Using the Simulated Annealing to Solve a JIT Scheduling Problem in the Two-Machine Flow Shop

P. Fattahi, S.M.H. Hosseini & F. Jolai*

Parviz Fattahi, Associate professor of Industrial Eng., Bu-Ali Sina University
Seyed Mohammad Hasan Hosseini, PhD student of Industrial Eng, Payame Noor University
Fariborz Jolai, professor of Industrial Eng, University of Tehran

Keywords
simulated annealing, scheduling, flow shop, tardiness and earliness

ABSTRACT

A two-machine permutation flow shop scheduling with n independent jobs and different due dates is considered in this paper. Since this problem is shown to be NP-Hard, we use the simulated annealing to solve this problem. The objective is minimizing the weighted earliness and tardiness that cover JIT concept. We construct our algorithm in four scenarios with considering two Markov chains and two temperature reduction rates. The best scenario is proposed based on the results of computational experiments. A mathematical programming formulation is proposed for the problem, and the solution obtained by proposed SA algorithms are compared with the optimal ones obtained by mathematical model using LINGO software for small size instances. Also the performance of the best scenario is compared by the standard model of genetic algorithm for different sizes problems and its advantages are shown.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 3, All Rights Reserved

*Corresponding author. Fariborz Jolai
Email: fjolai@ut.ac.ir
بکارگیری الگوریتم انجماد تدریجی برای زمانبندی کارها در کارگاه

نوریز فتحی، سید محرم حسن حسینی و فریبرز جوادی*

چکیده:
در این تحقیق مساله زمانبندی m کار مستقل با زمان سررسید مشابه بر روی 2 ماشین در محیط NP-hard کارگاه جریانی ترتیبی مورد بررسی قرار می‌گیرد. به منظور بررسی این الگوریتم از تدریجی برای حل این مسئله استفاده شده است. به منظور به‌ترین جواب‌هایی از میان موارد مختلف جواب‌های بهینه و به‌یندیک نشان می‌دهند. در این مقاله از الگوریتم ابتدایی تدریجی برای ساختن مساله بهره‌مندی شده‌است. این الگوریتم بر پایه این‌طوری می‌باشد که فراتر از کمترین مقدار تاخیر موارد تأخیر که به‌یندیک نشان می‌دهد. این الگوریتم بر پایه این‌طوری می‌باشد که فراتر از کمترین مقدار تاخیر موارد تأخیر که به‌یندیک نشان می‌دهد. این الگوریتم بر پایه این‌طوری می‌باشد که فراتر از کمترین مقدار تاخیر موارد تأخیر که به‌یندیک نشان می‌دهد.

کلمات کلیدی:
انجماد تدریجی، زمانبندی، کارگاه جریانی، دیرکرد و زودکرد

1. مقدمه
بطور کلی برنامه‌ریزی تولید یکی از فعالیت‌های مهم در شرکت‌های تولیدی و خدماتی است. این فعالیت به‌یندیک نشان می‌دهد که شرکت‌ها به‌یندیک

در کارگاه جریانی ترتیبی، به‌یندیک نشان می‌دهد که شرکت‌ها به‌یندیک

در کارگاه جریانی ترتیبی، به منظور بررسی الگوریتم ابتدایی تدریجی برای حل این مسئله استفاده شده است. این الگوریتم بر پایه این‌طوری می‌باشد که فراتر از کمترین مقدار تاخیر موارد تأخیر که به‌یندیک نشان می‌دهد. این الگوریتم بر پایه این‌طوری می‌باشد که فراتر از کمترین مقدار تاخیر موارد تأخیر که به‌یندیک

مراجع:

* همچنین مالکان این مقاله جانشینی درباره مساله تولیدی کارگاه

تاریخ نوشته: 89/8/8
تاریخ تصویب: 93/3/2
دکتر نوریز فتحی، دانشیار، گروه مهندسی صنایع، دانشگاه پیام نور
futtahi@basu.ac.ir
همانند
سید محمد حسن حسینی، دانشجوی دکتری مهندسی صنایع، دانشگاه پیام
h.hosseini@phd.pnu.ac.ir
نیک نورز،
fjolai@ut.ac.ir
برای نشر در دانشگاه‌های در دانشگاه بلوط،

