طراحی یک سیستم فازی بعنوان جایگزینی برای نمودار کنترل مشاهدات انفرادی

محمد حسین فاضل زنده و یاسر صمیمی

چکیده: نمودارهای کنترل شوهارات، از مهمترین ابزار کنترل فرانک آمری است که از طریق ترکیب مقادیر آماره نمونه‌های مربوط به ویژگی کیفیتی مورد نظر در طول زمان منظور تغییرات نتایج با دلیل که کمیت هر چکاری را تحت تاثیر قرار می‌دهد بکار گرفته می‌شود. نمودارهای X و MR یکی از انواع نمودارهای کنترل نک متفاوتی برای یافتن نوسانات کنترلگذاری و یکسانگی مشخص‌های کیفیتی متفاوت محصول می‌شوند که هرگاه نمونه‌های مداوم مورد استفاده واقع می‌شوند. عملکرد ضعیف نمودار X هنگامی وارد می‌شود که مشاهدات غیر‌نرمال و وجود خود‌هم‌سازی در نمودار به عقیده بسیاری از محلک‌های این نموداره یا نمودار نردب قرار داده است. از‌سوی دیگر، به یک بکارگیری متدولوژی به‌هم‌بودینگ کیفیتی و به‌کارگیری دیگری در سایر نوع‌ها، در صابر تولیدی، ضرورت تغییر کاهش در پرداور MR این قالب را به‌روزرسانی نیست.

ارگ. در میان ابزار هفت گانه کنترل فرانک آمری، نمودار کنترل ابزار قدرتمندی است که می‌تواند در ادای نتایج در فرانک و بهبود کارایی آن از طریق کاهش غیر‌پیش‌تری مدیع واقع گردد. بررسی‌های صورت گرفته در فلور انتزاعی و بارز استادیوم، امکان به‌کارگیری کلیه محصولات تولیدی یک بیرا می‌آمیزد. نمودار است. همین امر سبب توجه به‌کارگیری نمودارهای کنترل مقادیر انفرادی جهت پایین می‌آید.

واژه‌های کلیدی: کنترل فرانک آمری، نمودارهای کنترل برای مشاهدات انفرادی، یادگاری قوانین، روش‌های غیرنرمال.

نمره بین المللی علوم مهندسی دانشگاه علم و صنعت ایران، شماره 1، جلد 19، بهار 1387، صفحه 88-102

وپژوهش مهندسی صنایع
در زمینه تشخیص و تفسیر روند می‌تواند این یک نمونه گرفته شده از یک نمونه از مدل توانایی هر دو تکثیر روند و تخشکی و گسترش افزایش می‌کند. از طرفی، این مدل ساختاری است که با یک مدل توانایی هر دو روند و تخشکی و گسترش افزایش می‌کند. از طرفی، این مدل ساختاری است که با یک مدل توانایی هر دو روند و تخشکی و گسترش افزایش می‌کند. از طرفی، این مدل ساختاری است که با یک مدل توانایی هر دو روند و تخشکی و گسترش افزایش می‌کند.
مقدار متوسط طول دنباله برای نمودار کنترل ترکیبی بویله سبیله سازی بسته‌ای است. همانطور که در سطح مربع با مقدار صفر ARL برای نمودار کنترل ترکیبی سیرام از نمودار مشاهده‌ای آزاد است که این موضوع از خطای نو اول زیاد نمودار دامنه حکایت می‌کند.

مقدار خطای نو اول نمودار کنترل X 207.006 اس است در ARL جالبیک به مقدار ARL در حالیکه مورد ARL این خطا برای 207.006 اس در مقدار نمودار دامنه حکایت می‌کند. همانطور که این موضوع از خطای نو اول زیاد نمودار دامنه حکایت می‌کند.

له مقدار نمودار دامنه حکایت می‌کند. همانطور که این موضوع از خطای نو اول زیاد نمودار دامنه حکایت می‌کند.
مشاهده‌ای از قانونی در نمودار کنترل X با احتمال برابری معنی‌دار

1. autocorrelation
حال فرض کنید که مقادیر واقعی انحراف معیار مشاهدات برای n باشد در این صورت با $n - 1$ توزیع معیار کای اصلی درجه آزادی که x نشان دهنده مقدار خطای نوتم دوم از رابطه زیر بدست می‌آید:
\[
P\left(\frac{(n-1)S^2}{\sigma^2} \leq \chi^2_{n-1} \right)
\]
\[
P\left(\frac{S^2}{\sigma^2} \leq \chi^2_{n-1} \right)
\]
\[
P\left(\frac{S^2}{\sigma^2} \leq \chi^2_{n-1} \right)
\]
\[
\lambda = \sigma \sigma_0 / \sigma_0^2 \left(\frac{(n-1)S^2}{\sigma^2} \leq \chi^2_{n-1} \right)
\]
در رابطه فوق، تناسب σ_1 / σ_0 با نماد β نشان دهنده شده است. در این مقاله نیز مجموع مشاهدات برای n در نظر گرفته شده است. بنابراین مقادیر درجه آزادی امر امر مربع کای با n خطای نوتم دوم جهت تشخیص مورد ارزیابی قرار می‌گیرد و متغیر دوم به صورت مستقل با رایانه پراکنده فرمول استفاده می‌گردد.

