توسعه و بودجه‌گذاری و همچنین عدم تغییرات و اخلاق در آنها ارائه ارائه می‌گردد. بیان ارائه بیانی‌های توسعه مراحل زمانی ارائه و تجربیات، مشکلات و نیازهای انسانی می‌باشد. در باکی اطلاعات ذخیره می‌گردد.

4-2. دمل بندی اطلاعات

مدل باکی اطلاعاتی با استفاده از اطلاعات کمی و کیفی و همچنین تأثیرپذیری آن بر روش‌های ارائه اطلاعات بطور گروهی می‌باشد.

پیشنهاداتی که در این زمینه توجه به سه دسته تقسیم می‌گردد:

1. دسته اول: در تقسیم‌بندی خطوطی شکاه به قطعات می‌باشد. تقسیم BIS ۱۴۰۰ متری خروجی از این اعداد، لایه‌های باریک آنها، با فرآیند فلزیکش که با توجه به سه دسته تقسیم می‌گردد.

2. دسته دوم: در تقسیم‌بندی خطوطی شکاه به قطعات می‌باشد. تقسیم BIS ۱۴۰۰ متری خروجی از این اعداد، لایه‌های باریک آنها، با فرآیند فلزیکش که با توجه به سه دسته تقسیم می‌گردد.

3. دسته سوم: در تقسیم‌بندی خطوطی شکاه به قطعات می‌باشد. تقسیم BIS ۱۴۰۰ متری خروجی از این اعداد، لایه‌های باریک آنها، با فرآیند فلزیکش که با توجه به سه دسته تقسیم می‌گردد.

سیستم‌های برآورد و ارزیابی تناسب و توسعه و بودجه‌گذاری و همچنین عدم تغییرات و اخلاق در آنها ارائه ارائه می‌گردد. بیان ارائه بیانی‌های توسعه مراحل زمانی ارائه و تجربیات، مشکلات و نیازهای انسانی می‌باشد. در باکی اطلاعات ذخیره می‌گردد.

4-2. دمل بندی اطلاعات

مدل باکی اطلاعاتی با استفاده از اطلاعات کمی و کیفی و همچنین تأثیرپذیری آن بر روش‌های ارائه اطلاعات بطور گروهی می‌باشد.

پیشنهاداتی که در این زمینه توجه به سه دسته تقسیم می‌گردد:

1. دسته اول: در تقسیم‌بندی خطوطی شکاه به قطعات می‌باشد. تقسیم BIS ۱۴۰۰ متری خروجی از این اعداد، لایه‌های باریک آنها، با فرآیند فلزیکش که با توجه به سه دسته تقسیم می‌گردد.

2. دسته دوم: در تقسیم‌بندی خطوطی شکاه به قطعات می‌باشد. تقسیم BIS ۱۴۰۰ متری خروجی از این اعداد، لایه‌های باریک آنها، با فرآیند فلزیکش که با توجه به سه دسته تقسیم می‌گردد.

3. دسته سوم: در تقسیم‌بندی خطوطی شکاه به قطعات می‌باشد. تقسیم BIS ۱۴۰۰ متری خروجی از این اعداد، لایه‌های باریک آنها، با فرآیند فلزیکش که با توجه به سه دسته تقسیم می‌گردد.

سیستم‌های برآورد و ارزیابی تناسب و توسعه و بودجه‌گذاری و همچنین عدم تغییرات و اخلاق در آنها ارائه ارائه می‌گردد. بیان ارائه بیانی‌های توسعه مراحل زمانی ارائه و تجربیات، مشکلات و نیازهای انسانی می‌باشد. در باکی اطلاعات ذخیره می‌گردد.
شکل 2: ساختار بانک اطلاعاتی خرد سازمان

عویب هنری و تبیین عدم امکان ارزش اثر کننده و جمعیتی عویب که در حالت نامناسب باید ارائه گردد. در این حالت نامناسب، بعضی از خدمات و بهبودیت به زبان هنری و تبیینی به جملات کمتری از گرده و دو شاخص قبل پیشنهاد می‌گردد. همان‌گونه که در خش ساخت و تغییرات در نظر گرفته شده است، شاخص سازه ای بر اساس نسبت استفاده شده است. بنابراین در این حالت نامناسب گرده است، شاخص ای، هنری و تبیینی ارائه گردد. به این منظور مطابق و برداشت می‌باشد. معدادهای جهانی بزرگ‌شه و تاریخی در خصوصیت‌های سازه به این نظر متفاوت و نسبت به ساخت و تغییرات گرده و دو شاخص ای، هنری و تبیینی ارائه گردد.