Downloaded from ijiepm.iust.ac.ir at 4:25 IRDT on Sunday May 26th 2019
1. تعیین مدل‌های تعیین حداکثری در زمان‌بندی کارهای دو‌فصلی
2. بهینه‌سازی کارهای دو‌فصلی
3. کاهش زمان‌بندی میان‌ر PRIMARY Tasks
4. بهینه‌سازی میان‌ر PRIMARY Tasks
5. بهینه‌سازی کاهش زمان‌بندی
6. بهینه‌سازی کاهش زمان‌بندی
7. بهینه‌سازی کاهش زمان‌بندی
8. بهینه‌سازی کاهش زمان‌بندی
9. بهینه‌سازی کاهش زمان‌بندی
10. بهینه‌سازی کاهش زمان‌بندی
11. بهینه‌سازی کاهش زمان‌بندی
12. بهینه‌سازی کاهش زمان‌بندی
13. بهینه‌سازی کاهش زمان‌بندی
14. بهینه‌سازی کاهش زمان‌بندی
15. بهینه‌سازی کاهش زمان‌بندی
16. بهینه‌سازی کاهش زمان‌بندی
17. بهینه‌سازی کاهش زمان‌بندی
18. بهینه‌سازی کاهش زمان‌بندی
19. بهینه‌سازی کاهش زمان‌بندی
20. بهینه‌سازی کاهش زمان‌بندی
21. بهینه‌سازی کاهش زمان‌بندی
22. بهینه‌سازی کاهش زمان‌بندی
23. بهینه‌سازی کاهش زمان‌بندی
24. بهینه‌سازی کاهش زمان‌بندی
25. بهینه‌سازی کاهش زمان‌بندی
26. بهینه‌سازی کاهش زمان‌بندی
27. بهینه‌سازی کاهش زمان‌بندی
28. بهینه‌سازی کاهش زمان‌بندی
29. بهینه‌سازی کاهش زمان‌بندی
30. بهینه‌سازی کاهش زمان‌بندی
31. بهینه‌سازی کاهش زمان‌بندی
32. بهینه‌سازی کاهش زمان‌بندی
33. بهینه‌سازی کاهش زمان‌بندی
34. بهینه‌سازی کاهش زمان‌بندی
35. بهینه‌سازی کاهش زمان‌بندی
36. بهینه‌سازی کاهش زمان‌بندی
37. بهینه‌سازی کاهش زمان‌بندی
38. بهینه‌سازی کاهش زمان‌بندی
39. بهینه‌سازی کاهش زمان‌بندی
40. بهینه‌سازی کاهش زمان‌بندی
41. بهینه‌سازی کاهش زمان‌بندی
42. بهینه‌سازی کاهش زمان‌بندی
43. بهینه‌سازی کاهش زمان‌بندی
44. بهینه‌سازی کاهش زمان‌بندی
45. بهینه‌سازی کاهش زمان‌بندی
46. بهینه‌سازی کاهش زمان‌بندی
47. بهینه‌سازی کاهش زمان‌بندی
48. بهینه‌سازی کاهش زمان‌بندی
49. بهینه‌سازی کاهش زمان‌بندی
50. بهینه‌سازی کاهش زمان‌بندی

3. minimizing the makespan
4. minimizing total flowtime of jobs

1. Demode
2. two-stage Flow Shop
۳ تشريح مساله و مدل‌سازی آن

۳.۱ کلیات مساله

مساله مورد بررسی در این تحقیق شامل زمین‌نیز کار در گزارش کننده مبتنی بر فهم جغرافیایی کارهای بر روی ۲ مساله در محیط کارگاه جریانی و در حال حاضر نیز کارهایهای بر روی ۴ مساله بررسی شده است. این مساله به صورت یک مسئله برنامه‌ریزی و به شکل جامعیتی به کار گرفته شده است.

در نظر گرفته شده، کمیته کرد مجموعه زمین‌نیز و درکرده برای هر کارهای جریانی طبقه بالا و این روش به صورت تکمیلی از شکل جامعیتی به کار گرفته شده است.

در نظر گرفته شده، کمیته کرد مجموعه زمین‌نیز و درکرده برای هر کارهای جریانی طبقه بالا و این روش به صورت تکمیلی از شکل جامعیتی به کار گرفته شده است.

در نظر گرفته شده، کمیته کرد مجموعه زمین‌نیز و درکرده برای هر کارهای جریانی طبقه بالا و این روش به صورت تکمیلی از شکل جامعیتی به کار گرفته شده است.

در نظر گرفته شده، کمیته کرد مجموعه زمین‌نیز و درکرده برای هر کارهای جریانی طبقه بالا و این روش به صورت تکمیلی از شکل جامعیتی به کار گرفته شده است.

از جمله توابع هدف ترکیبی برای میانه به تحقیق بر پژوهش و همکاران [۱۱] اشاره کرد که مساله زمین‌نیز در محیط کارگاه جریانی می‌باشد.

*1 یعنی متغیر حرارتی در مساله مورد بررسی. در این تحقیق گزارش کرده که مساله در محیط کارگاه جریانی می‌باشد.

*2 در این تحقیق، طبقه بالا و این روش به صورت تکمیلی از شکل جامعیتی به کار گرفته شده است. این مساله به صورت یک مسئله برنامه‌ریزی و به شکل جامعیتی به کار گرفته شده است. در نظر گرفته شده، کمیته کرد مجموعه زمین‌نیز و درکرده برای هر کارهای جریانی طبقه بالا و این روش به صورت تکمیلی از شکل جامعیتی به کار گرفته شده است.
نوع این استوده و بجز محدودیت مختصات (بعنوان محدود) و

محدودیت بیشتری محدودیت دیری می‌دارد همچنین مساله

مورد نظر از چنین کنترل مسئله در دسترس، معین بوده و زمان

بردارش کارا توسط دو مسئله و همچنین مسئله مورد توجه آنها از

ابدا مشخص است این مسئله شامل یک مجموعه n که بصورت

کار باشد,

\[N = \{ J_1, J_2, \ldots, J_p \} \]

در دسترس یست گردیده با روي یک مجموعه شامل دو مسئله به

\(M = [M_1, M_2] \)

در یک توالی بردارش شوند. فرض

می‌شود مسئله از نوع ترتیبی است اینکه کارها به همین ترتیب که

روی مسئله اول بردارش می‌شوند با همان ترتیب هم بر روی

ماشین دوم بردارش خواهند شد.

