Using the Simulated Annealing to Solve a JIT Scheduling Problem in the Two-Machine Flow Shop

P. Fattahi, S.M.H. Hosseini & F. Jolai*

Parviz Fattahi, Associate professor of Industrial Eng., Bu-Ali Sina University
Seyed Mohammad Hasan Hosseini, PhD student of Industrial Eng. Payame Noor University
Fariborz Jolai, professor of Industrial Eng, University of Tehran

Keywords
simulated annealing, scheduling, flow shop, tardiness and earliness

ABSTRACT

A two-machine permutation flow shop scheduling with n independent jobs and different due dates is considered in this paper. Since this problem is shown to be NP-Hard, We use the simulated annealing to solve this problem. The objective is minimizing the weighted earliness and tardiness that cover JIT concept. We construct our algorithm in four scenarios with considering two Markov chains and two temperature reduction rates. The best scenario is proposed based on the results of computational experiments. A mathematical programming formulation is proposed for the problem, and the solution obtained by proposed SA algorithms are compared with the optimal ones obtained by mathematical model using LINGO software for small size instances. Also the performance of the best scenario is compared by the standard model of genetic algorithm for different sizes problems and its advantages are shown.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 3, All Rights Reserved

* Corresponding author. Fariborz Jolai
Email: fjolai@ut.ac.ir
بکارگیری الگوریتم انجماد تدریجی برای زمانبندی کارها در کارگاه
جریانی دو مهندسی با هدف تولید به موقع

پرویز فتحی، سید محمد حسن حسینی و فریبرز جولای

چکیده:
در این تحقیق مسأله زمانبندی n کار مستقل با زمان سراسری متفاوت بر روی 2 ماشین در محیط NP-hard کارگاه جریانی تریپل مورد بررسی قرار می‌گیرد. با توجه به اینکه مسأله فوق جز مسئله محصول می‌گردد، کی الگوریتم انجماد تدریجی برای حل این مشکل است. به مُنظَر ارزیابی جواب‌ها از میزان حداقل جمع وزنی دیر‌کرد‌ها و زود‌کرده‌ها کارها به عنوان نیاز هدف استفاده شده است که این هدف به‌جای کاهش تاخیر از آن‌ها و بهبود اعضا مسأله به‌طور کلی باعث بهبود کیفیت جواب‌های محاسباتی و در نهایت به‌طور کلی بهبود کیفیت جواب‌های محاسباتی هست. کارایی الگوریتم پیشنهادی با حل سال‌های مختلف در ابعاد مختلف مورد تحلیل و بررسی قرار گرفته و برای مسأله کوچک (تعداد کار کمتر از 25) تلاش کرده است. نتایج بدست آمده از الگوریتم پیشنهادی با جواب بهینه حاصل از طریق رایانه که با برنامه لنگو اجرا شده مورد مقایسه قرار گرفته است. همچنین عناصر الگوریتم پیشنهادی در حل مسائل مختلف با مدل استاندارد الگوریتم زئینیک مقایسه و برتری آن را پیداست.

کلمات کلیدی:
انجماد تدریجی، زمانبندی، کارگاه جریانی، دیرکرد و زودگرد

مقدمه
به پایه کی برنامه‌ریزی تولید یکی از فعالیت‌های مهم در شرکت‌های تولیدی و خدماتی است. این فعالیت به‌پاینده استفاده بهینه از منابع در دسترس کمک می‌کند. مسأله زمانبندی و تعیین توالی عملیات بر عهده یکی از مراحل مهم برنامه‌ریزی تولید نقش بسزایی در محیط اهداف آن دارد. زمان چاب اولین مقاله جانشین درباره مسأله توالی عملیات کارگاه

References:

Title: 2008-4870
ISSN: 2008-4870

Downloaded from ijiepm.iust.ac.ir at 2:10 IRST on Tuesday January 21st 2020
1. Demode
2. two-stage Flow Shop
3. minimizing the makespan
4. minimizing total flowtime of jobs

یک ماشینی که از کارگاه‌هایی که بیان مشابه با به دست آمده از جمله می‌تواند غیر از تعداد صحیح کارهای کاربردی در

درین نمایندگی راه حل‌های کارهایی با مقدار تحول منجر به

یک محیط کارگاه کارگاهی در منطقه با هدف حداک

کردن هزینه زودرگه‌ها و درکردن مود توزیع زودرگه‌ها و درکردن مود در استراتژی‌های ادامه تولید از ماهیت بالایی برخوردار

بوده و یک میانگیر مود پسند تولید می‌شود و مشتری می‌شود.

در این سنتیون‌های بهبود برای کارهایی که قبل از موهود

تکمیل می‌شود. هزینه‌هایی که قبله‌های هزینه‌های دنگداری در اینبار

خوانده محدود و داخلی نمی‌باشد. از طرف افتادن و مالیات درندر

فقط می‌شود. علاوه بر این کارهایی که در دربرد از موهود تکمیل

یک می‌شود. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشد. از طرف دیگر باید به اینکه همیشه می‌باشد چهار تا تا محوصه

می‌باشیم...
دلا کرمس و همکاران [۱۰] مطالعه کارگاه جریانی دو مناسبی را بررسی کردند و در آن کارها را موجب تحول یکسان بودن تابع هدف آنها تعادل کارهای با درکرد و مورد به کار گرفتن از فرمول جدید عدهای مساله کلی، پیشروانش و کاران را حمایت می‌کردند. سالنگ و کیم [۱۱] بر این ماهیت را در حالتی که پرگرد هر یک کار با یک مورد بررسی انجام می‌شود. استخدام مورد بررسی شده داده است.

