A Metaheuristic Approach to Multiobjective Portfolio Selection in Tehran Stock Exchange (TSE)

M. Derakhshan, H.R. Golmakani* & P. Hanafizadeh

Mojtaba Derakhshan, Ms.c student of Industrial Engineering, University of Science and Culture, Tehran, Iran
Hamid Reza Golmakani, Associate professor of Industrial Engineering, Tafresh University, Tafresh, Iran
Peyam Hanafizadeh, Assistant professor of Management, Allame Tabatabaee University, Tehran, Iran

Keywords
Stock Portfolio Selection, Markowitz Model, Pareto Ant Colony Optimization (P-ACO), Pareto Simulated Annealing (PSA), Fast Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II)

ABSTRACT
This paper presents a novel metaheuristic method for solving an extended Markowitz portfolio selection model. In the extended model, the objective function has been modified to include realistic objectives and four additional sets of constraints, i.e., bounds on holdings, cardinality, minimum transaction lots, and liquidity constraints have been also included. The first set of constraints guarantee that the amount invested (if any) in each asset is between its predetermined upper and lower bounds. The cardinality constraint ensures that the total number of assets selected in the portfolio is equal to a predefined number. The liquidity constraints reflect the investors’ tendency to invest on those stocks that are more quickly tradeable.

The extended model is classified as a multi-objective mixed-integer programming model necessitating the use of efficient heuristics to find the solution. In this paper, we propose a heuristic based on pareto combined ant colony optimization and simulated annealing approaches. The performance of the proposed approach is compared to some other approaches using Tehran Stock Exchange data. The computational results show that the proposed approach effectively outperforms other approaches subject to the computation time needed and the quality of the obtained solutions especially in large-scale problems.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 3, All Rights Reserved

* Corresponding author. Hamid Reza Golmakani
Email: Golmakni@mie.utoronto.ca
رویکردی فرابانکداری برای انتخاب سید سهیم با اهداف چندگانه در بورس اوراق بهادار تهران

مبحث درخشناد، حمید رضا گل‌مکانی و پیام حنفی‌زاده

چکیده

انتخاب بهترین مجموعه از سهم‌ها، با لحاظ اهداف چندگانه و با توجه به تعادل گزینه‌ها، تصمیم‌گیری مدیرینی دشوار است. این کلیه گروه‌های مولتی‌مست در کنار روش‌های انتخاب سیاست‌های مدیریتی (کارایی، تولید و بهینه‌سازی) را به خصوصیات سیاست‌های سهامی و روند تغییرات بازار بررسی می‌کند. انجام پژوهش با توجه به اینکه، مهارت‌های مدیریتی از اهمیت بالا در جامعه شرکت‌های حوزه مالی و صنایع شناخته شده‌اند، به‌ویژه در مدیریت اجرایی و نیز به‌تواسه نتایج تحقیقاتی اخیر در حوزه مدیریت اجرایی، انتخاب سیاست‌های سهامی به‌عنوان یک ویژگی اساسی مدیریت است. بنابراین تشکیل کلیه‌ی سیستم‌های مدیریت باعث وجود مخاطره‌هایی می‌شود. بنابراین برای انتخاب برترین مجموعه سهام مورد نیاز می‌باشد.
کارا که تاکنون در انتخاب هستند، تعمیم گیری ترکیبی را بررسی کرده‌اند. هم‌چنین، توصیه‌هایی که در این مقاله گفته شده است، در انتخاب مدل‌های کارا و نیز بهترین آنها می‌باشد.

روش پارژیتیکال (PACO-SA) را در مواردی از بین مدل‌های کارا و نیز بهترین آنها می‌باشد.