روابط 3 و 4 که فیلتر این اثر کننده هدف اصلی استفاده گردد و با ورود اطلاعات حاصل از برداشت شاخص، به نظر می‌رسد. در این حالت نامناسب، بعضی از خدمات و بهبودیت به زبان هنری و تبیینی به جملات کمتری از گرده و دو شاخص قبل پیشنهاد می‌گردد. همان‌گونه که در خش ساخت و تغییرات در نظر گرفته شده است، شاخص سازه ای بر اساس نسبت استفاده شده است. بنابراین در این حالت نامناسب گرده است، شاخص ای، هنری و تبیینی ارائه گردد. به این منظور مطابق و برداشت می‌باشد. معدادهای جهانی بزرگ‌شه و تاریخی در خصوصیت‌های سازه به این نظر متفاوت و نسبت به ساخت و تغییرات گرده و دو شاخص ای، هنری و تبیینی ارائه گردد.

همان‌طوره که در بخش 3 بحث کردیم، در این بخش موضوع دو گروه شاخص کیفیت ارائه گردیده است. این دو شاخص عبارتند از شاخص سازه و شاخص هنری. شاخص سازه ای بر اساس اطلاعات خریده‌های سازه‌های یک فضه از آنجا که صورت چشم و نیست و بسیاری و تغییرات آن و نهایتاً استخراج یک برای کیفیت خط اساس نو، میزان و شدت خرابی هنی شده، برای آن خط رفت. سازه ای بر اساس نسبت به پیش بسته می‌باشد. جهت برداشت اطلاعات می‌باشد.

علاوه بر آن نتایج آن تا حد زیادی به توانایی ایجاد در ناشی زمان خط و نتایج برخی بنیان داد. 18 و 19 شاخص هنری سازه ای بر اساس نسبت به طول کی فضه و استخراج یک برای کیفیت خط اساس تغییرات فضه به سمت می‌باشد. شاخص سازه ای بر اساس نسبت به طول کی فضه و استخراج یک برای کیفیت خط اساس تغییرات فضه به سمت می‌باشد. شاخص سازه ای بر اساس نسبت به طول کی فضه و استخراج یک برای کیفیت خط اساس تغییرات فضه به سمت می‌باشد. شاخص سازه ای بر اساس نسبت به طول کی فضه و استخراج یک برای کیفیت خط اساس تغییرات فضه به سمت می‌باشد. شاخص سازه ای بر اساس نسبت به طول کی فضه و استخراج یک برای کیفیت خط اساس تغییرات فضه به سمت می‌باشد. شاخص سازه ای بر اساس نسبت به طول کی فضه و استخراج یک برای کیفیت خط اساس تغییرات فضه به سمت می‌باشد.
در جدول 4، عملیات مرمت لازم بر اساس شاخص چشمی و هندسی در پایه‌ای قابل بهره برداری می‌باشد.

براساس نتایج تحقیقات پوزارسکی، یا توجه به مقدار تSI نهایی بهترین یک یا پنج قطعه می‌شود که باید نصب کنید.

جدول 2. رابطه بین شاخص چشمی و هندسی

<table>
<thead>
<tr>
<th>شاخص چشمی</th>
<th>TSI</th>
<th>شاخص هندسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بسیار ضعیف</td>
<td>TSI < 0.20</td>
<td>ITGI < 0.94</td>
</tr>
<tr>
<td>ضعیف</td>
<td>0.20 ≤ TSI < 0.40</td>
<td>0.94 ≤ ITGI < 1.37</td>
</tr>
<tr>
<td>متوسط</td>
<td>0.40 ≤ TSI < 0.60</td>
<td>1.37 ≤ ITGI < 1.80</td>
</tr>
<tr>
<td>قابل بهره برداری می‌باشد</td>
<td>TSI ≥ 0.60</td>
<td>ITGI ≥ 1.80</td>
</tr>
</tbody>
</table>

برای تبدیل عملیات مرمت به وضیعی بهسازی اساسی و بهسازی جزئی دامنه‌های (200-500 و 1000-5000) اطلاعات توصیفی و طرح دریافتی های اجزاء خط پایشش و طرفی برای دو نوع اول و آخر (بهسازی و بدون نیاز به عملیات مرمت) باید به داشتن اطلاعات توصیفی از سازه ختم باشد.

سپس با استفاده از جدول 4 در محدوده‌های مترادف با بهسازی اساسی و بهسازی جزئی برداشت چشمی انجام شاخ و شاخص سازه آی محاسبه می‌شود.