فرض آخر این است که مقدار زودکرد و دیرکرد تابع مطلوب می‌باشد.

\[
E_i = \max\{0, (d_i - D_i)\} \quad i = 1, 2, 3, \ldots, n
\]

\[
T_i = \max\{0, (D_i - d_i)\} \quad i = 1, 2, 3, \ldots, n
\]

یافته مسئله روابط (1) و (2) مشخص می‌شوند:

\[
E_i \geq d_i - D_i \quad i = 1, 2, 3, \ldots, n
\]

\[
T_i \geq D_i - d_i \quad i = 1, 2, 3, \ldots, n
\]

\[
A_k = \sum_{i=1}^{n} z_{ik} \quad k = 1, 2, 3, \ldots, n
\]

\[
B_k = \sum_{k=1}^{n} z_{ik} \quad k = 1, 2, 3, \ldots, n
\]

\[
C_{1k} = A_k \quad C_{1k} = C_{1(k-1)} + A_k \quad k = 2, 3, \ldots, n
\]

\[
C_{2k} = C_{2k-1} + B_k \quad k = 2, 3, \ldots, n
\]

\[
S_k = 0 \quad S_k = C_{1(k-1)} \quad k = 2, 3, \ldots, n
\]

\[
D_1 = \sum_{k=1}^{n} z_{1k}
\]

\[
W^E = \sum_{k=1}^{n} W^E_k W^T = \sum_{k=1}^{n} W^T_k
\]

\[
C_{1k} = \text{ جمع‌بندی} + A_k
\]

\[
C_{2k} = \text{ جمع‌بندی} + B_k
\]

\[
S_k = \text{ جمع‌بندی} + A_{k-1}
\]

\[
D_1 = \text{ جمع‌بندی}
\]

\[
W^E = \text{ جمع‌بندی}
\]

\[
S_k = \text{ جمع‌بندی}
\]

\[
D_1 = \text{ جمع‌بندی}
\]

\[
W^T = \text{ جمع‌بندی}
\]

شماره 3-2 مدل‌سازی مسئله

در دیل یک مدل ریاضی برای مسئله مورد بررسی ارائه می‌گردد.

برای این کار، نقش مدل‌سازی آرایه شده نیز که و چی [113] استفاده و مدل ریاضی نیز تعریف نویس داده شده است.

پایان‌نویس‌های مسئله

زمان بردارش کار از مسئله اول

زمان بردارش کار از مسئله دوم

زمان جریز به شکل یک واحد زمانی زودکرد در تکمیل کار

زمان جریز به شکل یک واحد زمانی دیرکرد در تکمیل کار

منشأ مسئله

فیزیک‌یابی (گرای کم در موفقیت k) قرار گرفته باشد

برای 1 در غیر اینصورت صفر است

زمان بردارش کار از مسئله اول

کاربردن در مدل‌سازی مسئله
1- انگرام‌تدریجی

الگوریتم انگرام تدریجی از دیدگاه ترتیب و انگرام تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

2- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

3- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

4- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

5- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

6- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

7- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

8- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

9- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

10- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

11- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

12- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

13- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

14- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

15- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

16- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

17- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

18- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

19- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

20- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

21- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

22- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

23- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

24- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

25- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

26- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

27- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

28- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

29- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.

30- انگرام‌تدریجی

در این الگوریتم، هر کدام از اعداد در راه رفتن به سمت جلو، به صورت ترتیبی ذخیره می‌شوند.
این موضوع طبق رابطه (17) کنترل می‌شود به‌طوری‌که اگر در الگوریتم پیشرو برای کار مجازات 1 + 1 برقرار باشد حالتی نشان می‌دهد که جابجایی این دو کار مجازات نمی‌تواند به‌طور درجه‌های مختلف و رتبه‌هایی تغییر داشته باشد. اگر به منظور بهبود کارایی مدل و افزایش سرعت آن، از بررسی نتایج جابجایی این دو کار کنترل شده و به مقدار مجازات کار مجازات بعید می‌شود.

\[T_i \times E_{i+1} > 0 \]

(17)

پارامتر به توضیحات فوق، الگوریتم پیشرو مطابق مرحله زیر ارائه می‌شود:

الگوریتم پیشرو:

قدم 1: مقادیر اولیه را اردام نماید.

قدم 1: جواب‌های لوله را ترتیب صعودی مقدار تحول کارها نهایی کنید. مقدار نگهداری هر محسوبات و در Zهای مورد نظر دهید.

قدم 2: قرار دهید: if = 0 و سپس مرحله زیر را برای i = 0 تا i = n می‌پذیرد.

الویه محسوبات شرط انجام می‌دهد. زیرا:

قدم 3: اگر i = n بوده و در غیرین صورت:

\[T_i \times E_{i+1} \geq 0 \]

晶 4: اگر حاصل دو زیرتر از صفر باشد به قدم 5 پرداخته و در غیرین صورت:

قدم 5: اگر i = 0 و i = +1 + 1 و جایگاه i مقدار محسوبات زمان تکمیل و ... بروز رسانی شود.

\[Z = \sum_{i=1}^{n} (W_i T_i + W_i E_{i+1} T_i) \]

قدم 6: مقدار Z را محسوبات نماید.

\[Z^* = Z_{\text{آنتا}} \]

(18)

براساس روشهای ذکر شده، یکی از جواب‌های اولیه می‌تواند جواب (EDD) باشد.

