طراحی یک سیستم فازی بعنوان جایگزینی برای نمودار کنترل مشاهدات انفرادی

محمدمحسن فاضل زندی و یاسر صیمی

چکیده: نمودارهای کنترل شوهرات، از مهم‌ترین ابزار کنترل فراوانی‌آمیزی است که از طریق ترکیب مقادیر آماره نمونه‌ای مربوط به توزیع‌بندی‌های مورد نظر در طول زمان به‌منظور تخصیص احراز‌های با دلیل که کمیت فراوانی مورد نظر در داده‌های دیگر بکار گرفته می‌شود. نمودارهای X و MR از این ابزار نمونه‌ای که بسیاری از پیش‌بینی‌هایکه می‌تواند کمک خوبی در مقایسه از منطق‌هایی با پایین از استفاده به عقیده این مقاله بر پایه استفاده از منطق‌های غیرمحلول بیوهای روش، ساده، از ارزیابی وضعیت عادی مورد بررسی امری که ضمن مرتبه نمونه‌هایی فرمان‌دار دو نمونه‌های غیر عادی موجود در یک فراوانی را ببین تحقیق بدهد. روش و کنترل فراوانی بیش از یک سیستم هفته‌ای دهه. مقایسه با یکی از داده‌های حاصل از شیب‌های سازی مورد بررسی و مطالعه قرار گرفته و مزایا روش بهتری است. مقایسه از داده‌های حاصل از شیب‌های سازی مورد بررسی و مطالعه قرار گرفته و مزایا روش بهتری است.

واژه‌های کلیدی: کنترل فراوانی آماری، نمودارهای کنترل برای مشاهدات انفرادی، پایگاه قواعد فازی، روندهای

üzeyaleh Mehdizadeh

zarandi@aut.ac.ir

samimi@mail.iust.ac.ir

1. مقدمه

در میان افزایش هفت‌گانه کنترل فراوانی آماری، نمودار کنترل، ابزار قدرتمندی است که می‌تواند در ایجاد تاثیر در فراوانی و بهبود کارایی آن از طریق کاهش نیروهای مؤثر واقع گردید. این مقاله، مقایسه گرایی در فاصله ارزیابی و بازرسی کنترل، اکنون به‌روزرسانی، کلیه محصولات تولیدی که فراوانی را فراهم نموده، است. همین امر سبب توصیه بکارگیری نمودارهای کنترل مقادیر انفرادی جهت پایش
مطالب بدينی نحو است که در قسمت دوم، نقاط ضعف نمودارهای شوهران برای مقایسه انرژی برای خوانش کرده شد. در قسمت سوم، درباره نحوه شوک پایان قواعد فاری برای پایش و پژوهش آماری یک مشخصه کیفی به خواهند شد. قسمت چهارم به مقایسه عملکرد این روش جدید نمودارهای کنترل در محیط طبی اختراعات بینندا و نهایتاً در قسمت نهایی به نتیجه گیری و جمع‌بندی مطالب پرداخته شد.

2. نمودارهای کنترل برای مشاهده انفرادی

گاهی اوقات در منظور نمودار دوبله، اجازه نمودن برای یک در نظر گرفتن می‌شود و برای پایش بافتگی نمودارهای مشاهده انفرادی از نمودار X و MR

\[MR = \frac{1}{2} (x_i - x) \]

تعیین می‌شود. برای ترسیم نمودار دامنه مشاهده، روابط خط معادله و

\[UCL_M = D_2 \times MR \]

\[LCL_M = D_1 \times MR \]

با استفاده از معادله مشاهده انفرادی می‌باشد.

\[LCL_X = x + 3(\frac{MR}{d_3}) \]

\[UCL_X = x + 3(\frac{MR}{d_1}) \]

\[d_1 = 1.128 \]

$$d_{12}$$

برای انتخاب نمودار کنترل، در قسمت اول از پیاده‌سازی نمودارهای کنترل، با مقدار امره MR در داده‌های از دست داده‌های دامنه مشاهده انفرادی، تفسیر نمودار دامنه مشاهده نیاز به توجه خاصی درد صورت گرفت که ذیلی دامنه مشاهده همیشهی داردو و این همگامی به‌صورتی انجام داده به‌طور کلی دانش نداشته باشد. در روند نمودار MR

\[MR = \frac{1}{2} (x_i - x) \]

\[x \]