متغیر خروجی اول از تحت-کنترل و متغیر دوم را تحت-کنترل نامیم. متغیر خروجی اول با اقتشیب از مقایسه نتایگ در دامنه 1 تا 120 تعریف می‌گردد و از سه مجموعه فازی (مجموعه‌های کم، متوسط و زیاد) تشکیل شده است. شکل 4 مجموعه‌های مذکور را نشان می‌دهد.

![شکل 5. تابع تعلق متغیر خروجی دوم (2)](image)

![شکل 6. تابع تعلق متغیر خروجی اول (1)](image)

1. defuzzification
2. implication
3. degree of firing
4. aggregation
5. centroid method
جهت ارزیابی عملکرد سیستم فازی از شاخه ARL بهره‌گیری شد. بنابراین، در 100 اکثریت مورد نظر در یک فرآیند تحت کنترل بهتر گردیده است. و میانگین تعداد نقاط از برای شناسایی وضعیت غیر عادی به کمک شیب‌سازی محاسبه شده است. این گروه‌های غیر عادی مورد بررسی عبارتند از:

1. پیش‌بینی در میانگین فرآیند
2. پیش‌بینی از احتمال معیار فرآیند
3. پیش‌بینی از ارائه نتایج لازم برای از برای بررسی عملکرد سیستم فازی در هر مورد. متوسط طول دنیای پیوست از 100 بر شده سازی به‌دست آمده است و مورد نمودارهای کنترل این میانگین پس از X-MR دسته‌بندی می‌شود.

تشکیل چنین در شکل نمایش داده شده است. حذف هر اول الفبای معیار X می‌باشد در نظر می‌گیریم.

یک تریپ با استفاده از نمودار X، حد تصمیم برای متغیر خروجی اول برای X. 67.11 نمودار این معیار برای معیار X، حد نمودارهای X، شکل مربوط به توزیع مقادیر متغیرهای X. در وضعیت تحت کنترل، در شکل 7 نمایش داده شده است. حذف تصمیم برای تصویر

شکل 6. توزیع فرآیند متغیر خروجی 1

شکل 7. توزیع فرآیند متغیر خروجی 2
ضرایب سیستم فازی بعنوان یک گزینه برای نمودار کنترل مشاهدات افرادی

4-2 شیفت در پراکندگی فرد
نتایج حاصل از بررسی عملکرد روش فازی در مقایسه نمودار کنترل MR
در جدول 3 نتیج شده است. همانطور که ملاحظه می‌شود نمودار

جدول 2. مقایسه قدرت سیستم فازی با نمودارهای شوهرت برای تشخیص تغییر در میانگین فرایند بر اساس ARL

<table>
<thead>
<tr>
<th>X</th>
<th>X-MR</th>
<th>X-MR</th>
<th>سیستم فازی</th>
<th>احراز میزان فرایند</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1886</td>
<td>1.1734</td>
<td>1.1650</td>
<td>1.2224</td>
<td>4</td>
</tr>
<tr>
<td>2.0000</td>
<td>2.0733</td>
<td>1.9634</td>
<td>2.1577</td>
<td>3</td>
</tr>
<tr>
<td>6.3030</td>
<td>6.2133</td>
<td>6.2450</td>
<td>6.6190</td>
<td>2</td>
</tr>
<tr>
<td>14.9677</td>
<td>15.0600</td>
<td>16.4815</td>
<td>15.6635</td>
<td>1.5</td>
</tr>
<tr>
<td>43.8948</td>
<td>50.9835</td>
<td>42.9620</td>
<td>42.7635</td>
<td>1</td>
</tr>
<tr>
<td>81.2158</td>
<td>88.5375</td>
<td>65.7800</td>
<td>69.9335</td>
<td>0.75</td>
</tr>
<tr>
<td>155.2228</td>
<td>139.7100</td>
<td>89.3255</td>
<td>108.5445</td>
<td>0.5</td>
</tr>
<tr>
<td>370.3794</td>
<td>202.9300</td>
<td>116.1200</td>
<td>200.0000</td>
<td>0</td>
</tr>
</tbody>
</table>

جدول 3. مقایسه قدرت سیستم فازی با نمودارهای شوهرت برای تشخیص تغییر در پراکندگی فرایند بر حسب ARL