امکان آنان برای ترتیب صعودی بهتر در نظر گرفته شود. در غیرین صورت:

\[Z^* = Z_{\text{آنتا}} \]

(19)

براساس این دستور هر محاسبه جواب اولیه داده می‌شود. به کار رفته در این الگوریتم، هر آنتاک اگر i = 0 و i = +1 + 1 و در غیرین صورت:

\[Z = \sum_{i=1}^{n} (W_i T_i + W_i E_{i+1} T_i) \]

(20) بایان الگوریتم و آنتاک زمان‌سنجی و نتایج محاسبات.

(21)

\[(R_i + i) \]

در الگوریتم انجام تمرکز دایاموله و نرخ کاهش دما ناتیر زایمت بر کاری الگوریتم و کیفیت جواب دارد. دمای اولیه خیلی بالا باعث نهایت بهترین برجسته نیست و خواهد شد.

امکان‌زدن بقیه می‌شود به باتلاق مالیاتی شدن زمان حیات نمایند می‌شود و
جدول ۲: نتایج آزمون اول

<table>
<thead>
<tr>
<th>شرایط تعیین</th>
<th>سطح بررسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>انجام تکرار</td>
<td>مقدار ۰.۱</td>
</tr>
<tr>
<td>۰.۰۵</td>
<td>۰.۱</td>
</tr>
<tr>
<td>۰.۰۱</td>
<td>۰.۰۵</td>
</tr>
<tr>
<td>۰.۰۰۵</td>
<td>۰.۰۱</td>
</tr>
</tbody>
</table>

جدول ۱: نتایج آزمون تعیین دمای اولیه و نرخ کاهش

<table>
<thead>
<tr>
<th>شرایط تعیین</th>
<th>سطح بررسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>انجام تکرار</td>
<td>مقدار ۰.۱</td>
</tr>
<tr>
<td>۰.۰۵</td>
<td>۰.۱</td>
</tr>
<tr>
<td>۰.۰۱</td>
<td>۰.۰۵</td>
</tr>
<tr>
<td>۰.۰۰۵</td>
<td>۰.۰۱</td>
</tr>
</tbody>
</table>

برای تدوین پایان‌نامه با نتایج آزمون، دمای اولیه و دما خانمه مدل به ترتیب ۷۰۰ و ۱۴۰ نوشتاری گرفته شد. اما در خصوص نرخ کاهش دما در روش بزرگ مورد استفاده قرار گرفت. روش اول کاهش دما به صورت به‌طور معمول مربوط به مقدار اولیه دما و درجه حرارت نیست که نتایج دنیش آستنک تکرارهای دمای اولیه و نرخ کاهش دما به ترتیب ۷۰۰ و ۹۵۰ می‌باشد.
با توجه به توضیحات فوق، در مدل توسه داده‌های دیده از هر دو ساختار پیش‌بینی همسایگی استفاده شده است. این قم (شروع):

\[T_f \]

\[T_{i+1} = 0.95 \times T_i \]

\[C1 \]

\[T_{i+1} = 0.95 \times T_i \]

\[C2 \]

\[T_{i+1} = 0.95 \times T_i \]

\[C3 \]

\[T_{i+1} = 0.95 \times T_i \]

\[C4 \]

با توجه به توضیحات فوق، در مدل توسه داده‌های دیده از هر دو ساختار پیش‌بینی همسایگی استفاده شده است. این قم (شروع):

\[T_f \]

\[T_{i+1} = 0.95 \times T_i \]

\[C1 \]

\[T_{i+1} = 0.95 \times T_i \]

\[C2 \]

\[T_{i+1} = 0.95 \times T_i \]

\[C3 \]

\[T_{i+1} = 0.95 \times T_i \]

\[C4 \]
اختلاف مقدار بهینه سراسری ناب‌هدف (S0) با مقدار بهینه در دما T را در هر دو ساختار همسایگی محاسبه نمایند.

\[\Delta = f(S_T^+) - f(S_T^-) \]

اگر 0 ≤ Δ ≤ S0 مقدار بهینه جاری انتخاب می‌شود.

اگر 0 > Δ انتخاب S0 می‌شود.

۳ قدم (ارائه نتایج):

براساس S0 بهترین جواب را ارائه نماید.

نتایج‌های اولیه الگوریتم (پیشنهادی) را برای محاسبه انتخاب بهترین جواب S0 و S1 استفاده کنید.

(EQ) تعریف زمان‌برداری طبق معیار زودترین مورد تحویل کارها (ارزان‌ترین)

به‌هرحیم‌زمان‌برداریولیه الگوریتم پیشنهادی بهترین جواب شروع

جستجو و تعیین بهترین چهار جواب (روش N2)

ازدیابی و انتخاب

بهترین جواب جواب N2 جواب جواب N1 جواب جواب جواب N2

ایا تکرارهای دما نیست؟

فلتر شدن‌گر در دما جاری

ایا الگوریتم به دماهای انتهاه رسیده؟

پایان الگوریتم و ارائه نتایج

شکل ۳: مدل پیشنهادی برای حل مسئله
5 آزمایشات عدیدی و تجزیه و تحلیل

5.1 طراحی مسایل معلوم

به منظور ارزیابی کارایی الگوریتم پیشنهادی، مطابق جدول 6، چهار مساله معلوم در ابعاد مختلف تولید و به کار گرفته شد. این اعداد برای تولید مسایل تصادفی استفاده می‌شوند.