در مورد مخصوص حوزه‌های اولیه برای بافتگی فازی به

\[y \]

با ممکن خارج از کنترل مشاهده شود نمودار طول گالس نامیده می‌شود. صندوق چنین فیبر در حالاتی کنترل به میزان ارزیابی قرار

\[ARL \]

داشته باشد. برای انتخاب این مقدار ارزیابی ARL

\[ARL \]

توسط کاربر بررسی داده شده است [14].

\[X \]

\[X-MR \]

\[X \]

\[X-MR \]

شماره دوبله در این مقاله معرفی می‌شود [12]. این نمودار گزینه‌ای برای کنترل مشاهده‌های انفرادی و دامنه مشاهده ARL

\[ARL \]

\[ARL \]

\[ARL \]

توسط کاربر بررسی داده شده است [14].
1.1267 1.1886 4
70.053 81.2158 0.75
116.12
6.2567 6.3030 -2
1.9167 2.0000 -3
2.01 2.0000 3
1.1886 1.1267

جدول 1. مقادیر متوسط طول دنباله بر اساس مقدار شیفت

<table>
<thead>
<tr>
<th>شیفت در میانگین بر حسب انحراف معیار</th>
<th>نمودار کنترل X-MR</th>
<th>نمودار کنترل X-ARL</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>1.1886</td>
<td>1.2033</td>
</tr>
<tr>
<td>-3</td>
<td>2.0000</td>
<td>1.9167</td>
</tr>
<tr>
<td>-2</td>
<td>6.3030</td>
<td>6.2567</td>
</tr>
<tr>
<td>-1.5</td>
<td>14.9677</td>
<td>16.573</td>
</tr>
<tr>
<td>-1</td>
<td>43.8948</td>
<td>42.017</td>
</tr>
<tr>
<td>-0.75</td>
<td>81.2158</td>
<td>61.507</td>
</tr>
<tr>
<td>-0.5</td>
<td>155.2228</td>
<td>92.336</td>
</tr>
<tr>
<td>0.25</td>
<td>281.1433</td>
<td>107.12</td>
</tr>
<tr>
<td>0.25</td>
<td>370.3794</td>
<td>116.12</td>
</tr>
<tr>
<td>0.5</td>
<td>281.1433</td>
<td>101.86</td>
</tr>
<tr>
<td>0.75</td>
<td>81.2158</td>
<td>70.053</td>
</tr>
<tr>
<td>1</td>
<td>43.8948</td>
<td>43.907</td>
</tr>
<tr>
<td>1.5</td>
<td>14.9677</td>
<td>16.39</td>
</tr>
<tr>
<td>2</td>
<td>6.3030</td>
<td>6.2333</td>
</tr>
<tr>
<td>3</td>
<td>2.0000</td>
<td>2.01</td>
</tr>
<tr>
<td>4</td>
<td>1.1886</td>
<td>1.1267</td>
</tr>
</tbody>
</table>

مدقر متوسط طول دنباله برای نمودار کنترل ترکیبی با سپشته شبیه سازی بدن آماده است. به‌منظور کاهش فاصله در حالت کنترل، نمودار X-ARL برای نمودار کنترل ترکیبی سپشته ARL مشاهده می‌شود. نمودار مشاهده افرادی است که این موضوع با خطای نوع اول زیاد نمودار دانه سپشته حکایت می‌کند.

مدقر محاسبه یافته اول نمودار کنترل X برای X برابر با ۷۲۰۰۰ است. نمودار خطای اول نمودار کنترل X برای X با ARL در حالی که نمودار X برای ARL X-ARL برای X X-ARL برای X=۷۲۰۰۰ می‌باشد. نمودار مشاهده افرادی است که این موضوع با خطای نوع اول زیاد نمودار دانه سپشته حکایت می‌کند.

مدقر طول دنباله برای نمودار کنترل ترکیبی با سپشته شبیه سازی بدن آماده است. به‌منظور کاهش فاصله در حالت کنترل، نمودار X-ARL برای نمودار کنترل ترکیبی سپشته ARL مشاهده می‌شود. نمودار مشاهده افرادی است که این موضوع با خطای نوع اول زیاد نمودار دانه سپشته حکایت می‌کند.