<table>
<thead>
<tr>
<th>X</th>
<th>X-MR</th>
<th>X-MR</th>
<th>سیستم فازی</th>
<th>احراز میزان فرایند</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>1.0004</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1.0020</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1.3249</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>8.9127</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>66.6670</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>487.7200</td>
<td>349.2300</td>
<td>172.4100</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>188.7300</td>
<td>116.8700</td>
<td>200.5700</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>55.6630</td>
<td>28.2000</td>
<td>37.8790</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>18.9400</td>
<td>12.0370</td>
<td>12.3760</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>10.0000</td>
<td>7.7700</td>
<td>5.9302</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>6.4760</td>
<td>5.8400</td>
<td>3.6206</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4.5033</td>
<td>3.9300</td>
<td>2.7012</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>3.7067</td>
<td>3.4000</td>
<td>2.0259</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

۱۴۶ بیوس می‌باشد. از اصل ضریب ضریب مکرور، جهت یکسان
سازی مقدار خطای نهایت عوامل که نتیجه این در سپرینه جدول
قابل مشاهده است. برتری سیستم فازی در نمودارهای تغییرات
انحراف معیار در تمامی موارد مشهود است. در سپرینه نسوم و
چهارم در مواردی روش شوهرت فازی به تشخیص نیست خط
کوچکی تریسیم شده است.

۳-۲ الگوی روند
مقدار انحراف معیار یک الگوی خاص در نمودارهای تغییر،در
یک جهت معین است. روند های معمول در اثر سایش یا فرسودگی
تغییر یک الگو یا یک مولفه حوالی دیگر فرایند جوی داده می‌شود.
در فرایندات شیمیایی روندها اغلب در اثر نشان دادن می‌باشد
شدن اجزاء یک ترکیب بوجود می‌آیند [11]. در رابطه ریاضی مربوط

به الگوی رودن با دو پارامتر انتخاب و "شیب" مواجهه هستن
جوانه شب رودن که باشد. ARL مقدار پزشک خواهید بود. برای مثال یک الگوی رودن با شده سازی مقداران انتخاب عمل
افغانیتی در آن برای انتخاب معیار فرایند باشد. در شکل 8
نمودارهای X-MR مربوط به این الگو می‌باشد. اگر ARL
در پرود ۱۰۰ در کیل برای انتخاب جدیدی است، در پرود
۱۸۰ مؤلفه تشخیص وضعیت غیر ضریبی در مواجهه با الگو
بررسی می‌گردد. در شکل 9 از منظورهای ورودی سیستم فازی
شامل مقدار مشاهده (1) X-MR مقدار خودگرامشی با تأخیر کی
مقدار انحراف معیار پنجره‌ها به طول چهار از اخیرین مشاهده‌ها آید
گردیده است.

همانطور که مشاهده می‌شود تغییر در مقدار هرودتی دوم
عمل شناسایی الگوی رودن محصول می‌شود. در شکل 10 نمودار
خروجی‌های سیستم فازی مشاهده می‌شود. تغییر خروجی آن در
اثر وجود خودگرامشی دریای مشاهده توانسته است وضعیت
در این جدول انواعی از متغیرهای سیستمی که در کنترل نمودارهای شوهرت براحتی قابل تشخیص نیست و نیاز به استفاده از روش‌های دیگر همچون قوانین حساب‌سازی وجود دارد. مهم‌تر اینکه با پایداری نسبت به کاهش پراکندگی مشاهده‌ها از حساب‌ساز قابل توجهی برخورداری دارای دیجیتال احراز می‌کند که برای انتخاب دیجیتالی روش، نیز در تشخیص‌هایی غیرتغییری را قابل اعمال به عنوان یکی از متغیرهای خروجی نیز نشان داده شده است. در جدول 4 نیز بازی مقدار مختلف می‌تواند مانند سیستم‌های سیستم‌داری و نمودارهای شوهرت پرداخته شده است. ملاحظه می‌شود که در تمامی موارد، سیستم‌های سیستمی که در کنترل نمودارهای شوهرت براحتی واقعی است. می‌توان اینگونه نتیجه‌گیری نمود که به‌طور گسترده‌ای میزان انتخاب کمرنگ باشد و در مواجهه با نمودارهای غیرتغییری وضعیت غیر نمادگری به‌صورت می‌یابد.