<table>
<thead>
<tr>
<th>دسته</th>
<th>مقدار 1</th>
<th>مقدار 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

در بالا، d = (1 − \(\tau \)) می‌باشد و الگوریتم سایپس مورد رصد قرار گرفته می‌شود.

\[
d = \left(1 - \frac{3}{2} \right) M, \quad d = \frac{R}{2} + \frac{R}{2} + M
\]

5.2 حل مسایل و تحلیل نتایج

5.2.1 بررسی کارایی جواب‌ها

اولین برسی در مصوب کارایی مدل به چنین یکی از جواب‌ها مربوط می‌شود. برای این منظور، تعداد 90 مساله در ابعاد هشت‌برهنه، آزمایش گردید. این مساله براساس مدل ریاضی تهیه شده با کمک نرم‌افزار لینوکس نیز حالت تا چنان‌که به‌منظور شرایط جواب‌های حاصل از مدل پیشنهادی از نظر شرایط جواب‌ها درصد جواب بهینه در سناریوهای ارائه شده می‌پیشاند.

از آنجایی که در برنامه لینوکس دسته‌بندی یکسانی به چنین مساله با تعداد کار زیاد بسیار زمان‌مند می‌باشد، لذا به‌منظور جواب‌های مفید برای مساله گزینه کار کمتر از 0.6 ارزیابی شده است.

5.3 جدول 4 دسته‌بندی مسایل

<table>
<thead>
<tr>
<th>دسته</th>
<th>مقدار 1</th>
<th>مقدار 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
d = (1 - \tau) \times M
\]

\[
d = \left(\frac{3}{2} \right) M, \quad d = \frac{R}{2} + \frac{R}{2} + M
\]

در عمل، رابطه (21) برای مسایل کارگاه جریانی مناسب نیست. چرا که مجموع میزان‌های بارداری (\(\sum_{i=1}^{n} R_i \)) تعداد کارها روی تمام ماسکین‌ها عده بزرگی است و معمولاً اکثر کارها دراز زودتر می‌باشند. برای این رفع این مشکل می‌توان رابطه (21) را به صورت رابطه (22) نوشت:

\[
\tilde{d} = \left(1 - \tau \right) \tilde{M}
\]

\[
\tilde{d} = \left(\frac{3}{2} \right) \tilde{M}, \quad \tilde{d} = \frac{R}{2} + \frac{R}{2} + \tilde{M}
\]

که در آن \(\tilde{M} \) زمان خطی کرده‌کاره در حالی که کارگاه \(M \) جریانی معمولاً مقدار را از یک تا مقدار مساله بیشتر \(M \) وارد می‌کند. در مساله دو سطح‌های مقدار بهینه

\[
\tilde{d} = \left(1 - \tau - \frac{R}{2} \right) \times \tilde{M}, \quad \tilde{d} = \left(1 - \tau - \frac{R}{2} \right) \times \tilde{M}
\]

به‌طوری که

\[
\tilde{d} = \left(\frac{3}{2} \right) \tilde{M}, \quad \tilde{d} = \frac{R}{2} + \frac{R}{2} + \tilde{M}
\]

زمان دست، مقدار باین‌باین‌دستگی به لیست را به‌طوری، که

\[
\tilde{d} = \left(1 - \tau - \frac{R}{2} \right) \times \tilde{M}, \quad \tilde{d} = \left(1 - \tau - \frac{R}{2} \right) \times \tilde{M}
\]

به‌طوری که

\[
\tilde{d} = \left(\frac{3}{2} \right) \tilde{M}, \quad \tilde{d} = \frac{R}{2} + \frac{R}{2} + \tilde{M}
\]
جدول ۵- بررسی پیشینگی نتایج

<table>
<thead>
<tr>
<th>گروه تعداد کار یک‌پرسی شده</th>
<th>تعداد مصالح درصد جواب بی‌نهی در ۴ حالت</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>۴۰</td>
</tr>
<tr>
<td>C2</td>
<td>۳۰</td>
</tr>
<tr>
<td>C3</td>
<td>۲۰</td>
</tr>
<tr>
<td>C۴</td>
<td>۱۰</td>
</tr>
</tbody>
</table>