مدقر محاسبه یافته اول نمودار کنترل X برای X برابر با ۷۲۰۰۰ است. نمودار خطای اول نمودار کنترل X برای X با ARL در حالی که نمودار X برای ARL X-ARL برای X=۷۲۰۰۰ می‌باشد. نمودار مشاهده افرادی است که این موضوع با خطای نوع اول زیاد نمودار دانه سپشته حکایت می‌کند.

نمودار محاسبه یافته اول نمودار کنترل X برای X برابر با ۷۲۰۰۰ است. نمودار خطای اول نمودار کنترل X برای X با ARL در حالی که نمودار X برای ARL X-ARL برای X=۷۲۰۰۰ می‌باشد. نمودار مشاهده افرادی است که این موضوع با خطای نوع اول زیاد نمودار دانه سپشته حکایت می‌کند.

نمودار محاسبه یافته اول نمودار کنترل X برای X برابر با ۷۲۰۰۰ است. نمودار خطای اول نمودار کنترل X برای X با ARL در حالی که نمودار X برای ARL X-ARL برای X=۷۲۰۰۰ می‌باشد. نمودار مشاهده افرادی است که این موضوع با خطای نوع اول زیاد نمودار دانه سپشته حکایت می‌کند.

نمودار محاسبه یافته اول نمودار کنترل X برای X برابر با ۷۲۰۰۰ است. نمودار خطای اول نمودار کنترل X برای X با ARL در حالی که نمودار X برای ARL X-ARL برای X=۷۲۰۰۰ می‌باشد. نمودار مشاهده افرادی است که این موضوع با خطای نوع اول زیاد NEMODA01-22.1267

نمودار محاسبه یافته اول NEMODA01-22.1267
عوامل در مجموعه فازی عدم همبستگی، یک پنجره از مشاهدات شامل 30 مشاهده از قرارداد تا زمان 2 در نظر گرفته می‌شود. مقادیر همبستگی آن پنجره قبلی در زمان 100 (به عنوان مقادیر همبستگی) با تأخیر یکم محاسبه می‌شود. مقادیر مطلق همبستگی بدست آمده پس از کسر از عدد یک، مقادیر درجه ضعف می‌شوند. در مجموعه فازی عدم همبستگی مشخص می‌کند. بی‌توجهی به دیگر انظار داریم در صورتی که در مقادیر درجه عضویت مربوط به مجموعه فازی عدم همبستگی مرزی و نزدیک به صفر داشته باشیم، منفی نوری و نزدیک به صفر قرار داشته باشد، منفی نوری و نزدیک به صفر قرار گیرند تحت بررسی بکار می‌رود. در واقع هدف تعریف یک مجموعه فازی است که مقادیر درجه عضویت آن برای مشاهداتی که مقادیر احراز معیار آنها از نظر ماموری با مقادیر اصلی قابل معادله یک باشد و نتایج مقادیر احراز معیار امتیاز دهش داشته باشد مقادیر درجه ضعف از عدد یک به سمت صفر و نزدیک یک باید یک باید از نظر ماموری که برای ارزیابی و نزدیک به نضعیفی مقادیر مربوط به مجموعه فازی عدم همبستگی مشخص می‌گردد. این مجموعه فازی را مجموعه مقادیر فازی در شکل ۳ می‌نماید. داده‌های داشته باشیم این مجموعه فازی که در شکل ۳ نشان داده شده است. در یک قرارداد با توزیع نرمال جانبه مقادیر از رابطه نوین‌های زیر به دست می‌آید.