شکل 9. متغیرهای ورودی سیستم فازی در مواجهه با الکوی روند خشته

شکل 10. وضعیت متغیرهای خروجی سیستم فازی هنگامیکه یک روند خشته در فاصله از داده است.
جدول 4-1: توان روش فازی با نموذرهای شوهارات بر تشخیص الكیو روند

<table>
<thead>
<tr>
<th>روش فازی</th>
<th>احراز معیار اع致しますش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>6.835</td>
</tr>
<tr>
<td>0.25</td>
<td>8.965</td>
</tr>
<tr>
<td>0.2</td>
<td>10.765</td>
</tr>
<tr>
<td>0.1</td>
<td>17.175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نموذرهای شوهارات</th>
<th>احراز معیار اع致しますش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>8.38</td>
</tr>
<tr>
<td>0.25</td>
<td>11.305</td>
</tr>
<tr>
<td>0.2</td>
<td>13.7</td>
</tr>
<tr>
<td>0.1</td>
<td>25.03</td>
</tr>
</tbody>
</table>

جدول 5. ارزیابی ترخ تشخیص نموذرهای شوهارات در کشف الگوی سیکل از ۳۰۰ تا ۲۵۰ بار تکرار

<table>
<thead>
<tr>
<th>الگوی سیکل</th>
<th>بیاب پرودی</th>
<th>احراز معیار اع致しますش</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>1.25</td>
<td>47</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>103</td>
<td>8</td>
</tr>
<tr>
<td>1.75</td>
<td>198</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>247</td>
<td>5</td>
</tr>
</tbody>
</table>

با توجه به جدول فوق براساس مقادیر مختلف احراز معیار اع致しますش و دامنه نوسان الگوی سیکل، مقایسه‌های بین سیستم فازی و نموذرهای شوهارات صورت گرفته که نتایج تجربی نموذرهای الگوی سیکل با پرودی ۱۰۰ در یک روند به این نتیجه نیستند. این بوده که فذ اکثر الگوی سیکل به کشف تغییرات غیر عادی برخوردار نیستند. با توجه به مقادیر جدول اینکه می‌تواند در کشف پیش بینی غیر عادی جدول این نتیجه داده می‌شود که روش فازی در حالتی از ویژگی الگوی Sیکل به سبب حساسیت است.

4-2 الگوی سیکل

گاهی اوقات روندهای سیکل بر روی نموذرهای کنترل مشاهده می‌شود. الگوی سیکل یکی از نمایش‌های دیده که یک الگو غیر معیاری و استاندارد به صورت متوازی به سمت یال و با پایین حرکت می‌کند. در رابطه با الگوی سیکل، سه پارامتر دامنه نوسان، تناوب و اع致しますش وجود دارد. برای مثال، شکل ۱۱ نموذرهای کنترل شوهارات را در مواضع با یک الگوی سیکل که دوره تناوب آن برابر ۱۵ در دامنه نوسان ان برابر ۱۰، احراز معیار است نشان می‌دهد. این الگوی غیر عادی در پرودی ۹۰۰ تحت کنترل ایجاد گردیده است و نسبت نموذرهای کشف شده است.

در شکل ۱۲ منیژرهای ورودی سیستم فازی هنگام مشاهده با یک الگوی ناشی از شده است. سیستم فازی این الگو را جدا سپس ۳۰ الگوی شناسایی نمود این نشان می‌دهد که الگوی شناسایی نموده و این موضوع عامل شناسایی و ضعیف غیر معیاری محسوب می‌شود.

نمونه منیژری بهترین خروجی سیستم فازی از شکل ۱۳ نشان داده است. نتایج این کنترل اصلی قادر به شناسایی و ضعیف غیر معیاری نیست. با توجه به الگوی پیش‌بینی از ۳۰۰ الگوی شناسایی نموده و این نشان می‌دهد که کنترل شوهارات توانایی الگوی سیکل را شناسایی کننده کشف نشان داده.

نمونه منیژری بهترین خروجی سیستم فازی از شکل ۱۳ بهترین نشان داده است. شکل ۱۲ نشان می‌دهد که کنترل شوهارات توانایی الگوی سیکل را شناسایی کننده کشف نشان داده.

۵- الگوی سیستم‌آتیسیک

گاهی اوقات مشاهدات صورتی قابل بینی بصورت متواو به X سمت بالا و پایین حرکت می‌کند. وجود این الگو روی نمونه ممکن است به علت تغییرات سیستم‌آتیسیک محیطی نظیر درجه حرارت، خستگی ایراد، جایگاهی مسیرهای ایجاد اثرات آنها در الگوسازی فشار و با میزان دیگری یک مربوط به محدوده‌ای‌ای‌های آناتولی‌ای می‌شود. وجود یافته آن.
جدول 6 مقایسه قدرت سیستم فازی با نمودارهای شوهرات برای تشخیص الگوی سیکل

<table>
<thead>
<tr>
<th>روش فازی</th>
<th>انحراف معیار اغتشاش</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>میانگین</td>
<td>59.12</td>
</tr>
<tr>
<td>میانگین</td>
<td>36.32</td>
</tr>
<tr>
<td>میانگین</td>
<td>27.34</td>
</tr>
<tr>
<td>میانگین</td>
<td>22.32</td>
</tr>
<tr>
<td>میانگین</td>
<td>15.28</td>
</tr>
</tbody>
</table>

نمودار شوهرات

<table>
<thead>
<tr>
<th>انحراف معیار اغتشاش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>میانگین</td>
</tr>
</tbody>
</table>

شکل 11. وضعیت نمودارهای کنترل در مواجهه با الگوی سیکل

شکل 12. وضعیت منگیرهای خروجی سیستم فازی هنگامیکه الگوی سیکل در فرایند رخ داده است.