فلز (۵) بایان برتری مدل در جاله‌های C۴ و C۳ است که براساس آن نحوه کاهش دما و اینتی‌سیتی به دست آمده و میزان بهبود تابع هدف در آن دمای بالاتر (جدول ۳)، اگر نشان دهنده عملکرد مدل پیشنهادی در حل مسائل با ابعاد مختلف و در ۴ دسته مشخص شده می‌باشد. در این شکل، خط شکست سری‌زیگر مقدار شده‌های حاصل از زمان‌یندی را نشان می‌دهد. خط شکست شیب نگه داشته مقدار تابع هدف حاصل از زمان‌یندی از اجرای الگوریتم بهتر را نشان می‌دهد و سایر حالت‌های مدل پیشنهادی در ۴ سال‌های را ارائه می‌نماید. هم‌اکنون که مشاهده می‌شود بیان مدل این الگوریتم شده در مدل اول در ۴ مدل اول اغلب مسائل به جواب بهینه رسیده‌اند لذا خطوط مربوط به نیز تغییری منطبق برهم می‌یابند. اما از تفاوت تعداد کارها بی‌کاری در پنل‌هایی از C۴ و C۳ عملکرد بهتری داشته است. البته بیان می‌شود مدل پیشنهادی در پنل اول شاید تحقیق‌های این موضوع از روی موردام واقع باشند اما نتایج دقت‌ر و برتری این حالت در یکد (۳) و ۷ (۸) مشخص است.

شکل ۴- نتایج حالت ۴ دسته مسائل در ابعاد کوچک، متوسط، بلند و خیلی بلند مدل پیشنهادی در ۴ حالت

جدول ۶- پوشیت‌های نویس مقاله و دامنه نویس مود تحقیق کارها نشان می‌دهد. این تحقیق که بیان پذیرش به جدول (۳) و مقدار مشخص شده به دو عامل اول هر کد (۳) و دامنه موسوم B تحول کارها یا (۸) نشان می‌دهد که در مسائل نویس A و C اغلب کارها به موفقیت نبوده و توام با دیکردگ و یا Zودکرد هستند. جواب‌های حاصل از اجرای الگوریتم نشان از برتری مدل در جاله‌های C۴ و C۳ و با حفظ شکست C۴ در حالی که مدل اول دارد و البته این برتری بر اساس A و D مشخص است.

پنل اول در ۴ حالت اغلب مدل اول اغلب مسائل به جواب بهینه رسیده‌اند لذا خطوط مربوط به نیز تغییری منطبق برهم می‌یابند. اما از تفاوت تعداد کارها بی‌کاری در پنل‌هایی از C۴ و C۳ عملکرد بهتری داشته است. البته بیان می‌شود مدل پیشنهادی در پنل اول شاید تحقیق‌های این موضوع از روی موردام واقع باشند اما نتایج دقت‌ر و برتری این حالت در یکد (۳) و ۷ (۸) مشخص است.

شکل ۴- نتایج حالت ۴ دسته مسائل در ابعاد کوچک، متوسط، بلند و خیلی بلند مدل پیشنهادی در ۴ حالت

جدول ۶- پوشیت‌های نویس مقاله و دامنه نویس مود تحقیق کارها نشان می‌دهد. این تحقیق که بیان پذیرش به جدول (۳) و مقدار مشخص شده به دو عامل اول هر کد (۳) و دامنه موسوم B تحول کارها یا (۸) نشان می‌دهد که در مسائل نویس A و C اغلب کارها به موفقیت نبوده و توام با دیکردگ و یا Zودکرد هستند. جواب‌های حاصل از اجرای الگوریتم نشان از برتری مدل در جاله‌های C۴ و C۳ و با حفظ شکست C۴ در حالی که مدل اول دارد و البته این برتری بر اساس A و D مشخص است.

پنل اول در ۴ حالت اغلب مدل اول اغلب مسائل به جواب بهینه رسیده‌اند لذا خطوط مربوط به نیز تغییری منطبق برهم می‌یابند. اما از تفاوت تعداد کارها بی‌کاری در پنل‌هایی از C۴ و C۳ عملکرد بهتری داشته است. البته بیان می‌شود مدل پیشنهادی در پنل اول شاید تحقیق‌های این موضوع از روی موردام واقع باشند اما نتایج دقت‌ر و برتری این حالت در یکد (۳) و ۷ (۸) مشخص است.

شکل ۴- نتایج حالت ۴ دسته مسائل در ابعاد کوچک، متوسط، بلند و خیلی بلند مدل پیشنهادی در ۴ حالت

جدول ۶- پوشیت‌های نویس مقاله و دامنه نویس مود تحقیق کارها نشان می‌دهد. این تحقیق که بیان پذیرش به جدول (۳) و مقدار مشخص شده به دو عامل اول هر کد (۳) و دامنه موسوم B تحول کارها یا (۸) نشان Mی‌دهد که در مسائل نویس A و C اغلب کارها به موفقیت نبوده و توام با Dیکردگ و یا Zودکرد هستند. جواب‌های حاصل از اجرای الگوریتم نشان از برتری Mدل در جاله‌های C۴ و C۳ و با حفظ شکست C۴ در حالی که مدل اول Dارد و البته این برتری بر اساس A و D مشخص است.
جدول 7 مقایسه کیفیت کاراپی جواب مدل در 4 حالت برای انتخاب مسائل با اندازه های مختلف (زمان‌ها بر حسب ثانیه می‌باشد)

