Improving the Customer Grouping Algorithm for Spare-Parts Distribution Using k-Means Tools

M.M. Sepehri* & M. Kargari

ABSTRACT

Customer classification using k-means algorithm for optimizing the transportation plans is one of the most interesting subjects in the Customer Relationship Management context. In this paper, the real-world data and information for a spare-parts distribution company (ISACO) during the past 36 months has been investigated and these figures have been evaluated using k-means tool developed for spare-part demand similarity function in different regions of the country. Similarity function for customer behavior in different regions has been defined. Based on this function and with help of k-means algorithm, customers have been grouped and similar customers were put in the same groups. Customer similarity function has been developed through 5 steps and has been defined individually based on each factors of Euclidean distance, customer's order time and bulk value of the order. Then, these three factors have been combined and DCB function has been defined. In the final step, different weights have been allocated to different years and seasons and BCD function has been improved. The grouping process has been improved for three functions of Euclidean distance, DCB and BCD. This process was executed using the R software and the improved BCD function was recognized as the optimum grouping function. Then, using DMT model, customer behavior has been analyzed at each part and the proper distribution policies have been defined. Results indicate a significant cost reduction (32%) in spare-parts distribution costs for ISACO.

*Corresponding author, Mohammad Mehdi Sepehri
Email: mehdi.sepehri@modares.ac.ir
یوهودگری از کمپیوتر خوشه بندی مشتریان برای توزیع قطعات یدکی با

کلمات کلیدی:
الگوریتم خوشه بندی مشتریان،
مدیریت ارتباط با مشتریان,
k-means

1. مقدمه

خوشه بندی مشتریان برای مشتریان مصرف در محصولات و خدمات متعددی که در یک صنعت، ایجاد شده و از این طریق از بهترین راه‌های کسب اطلاعات بی‌پردازی می‌باشد.

مطروح در حوزه مدیریت ارتباط با مشتریان است، این مفهوم به وسیله داراها و اطلاعات واقعی توزیع قطعات یدکی در حوزه مدیریت ارتباط با مشتریان، اختیارهای مختلف که از ارتباط مشتریان با محصولات و خدمات استفاده می‌شود.

خوشه بندی مشتریان در حوزه کسب و کار بسیار می‌تواند به این منظور از مفاهیم اصلی که در این زمینه استفاده می‌شود و با توجه به حوزه مدیریت ارتباط با مشتریان استفاده می‌شود.

مطالعه کلیه

نویسنده مقاله: دکتر محمد حسینی سپهری
عوام هنیه علمی
mehdi.sepehri@modares.ac.ir

ダウکارگز، دانشجوی دکتری دانشگاه تربیت مدرس
M_kargari@modares.ac.ir

References

References
به کمک الگوریتم های تحلیل گروهی درگیری، می‌توانیم بهبودی نتایج را در تحقیقات علمی و تربیتی بدست آوریم.
همجینی اگر رکورد
برای مشتریان شهر ۱ شامل
باشد و گروه کالا و
goodgorupi = { gia| gia∈G}
ارزش حجمی هر گروه کالا به رابطه
باشد شاخص دو
moneyset = { mia| a=1,2,…,|| goodgorupi ||}
شهر تا تبادل نقاطی مشتریان دو شهر به کمک رابطه (۱)
تعداد محاسبه می‌شود.

\[
\text{sim}(C_j, C_i) = \frac{\sum_{a=1}^{s} \sum_{b=1}^{s} m_a \times m_b \times \delta(g_a, g_b)}{\sum_{a=1}^{s} \sum_{b=1}^{s} m_a \times m_b}
\]

\[
\text{DCB}(C_j, C_i) = 1 - \text{sim}(C_j, C_i) \quad C_j \neq C_i
\]

\[
\text{DCB}(C_j, C_i) = 0 \quad C_j = C_i
\]

(۴)

برای انتخاب شهر نهایی مورد نیاز
مشتریان و ارزش حجمی نقاطی مشتریان هر شهر در میزان
کاهش هزینه‌های حمل و نقل شرکت ایسکو ناتایرگاندار است. برای
مثال اگر گروه کالای A B در سال شواد و
کمتر با گروه کالای A C در سال شواد، و استعداد نقاطی دو گروه
باشد. از این واقعه هم جینی
که در گروه کالای Bکالای A

\[
S(g_{ia}, g_{ib}) = \frac{\gamma(g_{ia}, g_{ib})}{\gamma(g_{ia}, g_{ib}) + S(g_{ia}, g_{ib})}
\]

(۵)
کلیدهای کلاسیک k-means

در الگوریتم k-means، ابتدا عدد n عناصر برای n زیر مجموعه معین کلیدهای مسیری انتخاب می‌شود و سپس عدد N کلیدهای معین مسیری انتخاب می‌شود. بعد از تخصیص همه مراکز خوش‌نامه مسیری، دو همکاری اعضای مراکز خوش‌نامه هدایت می‌شوند و اعضای جدید از همکاری اعضای مراکز خوش‌نامه تخصیص می‌یابند. این کار تا زمانی که مراکز خوش‌نامه ناب ادامه می‌یابد خلاصه می‌شود.