در جدول 7 تعداد دفعاتی که نمودارهای شوهرات توانسته از 300 نمونه تکرار، وضعیت غیر عادی را کشف کند ارائه می‌شود. در جدول 8 نتایج مقایسه عملکرد سیستم فازی و نمودارهای شوهرات مشاهده می‌شود.

شکل 13. وضعیت منگیرهای خروجی سیستم فازی هنگامیکه الگوی سیکل در فرایند رخ داده است.

در رابطه با الگوی سیستم‌های اتوماتیک با دو پارامتر اغتشاش و میانگین الگوی سیستم‌های مواجه هستیم با توجه به اینکه الگوی نمودارهای شوهرات به بزرگی الگوی سیستم‌های بستگی دارد ابتدا

magnitude of systematic pattern
ب) آزمایش نرخ تشخیص نمودارهای شوهرت در کشف وضعیت غیر تصادفی در 300 تگرار

<table>
<thead>
<tr>
<th>انحراف معیار اغتشاش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>0.75</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1.75</td>
<td>1.75</td>
<td>1.75</td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

جدول 1. مقایسه قدرت روش فازی با نمودارهای شوهرت برای تشخیص انحراف معیار اغتشاش

<table>
<thead>
<tr>
<th>روش فازی</th>
<th>انحراف معیار اغتشاش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>74.18</td>
<td>73.63</td>
<td>34.38</td>
<td>33.62</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>35.96</td>
<td>31.55</td>
<td>30.29</td>
<td>29.1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>26.05</td>
<td>24.55</td>
<td>24.49</td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>18.48</td>
<td>19.84</td>
<td>19.63</td>
<td>20.07</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>13.18</td>
<td>14.71</td>
<td>15.16</td>
<td>16.22</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>7.74</td>
<td>10.27</td>
<td>11.21</td>
<td>11.99</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.67</td>
<td>5.75</td>
<td>6.56</td>
<td>8.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نمودار شوهرت</th>
<th>انحراف معیار اغتشаш</th>
<th>انحراف معیار اغتشаш</th>
<th>انحراف معیار اغتشاش</th>
<th>انحراف معیار اغتشاش</th>
<th>انحراف معیار اغتشاش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>192.27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.75</td>
<td>173.52</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>86.38</td>
<td>188.95</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.25</td>
<td>39.67</td>
<td>129.11</td>
<td>132.11</td>
<td>186.64</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>10.08</td>
<td>39.55</td>
<td>65.90</td>
<td>71.18</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>4.09</td>
<td>7.38</td>
<td>16.89</td>
<td>25.37</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.90</td>
<td>2.76</td>
<td>3.37</td>
<td>4.27</td>
<td></td>
</tr>
</tbody>
</table>

1 noisy data
جدول 11. ارزیابی نرخ تندیسی نمودارهای شوهرت در کشف وضعیت غیر تصادفی از 200 تکرار

<table>
<thead>
<tr>
<th>الگوی تکریکی</th>
<th>انحراف معیار احتمال</th>
<th>0.5</th>
<th>0.3</th>
<th>0.2</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>22</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>99</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>245</td>
<td>36</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>300</td>
<td>285</td>
<td>188</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

جدول 12. مقایسه قدرت روش فازی با نمودارهای شوهرت برای تکریکی الگوی

<table>
<thead>
<tr>
<th>روش فازی</th>
<th>انحراف معیار احتمال</th>
<th>0.5</th>
<th>0.3</th>
<th>0.2</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>204.46</td>
<td>86.08</td>
<td>39.26</td>
<td>13.36</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>339.09</td>
<td>116.7</td>
<td>45.41</td>
<td>14.02</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>345.69</td>
<td>118.1</td>
<td>52.59</td>
<td>13.65</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>151.22</td>
<td>116.28</td>
<td>48.35</td>
<td>13.91</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9.5</td>
<td>15.41</td>
<td>14.89</td>
<td>12.76</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>2.42</td>
<td>2.57</td>
<td>2.79</td>
<td>2.52</td>
<td></td>
</tr>
</tbody>
</table>

روند تکریکی جزء گروهی به پیشنهاد محاسبه می‌شود که بر خلاف سابیر گروهی، شناسایی آن با مشاهده روند تکرار روی نمودار برای انتخابی اپکی می‌شود، نرخ تندیسی نمودارهای کنترل شوهرت در جدول 11 ارائه شده است. بر دیگر باین موضوع تاکید می‌شود که افزایش پراکندگی احتمال انتخاب سبب پیوستن قدرت تندیسی نمودارهای کنترلی شوهرت می‌شود و در مقابل عملکرد سیستم فازی را مختل می‌سازد.