<table>
<thead>
<tr>
<th>شیوع</th>
<th>نوع</th>
<th>طیف</th>
<th>تعداد</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C1-زمان</th>
<th>C2-زمان</th>
<th>C3-زمان</th>
<th>C4-زمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>small</td>
<td>A</td>
<td>5875</td>
<td>5167</td>
<td>3626</td>
<td>3503</td>
<td>3566</td>
<td>3522</td>
<td>0.21</td>
<td>0.19</td>
<td>0.48</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>6459</td>
<td>5809</td>
<td>4626</td>
<td>4704</td>
<td>4578</td>
<td>4560</td>
<td>0.22</td>
<td>0.20</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3633</td>
<td>2982</td>
<td>2023</td>
<td>1941</td>
<td>1920</td>
<td>1905</td>
<td>0.23</td>
<td>0.20</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>3833</td>
<td>3233</td>
<td>2044</td>
<td>2041</td>
<td>2033</td>
<td>1966</td>
<td>0.22</td>
<td>0.20</td>
<td>0.50</td>
<td>0.53</td>
</tr>
<tr>
<td>medium</td>
<td>A</td>
<td>57926</td>
<td>54589</td>
<td>41632</td>
<td>41574</td>
<td>37618</td>
<td>37445</td>
<td>0.45</td>
<td>0.42</td>
<td>1.74</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>64229</td>
<td>51152</td>
<td>42745</td>
<td>42672</td>
<td>39784</td>
<td>39619</td>
<td>0.47</td>
<td>0.42</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>33448</td>
<td>30583</td>
<td>22123</td>
<td>21902</td>
<td>19998</td>
<td>19799</td>
<td>0.47</td>
<td>0.44</td>
<td>1.90</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>33658</td>
<td>30779</td>
<td>19785</td>
<td>19841</td>
<td>16478</td>
<td>16478</td>
<td>0.48</td>
<td>0.43</td>
<td>2.58</td>
<td>2.69</td>
</tr>
<tr>
<td>large</td>
<td>A</td>
<td>261752</td>
<td>253460</td>
<td>225732</td>
<td>225417</td>
<td>178981</td>
<td>181669</td>
<td>0.86</td>
<td>0.83</td>
<td>3.72</td>
<td>3.63</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>207182</td>
<td>200337</td>
<td>172475</td>
<td>172177</td>
<td>141618</td>
<td>142242</td>
<td>0.89</td>
<td>0.85</td>
<td>2.56</td>
<td>2.54</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>153938</td>
<td>146223</td>
<td>124756</td>
<td>124158</td>
<td>99466</td>
<td>99806</td>
<td>0.92</td>
<td>0.87</td>
<td>4.23</td>
<td>4.19</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>150615</td>
<td>143592</td>
<td>116035</td>
<td>116031</td>
<td>80127</td>
<td>81027</td>
<td>0.89</td>
<td>0.95</td>
<td>6.09</td>
<td>6.19</td>
</tr>
<tr>
<td>Very large</td>
<td>A</td>
<td>2441509</td>
<td>2323409</td>
<td>207391</td>
<td>207436</td>
<td>1734334</td>
<td>1734334</td>
<td>2.56</td>
<td>2.52</td>
<td>2.50</td>
<td>2.47</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2676940</td>
<td>2600099</td>
<td>237457</td>
<td>237457</td>
<td>196854</td>
<td>197094</td>
<td>2.56</td>
<td>2.52</td>
<td>2.36</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1278186</td>
<td>1254043</td>
<td>965800</td>
<td>961841</td>
<td>1153526</td>
<td>1154937</td>
<td>2.61</td>
<td>2.57</td>
<td>4.50</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1316011</td>
<td>1293769</td>
<td>1249734</td>
<td>1249046</td>
<td>1145426</td>
<td>1144057</td>
<td>2.59</td>
<td>2.53</td>
<td>6.54</td>
<td>6.54</td>
</tr>
</tbody>
</table>

جدول 8 وضعیت انتخاب مسائل در چهار دسته و عملکرد مدل در 4 حالت

<table>
<thead>
<tr>
<th>نوع مسئله</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.0 , 1.2M]</td>
<td>[0.1 M , 0.7M]</td>
<td>[0.0 , 1.6M]</td>
<td>[0.5M , 1.1M]</td>
<td></td>
</tr>
<tr>
<td>شیوع 1 پیشنهادی با 4 سناریو می‌باشد.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شیوع 2 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شیوع 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شیوع 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل (5) نشان دهنده درصد بهره‌برداری توسعه الگوریتم

شکل 5 کاراپی الگوریتم با 4 سناریو در بهره‌برداری الگوریتم
معیار بر تعداد کار محسوبه و نتایج نشان می‌دهد که کارایی الگوریتم با افزایش تعداد کارها به‌طور همخوانی طبیعی مشخص شده است.

این نتایج حاصل حک می‌سازد که ۲۰۰ کاربر بین (۰، ۲۵) در این کار برای سه مسأله مشخص شده در جدول (۴) انجام شده است. این نمودار نیز انحراف فاکتوری در پراکندگی جواب‌های حاصل نشان می‌دهد.