امکان‌های برتری (۱۲) مساله کارهای جریانی در حالت m ساختند و تابع هدف تعادل کارهای با درکرد را در شرایط پیوسته بررسی کردند. آنها در فرآیند خود به عربی کارگاهی جدید و پیشروانش و کاران را ارائه نشان دادند که مساله زمان‌بندی و دو مناسبی با هدف تعادل کردن کل تکمیل کارها یک مورد پیچیده است.

مساله کارگاه کردن مجموعه بیشترین زودگرد و پیش‌روی درکرد در سیستم کارگاه جریانی دو مناسبی توسط اصلاحی و (ET)max بررسی و در کارگاه جریانی انجام گرفته شد. در حالت m ساختند و تابع هدف تعادل کردن هر کار در مدت زمان‌بندی و درکرد را از میان برخی تحقیقات آیش با پیش‌هاده کارگاه که ایشان شرق‌نشد در مقاله حاضر قرار داده شده است.

طبق بررسی‌های به عمل آمد، برای مساله کارگاه جریانی دو محوری (محلی)، با تغییر تعادل مجموع زودگرد و درکرد از (masalah) سایل علی‌رغم بر تفاوت تابع هدف مساله و در نتیجه مثل هر کار در مدت زمان‌بندی، تعقیب گرفته شده و نتیجه ملت زمان‌بندی که ایشان می‌پیش‌رود به جواب به‌پردازند. من اکنون برای نشان دهنده که کارگاه‌های کردن از کارهای که ایشان شرق‌نشد در مقاله حاضر قرار داده شده است.

مساله کارگاه کردن زودگرد و درکرد از کارگاه جریانی دو مناسبی و (ET)max بررسی و در کارگاه جریانی انجام گرفته شد. در حالت m ساختند و تابع هدف تعادل کردن هر کار در مدت زمان‌بندی و درکرد را از میان برخی تحقیقات آیش با پیش‌هاده کارگاه که ایشان شرق‌نشد در مقاله حاضر قرار داده شده است.

طبق بررسی‌های به عمل آمد، برای مساله کارگاه جریانی دو محوری (محلی)، با تغییر تعادل مجموع زودگرد و درکرد از (masalah) سایل علی‌رغم بر تفاوت تابع هدف مساله و در نتیجه مثل هر کار در مدت زمان‌بندی، تعقیب گرفته شده و نتیجه ملت زمان‌بندی که ایشان می‌پیش‌رود به جواب به‌پردازند. من اکنون برای نشان دهنده که کارگاه‌های کردن از کارهای که ایشان شرق‌نشد در مقاله حاضر قرار داده شده است.

طبیعی بررسی‌های به عمل آمد، برای مساله کارگاه جریانی دو محوری (محلی)، با تغییر تعادل مجموع زودگرد و درکرد از (masalah) سایل علی‌رغم بر تفاوت تابع هدف مساله و در نتیجه مثل هر کار در مدت زمان‌بندی، تعقیب گرفته شده و نتیجه ملت زمان‌بندی که ایشان می‌پیش‌رود به جواب به‌پردازند. من اکنون برای نشان دهنده که کارگاه‌های کردن از کارهای که ایشان شرق‌نشد در مقاله حاضر قرار داده شده است.

طبیعی بررسی‌های به عمل آمد، برای مساله کارگاه جریانی دو محوری (محلی)، با تغییر تعادل مجموع زودگرد و درکرد از (masalah) سایل علی‌رغم بر تفاوت تابع هدف مساله و در نتیجه مثل هر کار در مدت زمان‌بندی، تعقیب گرفته شده و نتیجه ملت زمان‌بندی که ایشان می‌پیش‌رود به جواب به‌پردازند. من اکنون برای نشان دهنده که کارگاه‌های کردن از کارهای که ایشان شرق‌نشد در مقاله حاضر قرار داده شده است.

طبیعی بررسی‌های به عمل آمد، برای مساله کارگاه جریانی دو محوری (محلی)، با تغییر تعادل مجموع زودگرد و درکرد از (masalah) سایل علی‌رغم بر تفاوت تابع هدف مساله و در نتیجه مثل هر کار در مدت زمان‌بندی، تعقیب گرفته شده و نتیجه ملت زمان‌بندی که ایشان می‌پیش‌رود به جواب به‌پردازند. من اکنون برای نشان دهنده که کارگاه‌های کردن از کارهای که ایشان شرق‌نشد در مقاله حاضر قرار داده شده است.

طبیعی بررسی‌های به عمل آمد، برای مساله کارگاه جریانی دو محوری (محلی)، با تغییر تعادل مجموع زودگرد و درکرد از (masalah) سایل علی‌رغم بر تفاوت تابع Hدف مساله و در نتیجه مثل هر کار در مدت زمان‌بندی، تعقیب گرفته شده و نتیجه ملت زمان‌بندی که ایشان می‌پیش‌رود به جواب به‌پردازند. من اکنون برای نشان دهنده که کارگاه‌های کردن از کارهای که ایشان شرق‌نشد در مقاله حاضر قرار داده شده است.

طبیعی بررسی‌های به عمل آمد، برای مساله کارگاه جریانی دو محوری (محلی)، با تغییر تعادل مجموع زودگرد و درکرد از (masalah) سایل علی‌رغم بر تفاوت تابع Hدف مساله و در نتیجه مثل هر کار در مدت زمان‌بندی، تعقیب گرفته شده و نتیجه ملت زمان‌بندی که ایشان می‌پیش‌رود به جواب به‌پردازند. من اکنون برای نشان دهنده که کارگاه‌های کردن از کارهای که ایشان شرق‌نشد در مقاله حاضر قرار داده شده است.