روش پارژیتیکال (PACO-SA) را در مواردی از بین مدل‌های کارا و نیز بهترین آنها می‌باشد.
همانگونی که هفته شد، مدل مارکوویتز براساس مخالفت و باده سید پارسیانی شده است. در این مدل، مخالفت بروز وارد می‌شود و تغییر تعداد گردیده و سرمایه‌گذاری فردی سیستم‌پیاده و خطگیری یک رشته است. به همین معنی که سرمایه‌گذاری‌ها از بین رفته وارد می‌شود. مسئله نشان می‌دهد که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیانی وارد می‌شود و به بام بهای است. برای استادی را انتخاب می‌کند که باده سید پارسیанی برای انتخاب سید سهام با اهداف...
در دوره‌های زمانی مختلف در نظر گرفته که با اعمال حداقل تعداد خروجی از هر نوع-سهم (حداقل تعداد که از هر نوع-سهم می‌توان از بورس اوراق بهادار خریداری نمود) در آن، رابطه 6 بودست آمد. البته به درک است که در نگارش مدل توصیف می‌شود.

و در ادامه، محدودیت‌های مختصر بورد تریک (رابطه 7) و محدودیت‌های حریم‌های بورس اوراق بهادار (رابطه 8) با اعمال حداقل تعداد خروجی از هر نوع-سهم که می‌توان از بورس اوراق بهادار خریداری نمود بصورت زیر در مدل توصیف‌شده لاحق گردیده است:

\[\sum_{i=1}^{N_y} z_i c_i \leq b \]

\[\sum_{i=1}^{N_y} z_i c_i > Rb \]
Proportional Transaction Costs

Fixed Transaction costs

\(\sum_{i=1}^{N} \left((1 + d_i) c_i + f_i x_i \right) \leq b \) (16)

\(\sum_{i=1}^{N} r_i c_i > R \sum_{i=1}^{N} \left((1 + d_i) c_i + f_i x_i \right) \) (17)

محدودیت (16) در رابطه با بودجه مصرفی جهت تشكیل سبد، با اعمال هزینه خرید و معامله (ام از تناسب و نتایج) روی سهم‌های مختلف می‌باشد. این محدودیت به‌طوری‌که هزینه‌های مختلف می‌باشد، در تولید که جهت تهیه سبد صرف می‌شود کوچکتر از بودجه در استرداد گردید. محدودیت (17) نیز همان محدودیت بازده در مدل کارگری با اعمال هزینه خرید و
معامله (اعم از تناسبی و غیر) روی هر سهم می‌باشد. این محدودیت وجوه محدوده که به‌شاد مرز انتظار حاصل از سبد، بیشتر از حداقل بارده مورد انتظار سرمایه‌گذاری گردید. این علل علی‌رغم آنکه مدل توزیع‌دهانه، یک مدل نک هدف است، ولی بدنیات بالایی در هزینه از هزینه‌های اصلی باید هدف (اعم از کمینسازی مخاطرات و هزینه‌های معامله و بیشینسازی بارده و تقدشودنی) می‌باشد.

لذا به‌ویژه آن‌ها منوی بیشینت باید در نظر گرفته شود. فرآیند به‌سنگرایی این مدل نسبت به مدل من نه‌که‌های غیرکاره‌اند این مزیت است که با یک پایان حل آن، می‌توان به جواب‌های کارا دسترسی یافت.

در حال‌هایی که تک هدف مطلوبه را باید به دفعات با مقداری واپس تا تغییر هدف موجود در محدوده‌ها جلو نمود تا به‌ویژه آن را به‌ویژه دوباره تغییر هدف باشد دوباره کامپ بیشینه‌ای (با اعمال یک تغییر منفی ساده در تغییر هدف کمینسازی مخاطرات و تبدیل آن به بیشینسازی) بصورت زیر می‌باشد.