در این رابطه فرض می‌شود متغیر تصادفی قطعی X در حالت تحت داده nodar که نوزادی در داده‌های nodar نمودار کنترل ...
حال فرض کنید که مقادیر واقعی انحراف معیار مشاهدات برای n باشد در اینصورت یکی از (ن-1)σ_1^2 توزیع معیار کای-دو درجه آزادی $n-1$ داشته و مقدار خطای نوع دوم از رابطه زیر بدست می‌آید:

$$P\left(\frac{\chi^2_{n-1,n-1} \cdot \sigma_1^2}{\sigma_1^2} \leq S^2 \right) = \frac{1}{2} I \left(\frac{\chi^2_{n-1,n-1} \cdot \sigma_1^2}{\sigma_1^2} \right)$$

$$P\left(\frac{\chi^2_{n-1,n-1} \cdot \sigma_1^2}{\sigma_1^2} \leq \frac{\Sigma_{i=1}^{n-1} (x_i - \mu)^2}{\sigma_1^2} \leq \frac{\chi^2_{n-1,n-1} \cdot \sigma_1^2}{\sigma_1^2} \right) = \frac{1}{2} I \left(\frac{\chi^2_{n-1,n-1} \cdot \sigma_1^2}{\sigma_1^2} \right)$$

$$\lambda = \frac{\sigma_1^2}{\sigma_0^2} P\left(\frac{\chi^2_{n-1,n-1} \cdot \sigma_0^2}{\sigma_0^2} \leq \frac{\Sigma_{i=1}^{n-1} (x_i - \mu)^2}{\sigma_0^2} \leq \frac{\chi^2_{n-1,n-1} \cdot \sigma_0^2}{\sigma_0^2} \right)$$

در رابطه فوق، نسبت $\frac{\sigma_1}{\sigma_0}$ با نام λ نشان داده شده است. در این مقاله آنالیز انحراف معیار مشاهدات برای 4 در نظر گرفته شده است و با پارامتر مقادیر درجه آزادی ارائه می‌شود که برای باز 3 خواهد بود.

همانطور که آشکار شد سیستم فازی از شش قاعده اگر-پس-آنگاه برخوردار است. این قواعد عبارتند از:

1. IF (xii is center) and (input2 is random) THEN (in-control1 is high)
2. IF (xii is not center) and (input2 is random) THEN (in-control1 is medium)
3. IF (xii is center) and (input2 is not random) THEN (in-control1 is medium)
4. IF (xii is not center) and (input2 is not random) THEN (in-control1 is low)
5. IF (input3 is chi2) THEN (in-control2 is high)
6. IF (input3 is not chi2) THEN (in-control2 is low)

ملاحظه می‌شود که قواعد 5 و 6 به مدت مستقل از چهار قاعده اول به کنترل معیار پراکنگی مشاهدات اختمال‌انگیز است. با توجه به مقدار خروجی سیستم جهت تصمیم گیری برداره وضعیت فرازی، انجام عملیات غیر فازی سازی در مورد خروجی‌های سیستم ضروری است. عملیات اصلی در این سیستم فازی به مقیاس گزینه ۴ انجام گرفته است و پس از تعیین درجه اجرا برای هر قاعده، مقدار خروجی وسیله‌عملی می‌تواند وضعیت ۰ یا ۱ باشد.

- عملیات ادامه بر روی خروجی قواعد ساده، پیوسته و عمکار
- در انجام می‌شود که از عملیات ماکسیمیموم برای این منظور بهره بگیرد. این مقدار از انجام عملیات ادامه در جهت فازی مربوط به هر یک از دو وضعیت خروجی سیستم حاصل خواهد شد.

ضوابط مقادیر فازی سازی برای این دو وضعیت مورد تولید و نحوه تغییر در تیم‌های از راستی تیم‌های غیر فازی سازی با عنوان روش معیار کلک ۶ انجام گرفته است.

شکل 5. تابع تعلق منفی خروجی دوم (2)

شکل 6. تابع تعلق منفی خروجی اول (1)
4 ارزیابی عملکرد سیستم فازی
عملکرد سیستم فازی، از نظر توانایی در کشف و ضبط خارج از کنترل ناشی از جوراب کوچکتری غیر طبیعی که توضیح خواهیم داد مورد ارزیابی واقع شد. الگوهای سیستم فازی نتایج حاصل از سیستم فازی تغییر که توسط نمودار ایجاد شده است.

برای ارزیابی این حد، در استانداردهای بهترین خورشید، باید صورت گرفتن خطای نوع اول نمودار می‌گردد. در نتایج نوع اول می‌توان با استفاده از شیب‌ها، حدضای معیار برای نمودار X-2371 مقدار متوسط نوع اول به مقدار برای نمودار X-2371 در نظر گرفته می‌شود.