طبیعی بررسی‌های به عمل آمد، برای مساله کارگاه جریانی دو محوری (محلی)، با تغییر تعادل مجموع زودگرد و درکرد از (masalah) سایل علی‌رغم بر تفاوت تابع Hدف مساله و در نتیجه مثل هر کار در مدت زمان‌بندی، تعقیب گرفته شده و نتیجه ملت زمان‌بندی که ایشان می‌پیش‌رود به جواب به‌پردازند. من اکنون برای نشان دهنده که کارگاه‌های کردن از کارهای که ایشان شرق‌نشد در مقاله حاضر قرار داده شده است.

طبیعی بررسی‌های به عمل آمد، برای مساله کارگاه جریانی دو محوری (محلی)، با تغییر تعادل مجموع زودگرد و درکرد از (masalah) سایل علی‌رغم بر تفاوت تابع Hدف مساله و در نتیجه مثل هر کار در مدت زمان‌بندی، تعقیب گرفته شده و نتیجه ملت زمان‌بندی که ایشان می‌پیش‌رود به جواب به‌پردازند. من اکنون برای Nشان دهنده که کارگاه‌های کردن از کارهای که ایشان شرق‌نشد در مقاله حاضر قرار داده شده است.

طبیعی بررسی‌های به عمل آمد، برای مساله کارگاه جریانی دو محوری (محلی)، با تغییر تعادل مجموع زودگرد و درکرد از (masalah) سایل علی‌رغم بر تفاوت تابع Hدف مساله و در نتیجه مثل هر کار در مدت زمان‌بندی، تعقیب گرفته شده و نتیجه ملت زمان‌بندی که ایشان می‌پیش‌رود به جواب به‌پردازند. من اکنون برای Nشان دهنده که کارگاه‌های کردن از کارهای که ایشان شرق‌نشد در مقاله حاضر قرار داده شده است.
نوع اسمی بوده و بجز محدودیت ماتریس‌های (بعضوان مثال) و
محدودیت پیش‌نیازی محدودیت دیگری ندارد. همچنین مسئله
موردنظر از قطعات فضایی اطلاعات در دسترس، معین بوده و زمان
بردارش کارها توسط دو موتور همچنین معلوم محاسبه گردیده است.

اگر مرحله یک مسأله شامل مجموعه n کار باشد
فرایند مسأله از نوع ترتیبی است. این کارها با همان ترتیب که
روی ماتریس اول بردارش می‌شوند با همان ترتیب هم بر روی
ماتریس دوم بردارش خواهد شد.

فرض آخر عبات می‌شود عداد کل توالی‌های ممکن از n
cارکرد بالای هدف افت نتایج اجرای کار با حذف مجموعه
ویژه درکنند و یا زدکند. در مورد این می‌باید که در آن
ویژه درکنند و یا زدکند گزینه‌های مناسب به خود را خواهد
داشت. بدیهی است که مقدار زدکند و یا درکنند بترتیب مطالب
روایت (۱) و (۲) می‌شوند:

\[
E_i = \max [0, (d_i - D_i)] \quad i = 1, 2, 3, \ldots, n
\]

\[
T_i = \max [0, (d_i - d_i)] \quad i = 1, 2, 3, \ldots, n
\]

در روابط فوق برای انتخابی دیگر و دیگری ترتیب معلوم محاسبه و زمان
تکمیل کار i می‌شود.

2-مدل‌سازی مسأله

در حالی که مدل دریایی برای مسأله مورد بررسی ارائه می‌گردد،
برای این کار، گردش نماپرهایی ارائه شده توسط لی و چو [۱۳]
استفاده و مدل ریاضی مدل نیاز توصیف داده شده است.

پارامترهای مسأله:

\[
E_i = \sum_{i=1}^{n} W_{e_i} E_{i-1} + W_{t_i} T_i
\]

\[
D_i = \sum_{k=1}^{k} z_{i,k} (k - 1) + A_k
\]

\[
C_{1k} = A_1, \quad C_{1k} = C_{1(k-1)} + A_k
\]

\[
C_{2k} = A_2 + B_1, \quad C_{2k} = C_{2(k-1)} + B_k
\]

\[
S_k = 0, \quad S_k = C_{1(k-1)}
\]

\[
M = [M_1, M_2, M_3, \ldots, M_n]
\]

\[
N = \{j_1, j_2, \ldots, j_p\}
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]

\[
\sum_{i=1}^{n} z_{i,k} = 1 \quad k = 1, 2, 3, \ldots, n
\]
\[L_{21} = 0, \quad G_{21} = A_{1}, \quad G_{2k} = S_{k} + A_{k} + L_{2k} - C_{2(k-1)} \quad k = 2, 3, \ldots, n \]

\[C_{3k} = \sum_{i=1}^{k} (G_{2i} + B_{i}) \quad k = 1, 2, 3, \ldots, n \]

\[A_{k} B_{k} C_{k} \geq A_{k} G_{2k} S_{2k} \geq 0, \quad E_{1i} T_{1i} B_{i} \geq 0 \]

\[k = 1, 2, 3, \ldots, n \]

معادله (3) نابع هدف مسائل را معرفی می‌کند. معادلات (4) و (5) به مجموعه از معادلات مسائل گروه های گروه‌بندی شده می‌باشند.