\[
\begin{align*}
 \sum_{i=1}^{N_k} (1 + d_i) z_i c_i + f_i x_i & \leq b \quad \text{(27)} \\
 \sum_{i=1}^{N_k} r_i z_i c_i & > R \quad \text{(28)} \\
 \sum_{i=1}^{N_k} (1 + d_i) z_i c_i & \leq b_{lower} + M (1 - x_i) ; \quad i = 1, 2, 3, \ldots, N_1 \\
 min \quad u_1(z) & = \min_{i=1}^{N_k} \left\{ \delta_i \left(r_i - r_{i1} z_i c_i \right) \right\} T \\
 \text{max } u_2(z) & = b - \sum_{i=1}^{N_k} ((1 + d_i) z_i c_i + f_i x_i) \\
 \text{max } u_3(z) & = \sum_{i=1}^{N_k} r_i z_i c_i \quad \text{(19)} \\
 \text{max } u_4(z) & = \frac{\sum_{i=1}^{T} l_i}{T} \\
 x_i, y_i & \in [0, 1] ; \quad i = 1, 2, 3, \ldots, N_1, \quad j = 1, 2, 3, \ldots, N_2 \\
 z_i & \in \mathbf{Z}^+ \cup \{0\} ; \quad i = 1, 2, 3, \ldots, N_1 \\
\end{align*}
\]

بنابراین، در مدل توزیع‌دهانه، سبد سهام به‌عنوان زیرمجموعه‌ای از مجموعه حاوی \(N \) نوع سهم از \(N_1 \) صنعت گوناگون که به‌ویژه بین‌المللی مهندسی صنایع و مدیریت توسعه، آذر 1391-جلد 23-شماره 3
3-روش‌های حل

ما در این تحقیق، روش‌های زیر را نامی‌شنده PACO-SA، P1-ACO، P1-ACO و SHPSGA، از روش‌های پیشنهادی اجتماع-موجودی‌پایه انتخاب کردیم. این روش‌ها شامل 3 ترفند حیاتی Salesforce، P1-ACO و SHPSGA هستند که در جدول 3 نشان داده می‌شود.

<table>
<table>
<thead>
<tr>
<th>روش‌های حل</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salesforce</td>
<td>روش پایه‌ای در جریان انتخاب سیستم سه‌تستی و در مورد مسئله موارد در جدول 3 نشان داده می‌شود.</td>
</tr>
<tr>
<td>P1-ACO</td>
<td>یک روش پایه‌ای برای انتخاب سیستم سه‌تستی و در مورد جدول 3 نشان داده می‌شود.</td>
</tr>
<tr>
<td>SHPSGA</td>
<td>یک روش پایه‌ای برای انتخاب سیستم سه‌تستی و در مورد جدول 3 نشان داده می‌شود.</td>
</tr>
</tbody>
</table>
</table>

این روش‌ها توانایی پیش‌بینی و پیشرفت دارند و به دلیل اینکه با توجه به شرایط مختلف و پیچیدگی مسئله، بهترین راه حل را ارائه می‌دهند.
شده، موجه و کارآی بوده آن سبد سه‌همه ذخیره می‌شود. برقراری محیط فرمون‌های استفاده از هر سبد سه‌همه (هر مورچه) انجام می‌گیرد و به‌طور کلی فرمون‌های با استفاده از سبد سه‌همه به‌همینه (مورچه بهینه) و دولوم سبد سه‌همه از نظر بهینگی (دولوم مورچه بهینه) که در تکار جاری از گروه‌هاپدست‌امکن‌کاری برای هر هدف k انجام می‌گیرد.

(PSA)
ایده اصلی گروه‌بندی‌های سیستمی‌ترین تریدی، تدریجی برگرفته از فرآیند اینترکیک تریدی تریدی دسترسی‌谁های سیستم‌سازی تریدی تریدی ارتباطی بین این نوع از رفتار ترورنویسی‌گی و جستجو برای یافتن بهینگی کل در مسئله بهینگی برقراری می‌کند.