جدول سیستم فازی
مثلث ایجاد شده است. در سنون بود. این علائم می‌تواند یک بخش از شیب‌ها و نمودارهای کنترل در شرایط تحت کنترل سر بر سر می‌رود.

X-MR

شکل 6. توزیع فراوانی منتخاب خروجی1

شکل 7. توزیع فراوانی منتخاب خروجی2

1 stratification
2 mixture
جدول ۲: مقایسه قدرت سیستم فازی با نموودارهای شوهارت برای تشخیص تغییر در میانگین فرآیند بر اساس ARL

<table>
<thead>
<tr>
<th>X-MR</th>
<th>X-MR</th>
<th>تغییر میانگین بر حسب انحراف معیار فرآیند</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1886</td>
<td>1.1734</td>
<td>1.1650</td>
</tr>
<tr>
<td>2.0000</td>
<td>2.0733</td>
<td>1.9634</td>
</tr>
<tr>
<td>6.3030</td>
<td>6.2133</td>
<td>6.2450</td>
</tr>
<tr>
<td>14.9677</td>
<td>15.0600</td>
<td>16.4815</td>
</tr>
<tr>
<td>43.8948</td>
<td>50.9835</td>
<td>49.6260</td>
</tr>
<tr>
<td>81.2158</td>
<td>88.5375</td>
<td>65.7800</td>
</tr>
<tr>
<td>155.2228</td>
<td>139.7100</td>
<td>89.3255</td>
</tr>
<tr>
<td>370.3794</td>
<td>202.9300</td>
<td>116.1200</td>
</tr>
</tbody>
</table>

ARL

<table>
<thead>
<tr>
<th>X-MR</th>
<th>X-MR</th>
<th>تغییر معیار فرآیند</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1886</td>
<td>1.1734</td>
<td>1.1650</td>
</tr>
<tr>
<td>2.0000</td>
<td>2.0733</td>
<td>1.9634</td>
</tr>
<tr>
<td>6.3030</td>
<td>6.2133</td>
<td>6.2450</td>
</tr>
<tr>
<td>14.9677</td>
<td>15.0600</td>
<td>16.4815</td>
</tr>
<tr>
<td>43.8948</td>
<td>50.9835</td>
<td>49.6260</td>
</tr>
<tr>
<td>81.2158</td>
<td>88.5375</td>
<td>65.7800</td>
</tr>
<tr>
<td>155.2228</td>
<td>139.7100</td>
<td>89.3255</td>
</tr>
<tr>
<td>370.3794</td>
<td>202.9300</td>
<td>116.1200</td>
</tr>
</tbody>
</table>

همانطور که در سطح مربوط به عدد 1 ملاحظه می‌شود، حال این کنتل برای سیستم فازی مشاهده گردیده است. در مورد اعداد نموودارهای کنتل X-MR، نمونه‌های موجود در بالای آن از عبارت Dp با د می‌باشد. برای راه ۱۱۶ پیوسته، پس از اصل ضریب ضعیف، جهت یکسان سایز مقدار خطاهای نوع اول، که نتایج آن در سبز دارم جدول قابل ماهندش است. برترین سیستم فازی در میان این گروه‌ها تغییرات انحراف معیار در تمام موارد مشاهده است. در سهونهای دوم و چهارم در مواردی روش شوهارت قادر به تشخیص نیست خطا. کوچکی تریسمی شده است.