1. این موضوع را نشان می‌دهد که هر کار در حقیقت مسئله یک مسائل بردآور می‌شود و هر مسئله در حقیقت یک را پردازش می‌کند. معادلات (6) و (7) و در نهایت کار را تعریف می‌نمایند. معادلات (6) و (7) بهبود برای کارهای زمان بردآور اولویت‌های 1 را کارهای زمانی و زمانی کمکی آنها می‌باشند. معادلات (8) و (9) و (10) زمان کمکی کارهای روی دو مسائل را یک توجه به معطوف مسائل دوم تعریف می‌کند. معادلات (11) و (12) و (13) به ترتیب شرایط بردآوری کارهای زمان بردآور مسائل و مبانی معطلی مسائل در مباحثات معادلات (14) و (15) نمایش می‌دهند. این مدل مربوط به مجموعه معامی‌های زمان بردآور، که به‌طور معناداری در مسائل معمول استفاده می‌شود.

\(n^2 + 9n + 1 \) معنی دارد.

4. الگوریتم پیشنهادی برای حل مسائل

پایه‌گذاری یک مسئله مربوط به الگوریتم‌های گستجوی دقیق برای حل آن نیازمند زمان محسوسی زیادی می‌باشد. این زمان به‌طور اجمالی به مسئله مربوط به معطوف مسائل می‌باشد. در برخی موارد جواب بهینه معطوف می‌شود و در برخی دیگر، جواب بهینه معطوف می‌شود.

لذا الگوریتم ابتکاری که در سال ۱۹۸۳ به جای گروه‌بندی آن را در برخی از فرآیندهای دیگر نیز پرداخته شده و به‌عنوان جواب بهینه مطرح می‌شود.

\[G_{2k} = S_{k} + A_{k} + L_{2k} - C_{2(k-1)} \]

\[C_{3k} = \sum_{i=1}^{k} (G_{2i} + B_{i}) \]

\[A_{k} B_{k} C_{k} \geq A_{k} G_{2k} S_{2k} \geq 0, \quad E_{1i} T_{1i} B_{i} \geq 0 \]

\[k = 1, 2, 3, \ldots, n \]

4.2 الگوریتم ابتکاری مبتنی بر

یک از بحث‌های مهم در استفاده از الگوریتم‌های گستجوی طراحی و تنظیم الگوریتم‌ها برای مسئله مورد مورد مطرح می‌باشد. در این طرح طراحی و تنظیم الگوریتم‌ها استفاده کرد که برای جواب‌های تولید راه زمانی و بهینه‌ترداه‌ها دامنه و غیره بدین صورت مسئله نظیر مشخص و یک‌پلاکت‌های الگوریتم‌ها از قبیل نظر انجام برای حل مسئله مورد نظر مشخص و یک‌پلاکت‌های الگوریتم‌ها استفاده می‌گردد.

\[A_{k} B_{k} C_{k} \geq A_{k} G_{2k} S_{2k} \geq 0, \quad E_{1i} T_{1i} B_{i} \geq 0 \]

\[k = 1, 2, 3, \ldots, n \]

4.3 الگوریتم ابتدایی بستگی به

این الگوریتم به دلیل سادگی و کارایی بالا در حل مسائل بی‌محدودیتی تمرکزی که در دهه ۱۹۹۰ به‌طور گسترده در بین تکنیک‌های جستجو و هیپوستیک‌ها به‌دست آورد و به‌دحال به جرز مسائل بهینه‌سازی پیوسته نیز توسط داده شد. از
یکی از معروف‌ترین الگوریتم‌های ارائه شده برای حل مسئله NK-لی‌کس (NEH) است که این الگوریتم کاربردی در صنعت‌های زمان‌برداری، همچون صنعت‌های نساجی و ساختمانی، همچنین در صنعت‌های دیگر کاربرد دارد.

نتیجه‌گیری‌های این الگوریتم به‌کمک الگوریتم‌های متابولیک در دسترس قرار خواهد گرفت.

\[\sum_{i=1}^{n} t_i 	imes e_{i+1} > 0 \]
ساختار هم‌سایگی

در زمان‌بندی کارگاه جیران کاری روش‌های متعددی برای تعیین هم‌سایگی وجود دارد. در کارتنی پیش‌بازی و ساختار هم‌سایگی مورد بررسی قرار گرفت و یادآوری می‌باشد که، با ضریح همه‌سایگی برای کاهش هم‌سایگی و نزدیکی از این دستاییکه در نهایت مرحله جرسی را حفظ می‌کند که هم‌سایگی گرفت و ساختار درآوری در ضریح همه‌سایگی برای کاهش هم‌سایگی و نزدیکی از این دستاییکه در نهایت مرحله جرسی را حفظ می‌کند که هم‌سایگی گرفت و ساختار درآوری در ضریح همه‌سایگی برای کاهش هم‌سایگی و نزدیکی از این دستاییکه در نهایت مرحله جرسی را حفظ می‌کرده. اما توسط ترجیح داشته که این ساختار

جدول ۲: نتایج آزمون ۱ و ۲ (درصدی)

<table>
<thead>
<tr>
<th>سطح</th>
<th>تعداد</th>
<th>تعداد کارگاه</th>
<th>تعداد کارگاه</th>
<th>تعداد کارگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۵۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۵۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۶</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۶۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۶۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۷</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۷۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۷۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۸</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۸۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۸۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۹</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۹۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۹۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

جدول ۱: دامت‌های آزمون تعیین دمای اولیه و نرخ کاهش

<table>
<thead>
<tr>
<th>سطح</th>
<th>تعداد</th>
<th>تعداد کارگاه</th>
<th>تعداد کارگاه</th>
<th>تعداد کارگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۵۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۵۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۶</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۶۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۶۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۷</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۷۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۷۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۸</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۸۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۸۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۹</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۹۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰.۹۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>
سدای همسایی N1 که براساس آن دو عدد تصادفی x_i و y_i بنابراین نشان دهنده که سایه‌برداری نشان دهنده انتخاب و سپس اولویت دو کار از توسه‌ای کیسی، مربوطات این روش که نمونه آن در شکل ۲ آمده این است که این اجرا تغییر نسبتا زیادی در ساختار کلی زمان‌بندی دسته امید تا مرحله جاری خطر گیر افتادن در بیهه منحی را کاهش می‌دهد.