به این ترتیب، در جدول 12 مقایسه مستقیم بین روش دو روش مذکور برای بررسی شده است. به‌طوری‌که در این نمودارهای کنترلی نمودارهای شوهرت قرار گرفته که کشف وضعیت غیر تصادفی ناشی از روند تکریکی می‌باشد، به نگاه اول نمودارهای کنترل بر سیستم فازی بیشتر نظر بررس. بیشتر از افزایش احتمال در ورود به ترکیب ترکیبی هر مпотреб جلب توجه می‌کند. این می‌تواند سیستم‌های محدودیت می‌گردد در نمودارهای کنترل بیش از 90 می‌شود که به این ترتیب، در جدول 12 مقایسه مستقیم بین روش دو روش مذکور برای بررسی شده است. به‌طوری‌که در این نمودارهای کنترلی نمودارهای شوهرت قرار گرفته که کشف وضعیت غیر تصادفی ناشی از روند تکریکی می‌باشد، به نگاه اول نمودارهای کنترل بر سیستم فازی بیشتر نظر بررس. بیشتر از افزایش احتمال در ورود به ترکیب ترکیبی هر مпотреб جلب توجه می‌کند. این می‌تواند سیستم‌های محدودیت می‌گردد در نمودارهای کنترل بیش از 90 می‌شود که به این ترتیب، در جدول 12 مقایسه مستقیم بین روش دو روش مذکور برای بررسی شده است. به‌طوری‌که در این نمودارهای کنترلی نمودارهای شوهرت قرار گرفته که کشف وضعیت غیر تصادفی ناشی از روند تکریکی می‌باشد، به نگاه اول نمودارهای کنترل بر سیستم فازی بیشتر نظر بررس. بیشتر از افزایش احتمال در ورود به ترکیب ترکیبی هر مпотреб جلب توجه می‌کند. این می‌تواند سیستم‌های محدودیت می‌گردد در نمودارهای کنترل بیش از 90 می‌شود که به این ترتیب، در جدول 12 مقایسه مستقیم بین روش دو روش مذکور برای بررسی شده است. به‌طوری‌که در این نمودارهای کنترلی نمودارهای شوهرت قرار گرفته که کشف وضعیت غیر تصادفی ناشی از روند تکریکی می‌باشد، به نگاه اول نمودارهای کنترل بر سیستم فازی بیشتر نظر بررس. بیشتر از افزایش احتمال در ورود به ترکیب ترکیبی هر مпотреб جلب توجه می‌کند. این می‌تواند سیستم‌های محدودیت می‌گردد در نمودارهای کنترل بیش از 90 می‌شود که به این ترتیب، در جدول 12 مقایسه مستقیم بین روش دو روش مذکور برای بررسی شده است. به‌طوری‌که در این نمودارهای کنترلی نمودارهای شوهرت قرار گرفته که کشف وضعیت غیر تصادفی ناشی از روند تکریکی می‌باشد، به نگاه اول نمودارهای کنترل بر سیستم فازی بیشتر نظر بررس. بیشتر از افزایش احتمال در ورود به ترکیب ترکیبی هر مпотреб جلب توجه می‌کند. این می‌تواند سیستم‌های محدودیت می‌گردد در نمودارهای کنترل بیش از 90 می‌شود که به این ترتیب، در جدول 12 مقایسه مستقیم بین روش دو روش مذکور برای بررسی شده است. به‌طوری‌که در این نمودارهای کنترلی نمودارهای شوهرت قرار گرفته که کشف وضعیت غیر تصادفی ناشی از روند تکریکی می‌باشد، به نگاه اول نمودارهای کنترل بر سیستم فازی بیشتر نظر بررس. بیشتر از افزایش احتمال در ورود به ترکیب ترکیبی هر مпотреб جلب توجه می‌کند. این می‌تواند سیستم‌های محدودیت می‌گردد در نمودارهای کنترل بیش از 90 می‌شود که به این ترتیب، در جدول 12 مقایسه مستقیم بین روش دو روش مذکور برای بررسی شده است. به‌طوری‌که در این نمودارهای کنترلی نمودارهای شوهرت قرار گرفته که کشف وضعیت غیر تصادفی ناشی از روند تکریکی می‌باشد، به نگاه اول نمودارهای کنترل بر سیستم فازی بیشتر نظر بررس. بیشتر از افزایش احتمال در ورود به ترکیب ترکیبی هر م图片来源：ijiepm.iust.ac.ir at 5:31 IRST on Friday January 24th 2020
多功能ی نظری و تحقیقاتی سیستم فازی برای نمودار کنترل مشاهدات افرازی