2) Local Search
3) Local Optimum
4) Global Optimum

3) NSGA-II
4) PACO-SA
5) Survival of the Fittest
6) Non-dominated Front
1) Iteration
4-1. نمونه مسائل با داده‌های واقعی
از احتمال تحقق حاضر به انتخاب سبد کنده‌هایه از میان ۲۳۳ نوع-سهم در سنتروس در شرکت بورس اوراق بهادار تهران می‌بردازد، ما سبد سهام بورس شرکت‌های قابل عالج در آن (شامل ۲۵ سهم) را در ۲۰ سانتی متریکت به شرح دست‌عمل زیر طبقه‌بندی نموده و بر پایه آن را انتخاب کرده و سپس به درک معنی در این سیستم نوع نمونه‌گیری توسط طرح‌های کلیه تفاوت در هر آن برای تخمین یک نمونه مسئله در نظر گرفته‌اند.

همان‌طور که نتایج نمونه‌گیری واقعی، نمونه‌سازی تعیین شده می‌باشد یک داده‌ای مربوط به سهام موجود در بورس اوراق بهادار تهران (در تاریخ ۶/۸/۸۵) اجرا نموده‌ایم. این داده‌ها عبارتند از: تعداد صفحه قابل انتخاب، تعداد سهام قابل انتخاب در هر صفحه و دانه مربوط به هر سهم از این سیستمی به هنگامی، آخرين فرمی، باردوغ و نقاطی که این سهم در هر دوره زمانی است، دست‌عمل تولید نمونه مسئله در این قرار است.

اگر انتخاب سبد را تعیین کنیم، ما نمونه‌سازی را با صورت داده‌ای سبد شروع می‌کنیم، سپس با توجه به تعداد صفحات قابل انتخاب، به‌طور خودکار دست‌عمل نمونه‌گیری توزیع می‌شود. سیستم شماره‌گذاری که شش نمونه مسئله شامل سیدهای مبتنی بر تصمیم‌گیری انتخاب و محاسبه سیستم شماره‌گذاری با پیچیدگی و همین‌طور سیستم شماره‌گذاری شماره سیدهای بزرگ و سیستم مسئله شامل سیدهای بین‌سبز را باید به‌طور خودکار انتخاب و محاسبه کنیم.

ب‌طور سبد را تعیین کنیم، دینه ترتیب که برای سیستم‌ها با انتخاب مختلف، دو گونه سبد کم: سبزر و متنوع را تولید کد کرده‌ایم. طبیعت نمونه مسئله شماره سیدهای کوچک کم: سبزر: سپر نمونه مسئله شامل سیدهای مبتنی بر تصمیم‌گیری و محاسبه سیستم شماره‌گذاری کم: سبزر. سپر نمونه مسئله شامل سیدهای مبتنی بر تصمیم‌گیری و محاسبه سیستم شماره‌گذاری کم: سبزر و نمونه مسئله شامل سیدهای مبتنی بر تصمیم‌گیری و محاسبه سیستم شماره‌گذاری کم: سبزر.

4-2. تحلیل عددي
ب‌طور که در نهایت به‌طور خودکار دست‌عمل نمونه‌گیری توزیع می‌شود. سیستم شماره‌گذاری که شش نمونه مسئله شامل سیدهای بزرگ و سیستم مسئله شامل سیدهای بین‌سبز را باید به‌طور خودکار انتخاب و محاسبه کنیم.

کتاب‌شناسی
1) Real World Data
منطق جواب‌های کارای پیشنهادی یک الگوریتم موجود. تعداد جواب‌های کارای واقعی موجود در مجموعه جمعب که متعلق به یک الگوریتم می‌باشد به کل مجموعه جمعیت به اندازه می‌باشد.

\[E_{Algorithm} = \frac{E_{Total}}{N_{Algorithm}} \]

برای دستگیر کردن الگوریتم‌ها که می‌توانند در حالت درصدی از جواب‌های کارای واقعی مجموعه جمعب که متعلق به یک الگوریتم می‌باشد به کل مجموعه جمعب که متعلق به یک الگوریتم می‌باشد.

\[E_{Algorithm} = \frac{E_{Total}}{N_{Algorithm}} \]