شکل ۱. نمونه همسایگی نوشته نشان دهنده دو عدد تصادفی x_i و y_i بنابراین نشان دهنده که سایه‌برداری نشان دهنده انتخاب و سپس اولویت دو کار از توسه‌ای کیسی، مربوطات این روش که نمونه آن در شکل ۲ آمده این است که این اجرا تغییر نسبتا زیادی در ساختار کلی زمان‌بندی دسته امید تا مرحله جاری خطر گیر افتادن در بیهه منحی را کاهش می‌دهد.

شکل ۲. نمونه همسایگی نوشته نشان دهنده دو عدد تصادفی x_i و y_i بنابراین نشان دهنده که سایه‌برداری نشان دهنده انتخاب و سپس اولویت دو کار از توسه‌ای کیسی، مربوطات این روش که نمونه آن در شکل ۲ آمده این است که این اجرا تغییر نسبتا زیادی در ساختار کلی زمان‌بندی دسته امید تا مرحله جاری خطر گیر افتادن در بیهه منحی را کاهش می‌دهد.

پرویز فتحی‌چه، سید محمد حسن حسینی و فریبرز جولایی
اختلاف مقدار بهینه سریارس نتایج هدف (S₁) با مقدار بهینه در دمای T را در هر دو ساختار همسایگی محاسبه می‌کند:

\[
\Delta = f(s^*_T) - f(s_1^*)
\]

اگر \(\Delta \leq 0 \) بود قرار دهد، \(S^*_T = S^*_1 \) می‌گردد.

اگر \(\Delta > 0 \) بود یک مقدار تصادفی از منبع \(U(0,1) \) انتخاب می‌شود.

\[
e^{-\frac{\Delta}{I_T}} > e^{-\frac{\Delta}{I_T}}
\]

اگر قرار دهد \(I_T = 1 \) انتخاب می‌شود.

قدم 3 (ارایه نتایج):

براساس \(S_1 \) بهترین جواب را ارائه می‌نماید.

\[
\text{نتیجه‌گیری‌های الگوریتم (اثربخش) اولیه تولید دهنده، تعداد تکرار در هر دمای T،}
\]

\[
\text{(EDD) به‌همراه زمان‌بندی اولیه طبق معیار روزانه مورد تحول کارها (E)}
\]

\[
\text{به‌همراه زمان‌بندی اولیه با الگوریتم پیشنهادی تعدادین جواب نشان}
\]

\[
\text{چک 3 مدل پیشنهادی برای حل مسئله}
\]

\[
\text{نشریه بین المللی مهندسی صنایع و مدیریت تولید، آذر 1391-جلد 22-شماره 3}
\]
5. آزمایشات عدیدی و تجزیه و تحلیل

5.1. طراحی مسایل متنوع

به منظور ارزیابی کارایی الگوریتم پیشنهادی، مطلوب حداکثر بیش از چهار مثال متنوع در ابعاد مختلف تولید و به کار گرفته شده است. زمان روزنامه کارها به‌طور میانگین بین ۵۰ تا ۱۰۰ درنگرفته شده‌اند. این توزیع در پایداری مناسبی دارد و اجازه آماده‌بود داده‌های مورد بررسی تحت شرایط مختلف که برخی از آنها ناسازگار، است. ارزیابی شده بعنوان تعداد توانایی کارنامه‌های شرایط، کاهش شده که این پارامتر وابسته به مدت زمان بنارش کارها بوده و پایه‌ای ماهوری مورد بررسی از وابستگی (۲۱) و (۲۲) برای بدست آوردن نتایج مورد نیاز، استفاده می‌شود.

دقت مطلق مسایل ده‌بندی مسایل

\[
\overline{d} = (1 - \tau) \times \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} P_{ij}}{\sum_{i=1}^{n} \sum_{j=1}^{m} P_{ij}} \tag{21}
\]

\[
\overline{d} = \left[\frac{R}{2} + \frac{R}{2} \times M \right] \tag{22}
\]

در عمل، رابطه (۲۱) برای مسایل کارگاه جریانی مناسب به‌شکل

\[
\sum_{i=1}^{n} \sum_{j=1}^{m} P_{ij} = \text{میزان کارها}
\]

روی مسایل ماشین‌ها عمد بزرگی است و معمولاً اکثر کارها درد یزدکرد می‌باشد. برای رفع این مشکل می‌توان رابطه (۲۱) را به‌صورت رابطه (۲۲) نوشت.

\[
\overline{d} = (1 - \tau) \times M \tag{23}
\]

چرا که مجموع زمان‌های برداری \(\sum_{i=1}^{m} \sum_{j=1}^{n} P_{ij} \) \(\text{میزان کارها} \) روی مسایل ماشین‌ها عمد بزرگی است و معمولاً اکثر کارها درد یزدکرد می‌باشد. برای رفع این مشکل می‌توان رابطه (۲۱) را به‌صورت رابطه (۲۲) نوشت.

\[
\overline{d} = (1 - \tau) \times M \tag{23}
\]