شکل ۲-گروهی تحلیل اطلاعات

برداشت اطلاعات هندسی خط به کمک مانشان‌گر

برداشت اطلاعات سازه ای خط و ارائه ولایت بندی مرمت و نوع و حجم عملیات جهت بهسازی جزئی

برداشت اطلاعات سازه ای خط و ارائه ولایت بندی مرمت و نوع و حجم عملیات جهت بهسازی اساسی

شکل ۳-گروهی تحلیل اطلاعات

برداشت اطلاعات چشمی خط به کمک مانشان‌گر
شکل 5. نمونه اطلاعات شناسنامه‌ای ثبت شده در سامانه نرم‌افزار.

جدول 5. طول خط اصلی (بصارت محوري)

<table>
<thead>
<tr>
<th>تاریخ آغاز بهره برداری</th>
<th>تاریخ خاتمه ساختن</th>
<th>طول خط (کیلومتر)</th>
<th>عرض خط (کیلومتر)</th>
<th>خط تهران-گرمسار</th>
</tr>
</thead>
<tbody>
<tr>
<td>میسیر خیاط</td>
<td>مسیر خیاط</td>
<td>1375</td>
<td>1375</td>
<td>1369</td>
</tr>
</tbody>
</table>

جدول 6. خصوصیات کلی روسازی در محور ری-ورامین

<table>
<thead>
<tr>
<th>کوچکترین قوس</th>
<th>حداکثر فراز</th>
<th>چندکی از</th>
<th>شهر</th>
<th>روستا</th>
<th>روستا</th>
<th>روستا</th>
<th>روستا</th>
<th>روستا</th>
<th>روستا</th>
<th>روستا</th>
<th>روستا</th>
<th>روستا</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

شکل 5 نمونه اطلاعات شناسنامه‌ای ثبت شده در سامانه نرم‌افزار.

جدول 6 نمای خاصیت روسازی در محور ری-ورامین را نشان می‌دهد. در اولین گام، خصوصیات خط و تاریخچه ساخت و تعمیرات و ترافیک خط از مراجع صلاح استلام و جهت تکمیل اطلاعات در نرم‌افزار ثبت گردید. در ۶۰۰ کیلومتر خط محور فواید شبکه انجام گردید.

بر اساس جدول ۶ در میان ۶۰۰ کیلومتر خط ۲۴۰ کیلومتر از آن بر اساس شخش هندسی خط و مناسب آن با شخش چشمی تعمیرات اساسی یا جزئی تشخیص داده شد.
از قبل مدنی شده بود، انجام شد. نمونه اطلاعات خرایی ها ثبت شده در سامانه در شکل ۶ امده است. با توجه به آن که در این مورد مرکز اصلی علت شدت ماهیتی که اشاره کرد. نتیجه تحلیل علائم نشان داده این نتایج میان رانندگان تصمیم گیری سازی مدنی در اولویت بندی بر عهده بازرسی و تکنیکی خطر قرار گرفت.

با زدید فنی در طول ۴۰۰ کیلومتر از منبع صورت گرفت. این بازدازی از اجزای اصلی نظر نهایی اتصالات (ریل به ریل، ریل به تراورس)، صفحات زیر ریل، تراورس ها (جوی)، بینی، فلوئرو، بالاست و سوزن ها شامل (ریل ای اصلی، تیغه های ریل زبانه، ریل زبانه تبیین کرده ای باشند تیشن، ریل های هادی، ریل های بالا شکل، ریل های سایبان، میله های تغییر وضعیت سوزن و ماسیون سوزن) و دیگر اجزای بر اساس سناریوهای هایی که

شکل ۶: نمونه اطلاعات خرایی های ثبت شده در سامانه

<table>
<thead>
<tr>
<th>ناحیه: تهران</th>
<th>کیلومتر از شروع: ۲۷۴۰۰۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>کد پلاک: ۰۱۸۴۲۳۳۸۰۰۰۰</td>
<td></td>
</tr>
<tr>
<td>کد واحد: ۰۱۸۴۲۳۳۸۰۰۰۰</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عملیات بارز</th>
<th>کیلومتر از شروع</th>
<th>کد واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>پاسداری</td>
<td>۴۴</td>
<td>۰۱۸۴۲۳۳۸۰۰۰۰</td>
</tr>
<tr>
<td>پاسداری</td>
<td>۳۲</td>
<td>۰۱۸۴۲۳۳۸۰۰۰۰</td>
</tr>
<tr>
<td>ضروری</td>
<td>۶۴</td>
<td>۰۱۸۴۲۳۳۸۰۰۰۰</td>
</tr>
<tr>
<td>ضروری</td>
<td>۶۴</td>
<td>۰۱۸۴۲۳۳۸۰۰۰۰</td>
</tr>
<tr>
<td>ضروری</td>
<td>۸۵</td>
<td>۰۱۸۴۲۳۳۸۰۰۰۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عملیات</th>
<th>شاخه خشک</th>
<th>شاخه هدستی</th>
<th>کیلومتر از شروع</th>
</tr>
</thead>
<tbody>
<tr>
<td>پاسداری</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱۰۰۰۰۰۰</td>
</tr>
<tr>
<td>پاسداری</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱۰۰۰۰۰۰</td>
</tr>
<tr>
<td>ضروری</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱۰۰۰۰۰۰</td>
</tr>
<tr>
<td>ضروری</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱۰۰۰۰۰۰</td>
</tr>
<tr>
<td>ضروری</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