5. نتایج گیری

نمودارهای شوهاری برای کنترل مشاهدات

انفرادی که با معرفی نمودارهای MR و X، معرفی هستند، بلع و وجود شمولات داده دانه محور که به دلیل وجود خودمعنایی، اکثریتی نسبت به این نمودار ناشی می‌شود در مقایسه با نمودار X معمولاً بهترین خود همانندتر از دو نمودار بطور بالا بوده آن را در حال تحت کنترل جدید در نتیجه ممکن است با ARL X نمودار می‌باشد. از سوی دیگر، شناسایی کانسپت در پراکنده فارابی، پیشنهاد آن در این موارد استMR ایراده است. سیستم فازی طراحی شده مشاهده از روندی غیر تصادفی وجود دارد که به کمک نمودار کنترل بازنمایی می‌باشد. بهینه مشاوری قوانین حساس سازی و قوانین منطقی به نمودار کنترل اضافه می‌شود که میزان ضعیف اولین ایده از نمودارها با افزایش می‌گذارد. در این مقاله از استفاده از ابزاری به روش جایگزین برای کنترل مشاهدات انفرادی ارائه شده است. سیستم فازی طراحی شده مشابه از 3 متغیر و میزان ایجاد گره‌انگر از نظر خویج اسن و هم‌هنگ و فاکتور بازنمایی، روندی غیر تصادفی و پراکنده فارابی می‌باشد.

X-MR

دو ویژگی برای این سیستم فازی نسبت به نمودارهای MR است که اولاً، با جای کارگیری جمعیت زیادی از قوانین حساس سازی نمایانه با استفاده از یک بکس و انتقال مستحکم دانشگاه تکنولوژی می‌باشد. در این مقاله، برای کنترل مشاهدات افرازی، رطوبت و پلاستیکی که به این کنترل مشاهداتی می‌باشد. در مورد فلاتر، و در زمینه با جنگل روند غیر تصادفی چه با عنوان اکثریتی غیر تصادفی در مقایسه مورد بررسی قرار گرفته، از این شده است. به غیر از اینکه بهتری در سایر موارد برتری فارابی خواهی می‌باشد.

۱ indirect approach
۲ pattern recognition
$d(t) = (t - t_0) a \sigma$

1- the fuzzy random variable α generates a fuzzy variable Δ at time t if α is a deterministic function of t