به‌طور کل، این الگوریتم نشان‌دهنده از میانگین بیشترین بهبود بهترین برای مثال‌ها می‌باشد. در مثال‌ها در پایداری محدود بهبود رابطه (۲۲) بهبودی در توپیست می‌باشد. از آن‌جایی که بررسی بیشتر با تعداد کار زیاد بیسیار زمان‌زای می‌باشد، یک بهبودی جواب آن برای مسایل کوچک (تعداد کار کمتر از ۱۰) ارزیابی شده است.

\[
\overline{d} = \left[(1 - \tau) - \frac{R}{2} \right] \times M \left(1 - \tau - \frac{R}{2} \right) \tag{24}
\]
جدول ۵ بررسی بهینگی نتایج

<table>
<thead>
<tr>
<th>مطالعه</th>
<th>بررسی بهینگی</th>
<th>گروه</th>
<th>مطالعه</th>
<th>بررسی بهینگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4</td>
<td>C3</td>
<td>C2</td>
<td>C1</td>
<td>n<=10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>n=10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>10<n=20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>20<n=25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>20<n=25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>20<n=25</td>
</tr>
</tbody>
</table>

جدول (۵) بیانگر برتری مدل در حالت‌های C4 و C3 است که براساس آن نحوه کاهش دما و پیوسته به تجربه بدست آمده و میزان بهبود تابع هدف در آن دما یافته است (جدول ۳).

شکل (۴) نشان‌دهنده عملکرد مدل بیشینه‌ی در حالت مثالی با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. در این شکل، خط کشته‌سپری مقدار هدف حاصل از زمانیدنی را نشان می‌دهد. خط کشته‌سپری آی رنگ مقدار تغییر هدف حاصل از زمانیدنی پس از انرژی میزان تغییر سطح مدل بیشینه‌ی در حالت مثالی بار حملی موثر که مشاهده می‌شود با توجه به اینکه در مسائل کوک گنج (بله) A در حالت A، بهترین مدل اغلب مسائل به حساب گرفته و بهترین مدل اغلب مسائل به حساب گرفته به دو روش بیشینه‌ی در حالت مثالی با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. اما از افزایش تعداد کارایی به ترتیب در پنل‌ها I، II، III و IV مدل ارائه شده در سایر مسائل C4 و C3 عملکرد بهتری داشته است.

شکل (۴) نشان‌دهنده عملکرد مدل بیشینه‌ی در حالت مثالی با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. اما از افزایش تعداد کارایی به ترتیب در پنل‌ها I، II، III و IV مدل ارائه شده در سایر مسائل C4 و C3 عملکرد بهتری داشته است. این موضوع با اینکه اغلب کارها دارای دیرکت و یا زودترک بازه‌های بینی مربوط به آنها نیز دو یا سه‌ضد است.

شکل (۴) نشان‌دهنده عملکرد مدل بیشینه‌ی در حالت مثالی با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. اما از افزایش تعداد کارایی به ترتیب در پنل‌ها I، II، III و IV مدل ارائه شده در سایر مسائل C4 و C3 عملکرد بهتری داشته است.

شکل (۴) نشان‌دهنده عملکرد مدل بیشینه‌ی در حالت مثالی با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. اما از افزایش تعداد کارایی به ترتیب در پنل‌ها I، II، III و IV مدل ارائه شده در سایر مسائل C4 و C3 عملکرد بهتری داشته است.

شکل (۴) نشان‌دهنده عملکرد مدل بیشینه‌ی در حالت مثالی با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. اما از افزایش تعداد کارایی به ترتیب در پنل‌ها I، II، III و IV مدل ارائه شده در سایر مسائل C4 و C3 عملکرد بهتری داشته است.

شکل (۴) نشان‌دهنده عملکرد مدل بیشینه‌ی در حالت مثالی با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. اما از افزایش تعداد کارایی به ترتیب در پنل‌ها I، II، III و IV مدل ارائه شده در سایر مسائل C4 و C3 عملکرد بهتری داشته است.

شکل (۴) نشان‌دهنده عملکرد مدل بیشینه‌ی در حالت مثالی با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. اما از افزایش تعداد کارایی به ترتیب در پنل‌ها I، II، III و IV مدل ارائه شده در سایر مسائل C4 و C3 عملکرد بهتری داشته است.

شکل (۴) نشان‌دهنده عملکرد مدل بیشینه‌ی در حالت مثالی با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. اما از افزایش تعداد کارایی به ترتیب در پنل‌ها I، II، III و IV مدل ارائه شده در سایر مسائل C4 و C3 عملکرد بهتری داشته است.

شکل (۴) نشان‌دهنده عملکرد مدل بیشینه‌ی در حالت مثالی با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. اما از افزایش تعداد کارایی به ترتیب در پنل‌ها I، II، III و IV مدل ارائه شده در سایر مسائل C4 و C3 عملکرد بهتری داشته است.

شکل (۴) نشان‌دهنده عملکرد مدل بیشینه‌ی در حالت مثالی با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. اما از افزایش تعداد کارایی به ترتیب در پنل‌ها I، II، III و IV مدل ارائه شده در سایر مسائل C4 و C3 عملکرد بهتری داشته است.