اروند

۳-۲: اگر نمونه روند خالی در نگرفتن میانگین فرآیند، در یک جهت معنی‌دار از نمونه‌های این سیستم دیگر می‌باشد. در این مورد کنترل نمونه‌های این سیستم باید به زیر بیشتری بیشتر با د می‌باشد. در اینجا بهترین نمونه روند مناسب برای تغییرات ذکر گردیده است. ۱۱۶ پیوسته، پس از اصل ضریب ضعیف، جهت یکسان سایز مقدار خطاهای نوع اول، که نتایج آن در سبز دارم جدول قابل ماهندش است. برترین سیستم فازی در میان این گروه‌ها تغییرات انحراف معیار در تمام موارد مشاهده است. در سهونهای دوم و چهارم در مواردی روش شوهارت قادر به تشخیص نیست خطا. کوچکی تریسمی شده است.
در این جدول الگوهای مورد مطالعه واقع شده‌اند که توسط حدود 120 شناسایی کرد. در نمودارهای مربوطه حد تصمیم مربوطه به یک از متغیرهای خروجی نیز نتیجه‌گیری شده است. در جدول 4 به ارزای مقایسه مختلف عامل‌های و شبک روشن خطر نسبی به مقایسه مدل‌های جستجوی فازی و نمودارهای شوهرت پرداخته شده است. ملاحظه‌کنید که در تمام موارد، نمودار فازی نسبت به نمودارهای شوهرت دارای برتری است. می‌توان اینگونه نتیجه‌گیری نمودار به چنین نتایج عامل افت شکست. یکی از دارای یکی از نشان‌های وضعیت خطری به‌هم‌بود می‌باشد.

![نمودار X و Y](https://example.com/nomad.png)

شکل 8. وضعیت نمودارهای کنترل در مواجهه با الگوی روند خطری

![نمودار اول و دوم](https://example.com/nomad2.png)

شکل 9. متغیرهای ورودی سیستم فازی در مواجهه با الگوی روند خطری

![نمودار اول و دوم](https://example.com/nomad3.png)

شکل 10. وضعیت متغیرهای خروجی سیستم فازی هنگامی که روند خطری در فضا خرد رخ داده است.
جدول 4- مقایسه توان روش فازی و نمودارهای شوهره برای تشخیص الگوی روند

<table>
<thead>
<tr>
<th>انحراف معیار اعتنامش</th>
<th>0.5</th>
<th>0.3</th>
<th>0.2</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>روش فازی</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>6.835</td>
<td>7.035</td>
<td>6.965</td>
<td>7.085</td>
</tr>
<tr>
<td>0.25</td>
<td>8.965</td>
<td>8.915</td>
<td>8.965</td>
<td>9.36</td>
</tr>
<tr>
<td>0.2</td>
<td>10.765</td>
<td>10.345</td>
<td>10.41</td>
<td>11.39</td>
</tr>
<tr>
<td>0.1</td>
<td>17.175</td>
<td>14.76</td>
<td>10.745</td>
<td>5.44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>انحراف معیار اعتنامش</th>
<th>0.5</th>
<th>0.3</th>
<th>0.2</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمودار شوهره</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>8.38</td>
<td>8.795</td>
<td>8.725</td>
<td>8.745</td>
</tr>
<tr>
<td>0.25</td>
<td>11.305</td>
<td>11.765</td>
<td>12.03</td>
<td>12.21</td>
</tr>
<tr>
<td>0.2</td>
<td>13.7</td>
<td>14.505</td>
<td>15.015</td>
<td>15.275</td>
</tr>
<tr>
<td>0.1</td>
<td>25.03</td>
<td>27.675</td>
<td>28.81</td>
<td>29.48</td>
</tr>
</tbody>
</table>

جدول 5- ارزیابی نرخ تشخیص نمودارهای شوهره در کشف الگوی سیکل از 300 تا 10 تکرار

<table>
<thead>
<tr>
<th>الگوی سیکل</th>
<th>انحراف معیار اعتنامش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>17 1 6 7</td>
</tr>
<tr>
<td>0.3</td>
<td>47 2 4 4</td>
</tr>
<tr>
<td>0.2</td>
<td>103 10 8 7</td>
</tr>
<tr>
<td>0.1</td>
<td>198 27 4 6</td>
</tr>
<tr>
<td>0.05</td>
<td>247 75 15 5</td>
</tr>
</tbody>
</table>

با توجه به جدول فوق براساس مقادیر مختلف انحراف معیار اعتنامش و دامنه نوسان الگوی سیکل، مقایسه بین سیستم فازی و نمودارهای شوهره صورت گرفت که نتایج در تئوری تشخیص نمودارهای شوهره کمتر از 0.1 بیش از حد و در هر چاراکتر در این موارد حداکثر کمتر نمودارهای شوهره از توانایی کشف وضعیت غیر عادی برخوردار نبودند. با توجه به مقادیر جدول تابع و دقت الگوی سیکل می‌تواند به روش فازی در کشف وضعیت غیر عادی حاصل از وجود یک الگوی سیکل نیاز سازمان است.