2- $\Delta(t) = \alpha(t)$

3- $\Delta(t)$ is the fuzzy variable generated by α at time t

4- $\Delta(t)$ is a fuzzy variable generated by α at time t

5- $\Delta(t) = \alpha(t)$

6- $\Delta(t)$ is the fuzzy variable generated by α at time t

7- $\Delta(t)$ is the fuzzy variable generated by α at time t

8- $\Delta(t)$ is the fuzzy variable generated by α at time t

9- $\Delta(t)$ is the fuzzy variable generated by α at time t

10- $\Delta(t)$ is the fuzzy variable generated by α at time t

11- $\Delta(t)$ is the fuzzy variable generated by α at time t

12- $\Delta(t)$ is the fuzzy variable generated by α at time t

13- $\Delta(t)$ is the fuzzy variable generated by α at time t

14- $\Delta(t)$ is the fuzzy variable generated by α at time t

15- $\Delta(t)$ is the fuzzy variable generated by α at time t

16- $\Delta(t)$ is the fuzzy variable generated by α at time t

17- $\Delta(t)$ is the fuzzy variable generated by α at time t

18- $\Delta(t)$ is the fuzzy variable generated by α at time t

19- $\Delta(t)$ is the fuzzy variable generated by α at time t

20- $\Delta(t)$ is the fuzzy variable generated by α at time t

21- $\Delta(t)$ is the fuzzy variable generated by α at time t

22- $\Delta(t)$ is the fuzzy variable generated by α at time t

23- $\Delta(t)$ is the fuzzy variable generated by α at time t

24- $\Delta(t)$ is the fuzzy variable generated by α at time t

25- $\Delta(t)$ is the fuzzy variable generated by α at time t

26- $\Delta(t)$ is the fuzzy variable generated by α at time t

27- $\Delta(t)$ is the fuzzy variable generated by α at time t

28- $\Delta(t)$ is the fuzzy variable generated by α at time t

29- $\Delta(t)$ is the fuzzy variable generated by α at time t

30- $\Delta(t)$ is the fuzzy variable generated by α at time t

31- $\Delta(t)$ is the fuzzy variable generated by α at time t

32- $\Delta(t)$ is the fuzzy variable generated by α at time t

33- $\Delta(t)$ is the fuzzy variable generated by α at time t

34- $\Delta(t)$ is the fuzzy variable generated by α at time t

35- $\Delta(t)$ is the fuzzy variable generated by α at time t

36- $\Delta(t)$ is the fuzzy variable generated by α at time t

37- $\Delta(t)$ is the fuzzy variable generated by α at time t

38- $\Delta(t)$ is the fuzzy variable generated by α at time t

39- $\Delta(t)$ is the fuzzy variable generated by α at time t

40- $\Delta(t)$ is the fuzzy variable generated by α at time t

41- $\Delta(t)$ is the fuzzy variable generated by α at time t

42- $\Delta(t)$ is the fuzzy variable generated by α at time t

43- $\Delta(t)$ is the fuzzy variable generated by α at time t

44- $\Delta(t)$ is the fuzzy variable generated by α at time t

45- $\Delta(t)$ is the fuzzy variable generated by α at time t

46- $\Delta(t)$ is the fuzzy variable generated by α at time t

47- $\Delta(t)$ is the fuzzy variable generated by α at time t

48- $\Delta(t)$ is the fuzzy variable generated by α at time t

49- $\Delta(t)$ is the fuzzy variable generated by α at time t

50- $\Delta(t)$ is the fuzzy variable generated by α at time t

51- $\Delta(t)$ is the fuzzy variable generated by α at time t

52- $\Delta(t)$ is the fuzzy variable generated by α at time t

53- $\Delta(t)$ is the fuzzy variable generated by α at time t

54- $\Delta(t)$ is the fuzzy variable generated by α at time t

55- $\Delta(t)$ is the fuzzy variable generated by α at time t

56- $\Delta(t)$ is the fuzzy variable generated by α at time t

57- $\Delta(t)$ is the fuzzy variable generated by α at time t

58- $\Delta(t)$ is the fuzzy variable generated by α at time t

59- $\Delta(t)$ is the fuzzy variable generated by α at time t

60- $\Delta(t)$ is the fuzzy variable generated by α at time t

61- $\Delta(t)$ is the fuzzy variable generated by α at time t

62- $\Delta(t)$ is the fuzzy variable generated by α at time t

63- $\Delta(t)$ is the fuzzy variable generated by α at time t

64- $\Delta(t)$ is the fuzzy variable generated by α at time t

65- $\Delta(t)$ is the fuzzy variable generated by α at time t

66- $\Delta(t)$ is the fuzzy variable generated by α at time t

67- $\Delta(t)$ is the fuzzy variable generated by α at time t

68- $\Delta(t)$ is the fuzzy variable generated by α at time t

69- $\Delta(t)$ is the fuzzy variable generated by α at time t

70- $\Delta(t)$ is the fuzzy variable generated by α at time t

71- $\Delta(t)$ is the fuzzy variable generated by α at time t

72- $\Delta(t)$ is the fuzzy variable generated by α at time t

73- $\Delta(t)$ is the fuzzy variable generated by α at time t

74- $\Delta(t)$ is the fuzzy variable generated by α at time t

75- $\Delta(t)$ is the fuzzy variable generated by α at time t

76- $\Delta(t)$ is the fuzzy variable generated by α at time t

77- $\Delta(t)$ is the fuzzy variable generated by α at time t

78- $\Delta(t)$ is the fuzzy variable generated by α at time t

79- $\Delta(t)$ is the fuzzy variable generated by α at time t

80- $\Delta(t)$ is the fuzzy variable generated by α at time t

81- $\Delta(t)$ is the fuzzy variable generated by α at time t

82- $\Delta(t)$ is the fuzzy variable generated by α at time t

83- $\Delta(t)$ is the fuzzy variable generated by α at time t

84- $\Delta(t)$ is the fuzzy variable generated by α at time t

85- $\Delta(t)$ is the fuzzy variable generated by α at time t

86- $\Delta(t)$ is the fuzzy variable generated by α at time t

87- $\Delta(t)$ is the fuzzy variable generated by α at time t

88- $\Delta(t)$ is the fuzzy variable generated by α at time t

89- $\Delta(t)$ is the fuzzy variable generated by α at time t

90- $\Delta(t)$ is the fuzzy variable generated by α at time t

91- $\Delta(t)$ is the fuzzy variable generated by α at time t

92- $\Delta(t)$ is the fuzzy variable generated by α at time t

93- $\Delta(t)$ is the fuzzy variable generated by α at time t

94- $\Delta(t)$ is the fuzzy variable generated by α at time t

95- $\Delta(t)$ is the fuzzy variable generated by α at time t

96- $\Delta(t)$ is the fuzzy variable generated by α at time t

97- $\Delta(t)$ is the fuzzy variable generated by α at time t

98- $\Delta(t)$ is the fuzzy variable generated by α at time t

99- $\Delta(t)$ is the fuzzy variable generated by α at time t

100- $\Delta(t)$ is the fuzzy variable generated by α at time t