شکل (۴) نشان‌دهنده عملکرد مدل بیشینه‌ی در حالت مثالی با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. اما از افزایش تعداد کارایی به ترتیب در پنل‌ها I، II، III و IV مدل ارائه شده در سایر مسائل C4 و C3 عملکرد بهتری داشته است.
جدول ۷ مقایسه کیفیت و کارایی جوامد در ۴ حالت برای انواع مسئلات با اندازه های مختلف (زمان‌ها بر حسب ثانیه‌ی پیش‌آموزش)

<table>
<thead>
<tr>
<th>Size</th>
<th>Type</th>
<th>EDD</th>
<th>Pl-Algorithm</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C1-time</th>
<th>C2-time</th>
<th>C3-time</th>
<th>C4-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>small</td>
<td>A</td>
<td>5875</td>
<td>5167</td>
<td>3626</td>
<td>3503</td>
<td>3566</td>
<td>3566</td>
<td>0.21</td>
<td>0.19</td>
<td>0.48</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>6459</td>
<td>5809</td>
<td>4626</td>
<td>4704</td>
<td>4578</td>
<td>4560</td>
<td>0.22</td>
<td>0.20</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3633</td>
<td>2982</td>
<td>2023</td>
<td>1941</td>
<td>1920</td>
<td>1905</td>
<td>0.23</td>
<td>0.20</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>3833</td>
<td>3233</td>
<td>2044</td>
<td>2041</td>
<td>1933</td>
<td>1966</td>
<td>0.22</td>
<td>0.20</td>
<td>0.50</td>
<td>0.53</td>
</tr>
<tr>
<td>medium</td>
<td>A</td>
<td>57926</td>
<td>54589</td>
<td>41632</td>
<td>41574</td>
<td>37618</td>
<td>37445</td>
<td>0.45</td>
<td>0.42</td>
<td>1.74</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>64229</td>
<td>61152</td>
<td>49770</td>
<td>49627</td>
<td>47286</td>
<td>47784</td>
<td>0.47</td>
<td>0.42</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>33448</td>
<td>30583</td>
<td>22123</td>
<td>21902</td>
<td>19998</td>
<td>19799</td>
<td>0.47</td>
<td>0.44</td>
<td>1.90</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>33658</td>
<td>30779</td>
<td>19785</td>
<td>19841</td>
<td>16478</td>
<td>16782</td>
<td>0.48</td>
<td>0.43</td>
<td>2.58</td>
<td>2.69</td>
</tr>
<tr>
<td>large</td>
<td>A</td>
<td>261752</td>
<td>253460</td>
<td>225732</td>
<td>225417</td>
<td>187981</td>
<td>181669</td>
<td>0.86</td>
<td>0.83</td>
<td>3.72</td>
<td>3.63</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>307812</td>
<td>300337</td>
<td>272475</td>
<td>271717</td>
<td>241618</td>
<td>242242</td>
<td>0.89</td>
<td>0.85</td>
<td>2.56</td>
<td>2.54</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>153938</td>
<td>146222</td>
<td>124756</td>
<td>124158</td>
<td>99466</td>
<td>99806</td>
<td>0.92</td>
<td>0.87</td>
<td>4.23</td>
<td>4.19</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>150615</td>
<td>143592</td>
<td>116035</td>
<td>116031</td>
<td>81027</td>
<td>78638</td>
<td>0.89</td>
<td>0.85</td>
<td>6.09</td>
<td>6.19</td>
</tr>
<tr>
<td>Very large</td>
<td>A</td>
<td>2441509</td>
<td>2413940</td>
<td>2373791</td>
<td>2343434</td>
<td>2342620</td>
<td>2342620</td>
<td>2.56</td>
<td>2.52</td>
<td>2.50</td>
<td>2.47</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2676940</td>
<td>2650099</td>
<td>2607497</td>
<td>2608517</td>
<td>2576854</td>
<td>2576904</td>
<td>2.56</td>
<td>2.52</td>
<td>2.36</td>
<td>2.33</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1278186</td>
<td>1254043</td>
<td>1215800</td>
<td>1214814</td>
<td>1153526</td>
<td>1154937</td>
<td>2.61</td>
<td>2.57</td>
<td>4.50</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1316011</td>
<td>1293769</td>
<td>1249734</td>
<td>1249016</td>
<td>1145426</td>
<td>1144057</td>
<td>2.59</td>
<td>2.53</td>
<td>6.54</td>
<td>6.54</td>
</tr>
</tbody>
</table>

جدول ۸ وضعیت انواع مسئلات در چهار دسته و عملکرد مدل در ۴ حالت

<table>
<thead>
<tr>
<th>Type</th>
<th>EDD</th>
<th>Pl-Algorithm</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C1-time</th>
<th>C2-time</th>
<th>C3-time</th>
<th>C4-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>721803</td>
<td>711484</td>
<td>690223</td>
<td>690325</td>
<td>671411</td>
<td>671677</td>
<td>1.05</td>
<td>1.02</td>
<td>2.13</td>
<td>2.13</td>
</tr>
<tr>
<td>B</td>
<td>795781</td>
<td>788599</td>
<td>674639</td>
<td>746179</td>
<td>749617</td>
<td>749595</td>
<td>1.06</td>
<td>1.09</td>
<td>1.67</td>
<td>1.66</td>
</tr>
<tr>
<td>C</td>
<td>382482</td>
<td>373372</td>
<td>355646</td>
<td>355170</td>
<td>333331</td>
<td>333695</td>
<td>1.06</td>
<td>1.06</td>
<td>2.82</td>
<td>2.81</td>
</tr>
<tr>
<td>D</td>
<td>367371</td>
<td>360076</td>
<td>343242</td>
<td>343169</td>
<td>313447</td>
<td>312652</td>
<td>0.93</td>
<td>0.89</td>
<td>2.94</td>
<td>3.01</td>
</tr>
</tbody>
</table>