با این حال، مسئله اطمینان از حفظ کارایی الگوریتم با این سلیم در سایر مسائل مختلف، میزان پراکندگی جواب‌های حاصل از حل سایر الگوریتم‌ها در ترکیب‌های مختلف مورد بررسی قرار می‌گیرد. وضعیت پراکندگی جواب‌های حاصل از ترکیب حل شامل با ابعاد مختلف (۵۰۰-۲۵) در سایر الگوریتم‌ها از (۳) مسأله است. این سلیم از نوع C که قابلیت بهبود بیشتری دارد، انتخاب شده و هر ساله ۲۰۰ بار با الگوریتم حل شده است. در نهایت مقدار نسبت انحراف C۴ بر تعداد کار در ۲۰۰ تارکار حل سایر نوع C۴ بر تعداد کار در ۲۰۰ تارکار حل سایر نوع

شکل ۶ نسبت پراکندگی جواب‌های الگوریتم با سلیم C۴ بر تعداد کار در ۲۰۰ تارکار حل سایر نوع

*۱ - مقایسه با الگوریتم Zنتیک

شاخص تهیه تکنیک در تحقیقات محاسبات تکمیلی الگوریتم

Monoïque است. این الگوریتم یک مدل جستجو برای ساختن راه حل‌های تهیه کننده به بهینه برای مسأله بهینه سازی می‌باشد. الگوریتم Zنتیک با یک مجموعه الهی از جواب‌های تصادفی که آنها جمعیت اولیه نامیده شده است و هر جمعیت را یک کمونومزی نامیده که بین‌گانه یک جواب مناسب است. سپس

1. Genetic algorithm

نشریه بین المللی مهندسی صنایع و مدیریت توسعه، آذر ۱۳۹۱- جلد ۲۳- شماره ۳
1. Crossover
2. Mutation

• جمعیت‌های مختلفی از جمله‌کردن از اجزای مراحل
 طیل اضافه و اضافه، همراه کلیه‌های کاره در
• مقر در این‌جا بوده که با اثربخشی در اولویت
 عملکرد تربیتی، به عنوان احتمالی در کمیکرده.
 شده از جمعیت‌های وارد (الدین)، کوروموژه‌ها جدید
 (فرنزنده) تولید می‌شود.
• جمعیت‌های جهشی/عملکرد جهش احتمالی، کوروموژه‌ها
 جدید را جهش می‌دهد.
• پیشرفت کوروموژه‌ها جدید در جمعیت جدید قرار
 داده می‌شود.
• جایگزینی جمعیت جدید با جمعیت قبیل تربیتی و
 نتیجه بلندی را می‌دهد. این امر خصوصاً از لحاظ
 حذف و بعضی از فرندزهای جنینان آنها می‌شود و لذا
 جنبه تبلیغی با کمک جمعیت جدید و افزایش آنها نیز
 شرط و توابع؛ اگر شرط توافق بروآورد شده باشد، توافق
 نموه و مهربان را در جمعیت جدید ارائه می‌دهد.
• طبقه‌بندی در صورت عدم پذیرش شدن شرط توافق، به
 قدم دوم که پیشنهادی است بررسی گردد.

بعد از چند سال تاکید، الگوریتم به سمت پیشنهادات همگر می‌شود.

به منظور حل ویژه‌ای بیشتر از کفیت حساب الگوریتم
پیشنهادی، مسایل مختلفی در دسته‌برداری و با استفاده از
الگوریتم ژنتیک الگوریتم پیشنهادی در راه است. جدول ۱. بینانگ
پیشنهادی الگوریتم ژنتیکی به لحاظ کفیت حساب نهایی
بوده و جدول ۲ (۱) نشان می‌دهد که پیشنهادی در زمان
کمتری به جواب نهایی است که انتقادی به زمان خیلی بالا
الگوریتم ژنتیکی مصرف مسایل این سه کوروموژوهای: متضمن و برگ
مورد مفاهمه قرار گرفته است.
جدول 9. مقایسه جواب‌های دو مدل GA و C4

| میانگین جواب GA | میانگین جواب C4 | تعداد کار | تعداد مستله | رده
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C4</td>
<td>GA</td>
<td>C4</td>
<td>GA</td>
<td>C4</td>
</tr>
<tr>
<td>2988</td>
<td>2023</td>
<td>1945</td>
<td>1543</td>
<td>1908</td>
</tr>
<tr>
<td>3034</td>
<td>2369</td>
<td>1604</td>
<td>1812</td>
<td>2124</td>
</tr>
<tr>
<td>1558</td>
<td>1641</td>
<td>1781</td>
<td>1871</td>
<td>1910</td>
</tr>
<tr>
<td>میانگین کل</td>
<td>1519</td>
<td>1531</td>
<td>1439</td>
<td>1432</td>
</tr>
</tbody>
</table>

جدول 10. مقایسه زمان حل دو مدل GA و C4

| میانگین زمان حل GA | میانگین زمان حل C4 | تعداد کار | تعداد مستله | رده
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C4</td>
<td>GA</td>
<td>C4</td>
<td>GA</td>
<td>C4</td>
</tr>
<tr>
<td>5.47</td>
<td>4.23</td>
<td>4.95</td>
<td>3.79</td>
<td>3.9</td>
</tr>
<tr>
<td>1.92</td>
<td>1.86</td>
<td>2.42</td>
<td>1.93</td>
<td>1.33</td>
</tr>
<tr>
<td>1.82</td>
<td>1.71</td>
<td>1.92</td>
<td>1.93</td>
<td>1.92</td>
</tr>
<tr>
<td>میانگین کل</td>
<td>2.33</td>
<td>2.33</td>
<td>2.33</td>
<td>2.33</td>
</tr>
</tbody>
</table>

مراجع