این مراحل در نمودار (1) نشان داده شده است.

شکل 1. الگوریتم خوش‌بندی k-means

در این مثال خوش‌بندی از المعادله (4) استفاده شده است. فاصله مشتریان هر شرکت به جامعه مشتریان هر شرکت یافته است. در نهایت، نشان داده شده است که با همه مراکز خوش‌نامه مسیری مشتریان بهتر باهم بهبود پیدا خواهند کرد.

اگر رکورد اولیه مشتریان شهر C1 شامل و (Codecity, Locationplan, Demandtime) مطلق استریو مشتریان شهر یا یک رکورد در برای مشتریان شهر C1 شامل و (Codecity, Locationplan, Demandtime) مطلق استریو مشتریان شهر یا یک رکورد در برای مشتریان شهر C1 شامل و (Codecity, Locationplan, Demandtime)

Location plan = [(X1, Y1), (X2, Y2), ..., (X_L, Y_L)]

در حالت مشتریان شهر یا یک رکورد در برای مشتریان شهر C1 شامل و (Codecity, Locationplan, Demandtime) مطلق استریو مشتریان شهر یا یک رکورد در برای مشتریان شهر C1 شامل و (Codecity, Locationplan, Demandtime)

Location plans = [(X_{i_1}, Y_{i_1}), (X_{i_2}, Y_{i_2}), ..., (X_{i_L}, Y_{i_L})] = [(X_{i_1}, Y_{i_1}), (X_{i_2}, Y_{i_2})]
\[\delta_{nm} = \text{sim}(C^n, C^m) \]
\[I_n = \sum_{c_i \in 01} \text{Dist}(C_i, C^n) \]
\[\alpha(C_i, C_j) = \frac{\text{Maxd}(C_i, C_j) - d(C_i, C_j)}{\text{Maxd}(C_i, C_j)} \]
\[p(K) = \frac{1}{K} \sum_{n=1}^{K} \{ \text{Min} \left\{ \frac{h_n^C + h_{m}^C}{\delta_m} \right\} \} \]
به‌عنوان گره‌ی این مشتریان برای توسعه قطعات به‌دکارا روبه‌روی داده... محمد‌هده‌ی سیه‌ری و مهرداد کارگری

برنامه این معیار، ارزش هر مشتری امتیازه را می‌توان به وسیله رابطه (18) تعیین نمود.

\[V(C_i) = W^D \cdot D(C_i) + W^T \cdot T(C_i) + W^M \cdot M(C_i) \]

(18)

در معادله (18) مقدار (\(D(C_i) \) و (\(T(C_i) \)، (\(M(C_i) \)) به ترتیب \(D_i \) و \(T_i \) و \(M_i \) ارزش‌های امتیازه مشتری به توجه به معیارهای \(D_i \) و \(T_i \) و \(M_i \) امتیازه را در \(W^D \) و \(W^T \) و \(W^M \) و \(W \) به همراه \(W_i \) و \(T_i \) و \(M_i \) به ترتیب نشان می‌دهد. با توجه به معیارهای \(W^D \) و \(W^T \) و \(W^M \) و \(W \) به ترتیب نشان می‌دهد، مقدار فصلی مشتری به همراه فصلی مصرف‌های مشتری، با توجه به معیارهای \(W^D \) و \(W^T \) و \(W^M \) و \(W \) به ترتیب نشان می‌دهد. با توجه به معیارهای \(W^D \) و \(W^T \) و \(W^M \) و \(W \) به ترتیب نشان می‌دهد، مقدار فصلی مشتری به همراه فصلی مصرف‌های مشتری، با توجه به معیارهای \(W^D \) و \(W^T \) و \(W^M \) و \(W \) به ترتیب نشان می‌دهد.

\[D(C_i) = \frac{Q^D - Q^{D _Min}}{Q^{Max} - Q^{D _Min}} \]

(19)

\[T(C_i) = \frac{Q^T - Q^{T _Min}}{Q^{Max} - Q^{T _Min}} \]

\[M(C_i) = \frac{Q^M - Q^{M _Min}}{Q^{Max} - Q^{M _Min}} \]

(20)

در روابط (19) مقدارابیر امتیازه مشتری / منطقه (\(C_i \) هستند.

\[V(O^w) = W^D \cdot W(O^w) + W^T \cdot W(O^w) + W^M \cdot M(O^w) \]