روش و ملاحظات مقایسه

از انتخاب در حالت ضعیف، تعداد انواع سهام قبل از انتخاب در سبد صندوق زاید می‌باشد. (باید برای لیست سهم استفاده از روش "شمارش کامل" برای دستگیر کردن جواب‌های کارای واقعی است.)

\[\alpha = \beta = \epsilon = s = B = 0.99 \]

روش و ملاحظات مقایسه

از انتخاب در حالت ضعیف، تعداد انواع سهام قبل از انتخاب در سبد صندوق زاید می‌باشد. (باید برای لیست سهم استفاده از روش "شمارش کامل" برای دستگیر کردن جواب‌های کارای واقعی است.)

\[\alpha = \beta = \epsilon = s = B = 0.99 \]

روش و ملاحظات مقایسه

از انتخاب در حالت ضعیف، تعداد انواع سهام قبل از انتخاب در سبد صندوق زاید می‌باشد. (باید برای لیست سهم استفاده از روش "شمارش کامل" برای دستگیر کردن جواب‌های کارای واقعی است.)
نتایج حاصل از میانگین نسبت (P_{ACO}) در هر ابزار بهبود در نتایج نسبت $(NSGA-II)$ بهره‌گیری از چهار الگوریتم، در هر ابزار (2) نشان داده است. همانگونه که مشاهده می‌شود؛ احتمال وقوع جواب‌های کارای بهینه‌سازی الگوریتم $(NSGA-II)$ به وسیله وابسته به زمان، روند گذشته به‌مرسی، از وضعیت پایداری برخوردار است.

نتایج حاصل از میانگین نسبت (P_{ACO}) در هر ابزار بهبود در نتایج نسبت $(NSGA-II)$ بهره‌گیری از چهار الگوریتم، در هر ابزار (2) نشان داده است. همانگونه که مشاهده می‌شود؛ احتمال وقوع جواب‌های کارای بهینه‌سازی الگوریتم $(NSGA-II)$ به وسیله وابسته به زمان، روند گذشته به‌مرسی، از وضعیت پایداری برخوردار است.

نتایج حاصل از میانگین نسبت (P_{ACO}) در هر ابزار بهبود در نتایج نسبت $(NSGA-II)$ بهره‌گیری از چهار الگوریتم، در هر ابزار (2) نشان داده است. همانگونه که مشاهده می‌شود؛ احتمال وقوع جواب‌های کارای بهینه‌سازی الگوریتم $(NSGA-II)$ به وسیله وابسته به زمان، روند گذشته به‌مرسی، از وضعیت پایداری برخوردار است.

نتایج حاصل از میانگین نسبت (P_{ACO}) در هر ابزار بهبود در نتایج نسبت $(NSGA-II)$ بهره‌گیری از چهار الگوریتم، در هر ابزار (2) نشان داده است. همانگونه که مشاهده می‌شود؛ احتمال وقوع جواب‌های کارای بهینه‌سازی الگوریتم $(NSGA-II)$ به وسیله وابسته به زمان، روند گذشته به‌مرسی، از وضعیت پایداری برخوردار است.

نتایج حاصل از میانگین نسبت (P_{ACO}) در هر ابزار بهبود در نتایج نسبت $(NSGA-II)$ بهره‌گیری از چهار الگوریتم، در هر ابزار (2) نشان داده است. همانگونه که مشاهده می‌شود؛ احتمال وقوع جواب‌های کارای بهینه‌سازی الگوریتم $(NSGA-II)$ به وسیله وابسته به زمان، روند گذشته به‌مرسی، از وضعیت پایداری برخوردار است.

نتایج حاصل از میانگین نسبت (P_{ACO}) در هر ابزار بهبود در نتایج نسبت $(NSGA-II)$ بهره‌گیری از چهار الگوریتم، در هر ابزار (2) نشان داده است. همانگونه که مشاهده می‌شود؛ احتمال وقوع جواب‌های کارای بهینه‌سازی الگوریتم $(NSGA-II)$ به وسیله وابسته به زمان، روند گذشته به‌مرسی، از وضعیت پایداری برخوردار است.