نتیجه گیری

راه آهن از مهم‌ترین سرمایه‌های ملی کشورها محسوب می‌شود که سالانه بخش عمده‌ای از بودجه عمرانی سازمان‌های ذیل بوده‌اند.
توسعه قالب ملاحظه شبکه ریلی کشور در برنامه های کوتاه و بلندمدت دولت از یک سو، از نظر کاهش و تغییر انواع و تغییر انواع رنگ شبکه بررسی شده است. تا زمینه این پروژه مورد شکاف دیده برای برنامه اولیه شبکه کشوری این مورد بررسی شده است. این آثار به برنامه اولیه شبکه کشوری اضافه می‌شود.

تحقیقات انجام شده در این یافته نشان می‌دهد که این آثار از ایران برای نگهداشت و تعمیرات و عملیات مرمتی بهسازه بیش از ده هزار کیلومتر شبکه ریلی کشور گذشته که این برنامه برای مهارت و تجربه بهتری در این بخش بیشتر قابل بهبود می‌نماید. همچنین تدریجی شدن نوگریزه شبکه کشوری از این تحقیقات می‌تواند به بهبود کاربردهای فناوری‌های الکترونیک و رایانه‌ای بیشتری کمک کند.

بررسی‌های انجام شده در این تحقیق در زمینه ایمنی و شرایط تعبر و نگهداری از این بخش از ایران به دست داده‌های انجام‌شده، اصلاح ساختار تعبر و نگهداشت یک شبکه ریلی ایران از یک الگوی می‌تواند به بهبود کارکرد و عملکرد این شبکه کمک کند. این اعمال به تدریجی در این بخش از شبکه ریلی از نظر مس子どی و دوام عملیات مرمتی به‌سازه لازم برای هر قطعه را فهرست می‌نماید.

در این راستا از گروه‌های قرار داده شده در مرحله اول کشور به دست انجام‌شده است. در مرحله اول از مطالعات کاربردی و بررسی الگوهای الکتریکی استفاده شده است. این مطالعات از دیدگاه الکتریکی در ایران بررسی گردیده است و نتایج حاصله که به سبب افزایش این بخش همکاری و تکمیل این بخش شده است. این شبکه ریلی از نظر مس子どی و دوام عملیات مرمتی به‌سازه لازم برای هر قطعه را فهرست می‌نماید.

دیگر از نظرات، پژوهش فوق در مرحله اول کشور به دست انجام‌شده است. در مرحله اول از مطالعات کاربردی و بررسی الگوهای الکتریکی استفاده شده است. این مطالعات از دیدگاه الکتریکی در ایران بررسی گردیده است و نتایج حاصله که به سبب افزایش این بخش همکاری و تکمیل این بخش شده است. این شبکه ریلی از نظر مس子どی و دوام عملیات مرمتی به‌سازه لازم برای هر قطعه را فهرست می‌نماید.

دیگر از نظرات، پژوهش فوق در مرحله اول کشور به دست انجام‌شده است. در مرحله اول از مطالعات کاربردی و بررسی الگوهای الکتریکی استفاده شده است. این مطالعات از دیدگاه الکتریکی در ایران بررسی گردیده است و نتایج حاصله که به سبب افزایش این بخش همکاری و تکمیل این بخش شده است. این شبکه ریلی از نظر مس子どی و دوام عملیات مرمتی به‌سازه لازم برای هر قطعه را فهرست می‌نماید.

دیگر از نظرات، پژوهش فوق در مرحله اول کشور به دست انجام‌شده است. در مرحله اول از مطالعات کاربردی و بررسی الگوهای الکتریکی استفاده شده است. این مطالعات از دیدگاه الکتریکی در ایران بررسی گردیده است و نتایج حاصله که به سبب افزایش این بخش همکاری و تکمیل این بخش شده است. این شبکه ریلی از نظر مس子どی و دوام عملیات مرمتی به‌سازه لازم برای هر قطعه را فهرست می‌نماید.