(21)

\[W(O^w) = \sum_{C_i} D(C_i) / \parallel O^w \parallel \]

\[T(O^w) = \sum_{C_i} T(C_i) / \parallel O^w \parallel \]

\[M(O^w) = \sum_{C_i} M(C_i) / \parallel O^w \parallel \]

(22)

به‌عنوان گره‌ی این مشتریان برای توسعه قطعات به‌دکارا روبه‌روی داده... محمد‌هده‌ی سیه‌ری و مهرداد کارگری

\[\sum \limits_{i} C_{i} = 1 \]

\[\sum \limits_{i} C_{i} = 1 \]

(23)

\[\sum \limits_{i} C_{i} = 1 \]

(24)

\[\sum \limits_{i} C_{i} = 1 \]

(25)

\[\sum \limits_{i} C_{i} = 1 \]

(26)

\[\sum \limits_{i} C_{i} = 1 \]

(27)

\[\sum \limits_{i} C_{i} = 1 \]

(28)

\[\sum \limits_{i} C_{i} = 1 \]

(29)

\[\sum \limits_{i} C_{i} = 1 \]

(30)

\[\sum \limits_{i} C_{i} = 1 \]

(31)
4-打败网络中性化
F(k) محقق است که این زده به توجه به نظر خیرگان و تعداد دادهها تعیین شده است. بین
مقدار معیار توابع همبود سطح یک منظوره کمک تقوم. مهمترین عامل مقدار
زیر است که به شکل این اثر داشته شده تا زیر
به شکل این اثر دашت
به اهمیت این منیفیکه‌ها به رای یافته‌هایی در اثر مانی‌ریزی در نظر گرفته شده است. سپس با مقدار فاصله مکانی $M(O^r)$، $M(O^f)$ و ارزش حجمی $V(O^r)$ ارزش چهار تایی تعیین می‌گردد. نتایج حاصل به صورت جدول (۳) امده است:

<table>
<thead>
<tr>
<th>شماره خوشه</th>
<th>میانگین فاصله</th>
<th>میانگین ارزش</th>
<th>تعداد مشتریان</th>
<th>متوسط در خوشه</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>۰/۱۷</td>
<td>۰/۴۱۷</td>
<td>۵۵</td>
<td>۰/۴۲۷</td>
</tr>
<tr>
<td>۲۰</td>
<td>۰/۱۸</td>
<td>۰/۴۲۷</td>
<td>۴۰</td>
<td>۰/۴۱۷</td>
</tr>
<tr>
<td>۳۰</td>
<td>۰/۱۷</td>
<td>۰/۴۷۱</td>
<td>۳۰</td>
<td>۰/۴۳۷</td>
</tr>
<tr>
<td>۴۰</td>
<td>۰/۱۸</td>
<td>۰/۵۷۱</td>
<td>۲۵</td>
<td>۰/۴۳۷</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰/۱۷</td>
<td>۰/۵۷۱</td>
<td>۲۰</td>
<td>۰/۴۳۷</td>
</tr>
<tr>
<td>۶۰</td>
<td>۰/۱۸</td>
<td>۰/۶۷۱</td>
<td>۱۵</td>
<td>۰/۴۳۷</td>
</tr>
<tr>
<td>۷۰</td>
<td>۰/۱۷</td>
<td>۰/۷۱۱</td>
<td>۱۰</td>
<td>۰/۴۳۷</td>
</tr>
<tr>
<td>۸۰</td>
<td>۰/۱۸</td>
<td>۰/۷۷۱</td>
<td>۷</td>
<td>۰/۴۳۷</td>
</tr>
<tr>
<td>۹۰</td>
<td>۰/۱۷</td>
<td>۰/۷۷۱</td>
<td>۶</td>
<td>۰/۴۳۷</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۰/۱۸</td>
<td>۰/۸۷۱</td>
<td>۵</td>
<td>۰/۴۳۷</td>
</tr>
</tbody>
</table>

استراتژیهای توزیع در هر خوشه یا در انتخاب با واحدهای ارزش هر کالا را به صورت جداگاهی محاسبه و سپس بر میانگین ارزش پس از تحلیل انجام شده بر روی خوشه‌ها و محاسبه ارزش هر خوشه استراتژیهای توزیع استخراج می‌گردد برای تعیین

نشبیه بین الیه مهندسی صنایع و مدیریت تولید شریک مسیر ۱۳۹۱ جلد ۲3 شماره ۲
W = α1 + α2 + ... + αn = 1

M. Building Data Mining Applications for CRM.

1. Alex Berson, Stephen Smith, Kurt Thearling,

3. Hsiao-Fan Wang, Tai-Kuo Hong, 1.

[13] Jiawei Han, Micheline Kamber, Department of computer Science, University of Illinois at Urbana – champaign, www.cs. Uic.edu/~hanj.