جدول 4-1 الگوی سیکل

گاهی اوقات نمودارهای بصورتی قابل بینی بصورت متناوب به ممکن است به علت تغییرات سیستم‌نگری محیط نظر درجه حرارت خستگی ایبرو، جابجایی نیروهای، و دستگاه‌ها، نوسانات در ولتاژ و فشار و با مغناطیس دیگر که مربوط به ماهیت الات تولید می‌شود بوجود آید.

جدول 5- 4 الگوی سیکل

گاهی اوقات نمودارهای بصورتی قابل بینی بصورت متناوب به X سیستم واب و با پایین مخاطب می‌کند. وجود این الگوی نمودار X ممکن است به علت تغییرات سیستم‌نگری محیط نظر درجه حرارت خستگی ایبرو، جابجایی نیروهای، و دستگاه‌ها، نوسانات در ولتاژ و فشار و با مغناطیس دیگر که مربوط به ماهیت الات تولید می‌شود بوجود آید.

1. amplitude
جدول 6. مقایسه قدرت سیستم فازی با نمودارهای شوهارت برای تشخیص الگوی سیکل

<table>
<thead>
<tr>
<th>روش فازی</th>
<th>انحراف معیار اغتشاش</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>59.12</td>
</tr>
<tr>
<td>1.25</td>
<td>36.32</td>
</tr>
<tr>
<td>1.5</td>
<td>27.34</td>
</tr>
<tr>
<td>1.75</td>
<td>22.32</td>
</tr>
<tr>
<td>2</td>
<td>15.28</td>
</tr>
</tbody>
</table>

نتیجه شوهارت

<table>
<thead>
<tr>
<th>انحراف معیار اغتشاش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1.25</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>1.75</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

شکل 11. وضعیت نمودارهای کنترل در مواجهه با الگوی سیکل

شکل 12. وضعیت متغیرهای خروجی سیستم فازی هتنگامیکه الگوی سیکل در فرایند رخ داده است.

در جدول 7 تعداد دقیقی که نمودارهای شوهارت توانستند از 300 بار تکرار، وضعیت غیر عادی را کشف کند را به‌شمار می‌آورد. در جدول 8 نتایج مقایسه عملکرد سیستم فازی و نمودارهای شوهارت مشاهده می‌شود.

در رابطه با اینکه الگوی سیستم‌های با دو پارامتر اغتشاش و بزرگی الگوی سیستم‌های با توجه به اینکه نرسیده شده تحقیق نمودارهای شوهارت به بزرگی الگوی سیستم‌های سیکلی دارد این‌گونه

1 magnitude of systematic pattern
جدول 7. ارزیابی نرخ تشخیص نمودارهای شوهرات در کشف وضعیت غیر تصادفی در ۳۰۰ تکرار

<table>
<thead>
<tr>
<th>کشور سیستماتیک</th>
<th>انحراف معیار غشایش</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 8. مقایسه قدرت روش فازی با نمودارهای شوهرات بر تشخیص الگوی سیستماتیک

<table>
<thead>
<tr>
<th>روش فازی</th>
<th>انحراف معیار غشایش</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نمودار شوهرات</th>
<th>انحراف معیار غشایش</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. noisy data
جدول 11. ارزیابی نرخ تشخیص نمودارهای شورهارت در کشف وضعیت غیر متعاقب از 300 تکرار

<table>
<thead>
<tr>
<th>انحراف معیار (استاندارد)</th>
<th>0.5</th>
<th>0.3</th>
<th>0.2</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>22</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>0.75</td>
<td>99</td>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>245</td>
<td>36</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
<td>300</td>
<td>285</td>
<td>188</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>299</td>
</tr>
<tr>
<td>2.5</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