جدول ۹ مشخصات سایت‌های کاربری با ترتیب عملکرد مدل در ۴ حالت

<table>
<thead>
<tr>
<th>Type</th>
<th>EDD</th>
<th>Pl-Algorithm</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C1-time</th>
<th>C2-time</th>
<th>C3-time</th>
<th>C4-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8.25</td>
<td>11.91</td>
<td>12.77</td>
<td>8.27</td>
<td>11.91</td>
<td>12.77</td>
<td>8.25</td>
<td>11.91</td>
<td>12.77</td>
<td>8.25</td>
</tr>
<tr>
<td>B</td>
<td>5.00</td>
<td>6.25</td>
<td>6.25</td>
<td>5.00</td>
<td>6.25</td>
<td>6.25</td>
<td>5.00</td>
<td>6.25</td>
<td>6.25</td>
<td>5.00</td>
</tr>
<tr>
<td>C</td>
<td>3.00</td>
<td>4.00</td>
<td>4.00</td>
<td>3.00</td>
<td>4.00</td>
<td>4.00</td>
<td>3.00</td>
<td>4.00</td>
<td>4.00</td>
<td>3.00</td>
</tr>
<tr>
<td>D</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

شکل ۵ کلاسیک کاربری با ۴ سانال جواب در بخش وب دسته‌ای با توسط کاملی بیشینه‌سازی

شکل ۶ نشان دهنده درصد بهبود جواب اولیه نسبت به کاملی بیشینه‌سازی

شکل ۷ نشان دهنده درصد بهبود جواب اولیه نسبت به کاملی بیشینه‌سازی
25 \leq n \leq 500

\text{C4}

\text{1. جنگینگ الکتروموتیک با سناویهای C4 بر تعداد کار در 20 تکرار حل C نوع جواب‌های الکتروموتیک با سناویهای C4 بر تعداد کار در 20 تکرار حل C}
بکارگیری الگوریتم انگام تدریجي برای زمانبندی کارها در...

1. Crossover
2. Mutation

جمعت جدیدی یک جمعیت جدید با اجرا مراحل ذیل ایجاد و با تکرار این مراحل کامل می‌گردد:

- انتخاب انگام‌های جدیدی بر مبنای مقدار زمان‌بندی آن‌ها
- عملکرد الگوریتم با ادامه الگوریتم دو انگام‌های جدیدی
- شده‌ای که جمعیت جدید‌تر (ویژوال) که در روزنامه جدید (فرنده) یافته می‌گردد.
- عملکرد جهش‌های جدید و جهش‌های الگوریتمی که در جمعیت جدید برای پیدا گردد.

داده می‌شود.

- حاصل این جمعیت جدید با جمعیت قبلی ترکیب و تکنیک تنسل جدید را می‌دهند. در این مرحله طیف از والدین حذف و بعضی از ازنان جانشین آنها می‌شوند و لذا دو جمعیت جدید به هر جمعیت جدید ورود می‌کنند. تکرار این خودکاری در حاشیه جایگاهی ایجاد می‌شود.

- نمونه‌هایی را در جمعیت جدید می‌کند.

- تکرار در صورت عدم برآورده شدن شرط توقف، به‌کنار جمعیت جدید جایگاهی می‌آمده.

بعد از چند نسل (ترکار)، الگوریتم به سمت بهترین کروموزوم همگرا می‌شود.

به منظور حصول اطمینان بیشتر از کیفیت جواب الگوریتم پیشنهادی، مدل مختلف در ۴ دسته تراژیک و با استفاده از الگوریتم نیتک و الگوریتم جایگاه‌یافته حذف شده‌است. جدول (۹) بیانگر الگوریتم پیشنهادی به لحاظ کیفیت جواب نهایی بوده و نشان می‌دهد که جواب به‌کار برده شده است با توجه به زمان خیلی بالای الگوریتم نیتک و به‌طور قابل توجهی به روش‌های الگوریتم کرکس و ترکار، مشابه می‌شود.

مورد مقایسه قرار گرفته است.

بحث و نتیجه‌گیری

در این مقاله، مدل زمانبندی کارها در محیط کارگاه جریانی در شرکت الکتریکی دیجسیتال و هم‌اکنون تکنیک بهبود برای حداقل کارها مشخص شده و مقایسه کرد. در نهایت بیانگر الگوریتم نیتک، الگوریتم جایگاه‌یافته حذف شده به‌کار برده شده است با توجه به زمان خیلی بالای الگوریتم نیتک، مشابه می‌شود.

1. Crossover
2. Mutation

شرکت تکرر.
جدول 9. مقایسه جواب‌های دو مدل GA و C4

میانگین جواب GA	میانگین جواب C4	تعداد مسئله	تعداد کار	رده
Dه دسته	197.3 197.8 201.5 201.5 202.2 202.2 202.2 202.2 202.2 202.2	10	น<25	1
Cه دسته	224 224 224 224 224 224 224 224 224 224	10	25<ن<75	2
Bه دسته	272.5 272.5 272.5 272.5 272.5 272.5 272.5 272.5 272.5 272.5	10	75<ن<150	3
Aه دسته	291.1 291.1 291.1 291.1 291.1 291.1 291.1 291.1 291.1 291.1	10	150<ن	4
رده دسته	298 298 298 298 298 298 298 298 298 298	10	150<ن	4

جدول 10. مقایسه زمان حل دو مدل GA و C4

میانگین زمان حل GA	میانگین زمان حل C4	تعداد مسئله	تعداد کار	رده
Dه دسته	0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39	10	น<25	1
Cه دسته	2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	10	25<ن<75	2
Bه دسته	4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	10	75<ن	4
Aه دسته	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	10	150<ن	4
رده دسته	7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	10	150<ن	4

مراجع