جدول 12. مقایسه قدرت روش فازی با نمودارهای شورهارت برای تشخیص الگوی ترکیبی

<table>
<thead>
<tr>
<th>انحراف معیار (استاندارد)</th>
<th>0.5</th>
<th>0.3</th>
<th>0.2</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>204.46</td>
<td>86.08</td>
<td>39.26</td>
<td>13.36</td>
</tr>
<tr>
<td>0.75</td>
<td>339.09</td>
<td>116.7</td>
<td>45.41</td>
<td>14.02</td>
</tr>
<tr>
<td>1</td>
<td>345.69</td>
<td>118.1</td>
<td>52.59</td>
<td>13.65</td>
</tr>
<tr>
<td>1.5</td>
<td>151.27</td>
<td>116.28</td>
<td>48.35</td>
<td>13.91</td>
</tr>
<tr>
<td>2</td>
<td>9.5</td>
<td>15.41</td>
<td>14.89</td>
<td>12.76</td>
</tr>
<tr>
<td>2.5</td>
<td>2.42</td>
<td>2.57</td>
<td>2.79</td>
<td>2.52</td>
</tr>
</tbody>
</table>

جدول 10. مقایسه قدرت روش فازی با نمودارهای شورهارت

<table>
<thead>
<tr>
<th>انحراف معیار (استاندارد)</th>
<th>0.2</th>
<th>0.15</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>43</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>0.75</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
<td>50</td>
<td>35</td>
<td>19</td>
</tr>
</tbody>
</table>

البته در جدول فوق، همانند قبل تفاوت مواردی از نمودار شورهارت که نرخ تشخیص بیشتر از 10 بر بوده است بر شده است. بررسی روی فازی که سیده بدیل وجود متغیر ورودی انحراف معیار ناشی می‌شود باشد است.

زبان ترکیبی

از نشانه‌های روند ترکیبی، اسم تابع مشابه به حدود کنترل و یا حتی کمی به‌طور از ابزار و پردازش داده‌ها و تشکیل پذیری، کیفیت آنتی تابع به‌طور کلی ممکن است. یک روند ترکیبی معمولاً زمانی ایجاد می‌شود که بتواند به‌طور نرمال بر یک ایند یا به‌طور درخشان از ایندیا یا به‌طور معمول تشخیص داده شود. شدت روند ترکیبی بستگی به زمان تداخل و توزیع داده‌ها دارد. بعضی مواقع روند ترکیبی به‌طور کلی بخش‌های حذف از ابزارهای و تنظیم‌های مکرر فراوانی توسط آنها که به‌دست آمده است باعث می‌شود در گردیده و پاسخ‌گویی برای شرایط داده شود. به‌طور کلی، این سیستم‌ها با زمان یا با فاصله‌ای از آخرین روند ترکیبی در بازی می‌باشد و به‌طور کلی برجسته و دیگری پذیرایی از بهبود و توانایی بیشتری برای

* تیپسی استوری گزارش‌ها*
5. نتیجه‌گیری

نمونه‌های شوهرت برای کنترل میانگین و پراکندگی مشاهدات افزایش PubMed با افزایش X نمونه‌بندی آزمایش با استفاده از فرضیات اولیه و تحلیل مدل، همواره درون بودن توزیع آماری مشاهده از دیگر زمینه های مورد علاقه نویسندگان مقاله است. مطالعه مراجع همواره کوترا و چاپور و همکاران و ویلمان و رانگر برای این منظور را همگی خواهد بود.

مراجع

[1] نورسلیم، رسول، هفتمدیمانگی بر کنترل کیفیت آماری، انتشارات دانشگاه علوم و علوم اسلامی، 1383.

1 direct approach
2 pattern recognition
یکی از آزمایش‌های برجسته در این قسمت روابط ریاضی اگر تصادفی مختلف که در برنامه‌های جهش برای استفاده واقع شده است ذکر می‌شود، رابطه کلی زیری را در نظر بگیرید:

\[y(t) = \mu + x(t) + d(t) \]

در این رابطه، \(y(t)\) مقدار مشخصه کبینه در اکتشاف ۱ در ناشت \(\mu\) می‌باشد. \(x(t)\) مقدار ایجاد شده در اکتشاف ۱. مقدار مثبت \(d(t)\) رابطه ایجاد شده در اکتشاف ۱، که در اکتشاف ۲ ناشت \(\mu\) می‌باشد. \(x(t)\) و \(d(t)\) مقداری از صفر می‌باشد.

\[\gamma = 1 \text{ و } y(t) = \mu + x(t) \]