A heuristic method based on simulation and design of experiments for performance improvement of assembly line is presented in this paper. In the proposed method, all effective factors on the performance of an assembly line are specified using the expert's point of view and then a 2k factorial design is used for the selection of the most effective factors. Also a factorial design is applied for assessment of interaction among important factors and comparison of different levels. A simulation method is employed for evaluating the performance of proposed alternatives instead of using real case. A straightforward assembly line analysis is presented and exemplified in this work by extracting and analyzing effective factors of an auto light company. Number of workstations, operators and speed of machines are chosen as the main factors. Next to the identification of different levels using factorial design, the method showed significant improvement on the assembly line of auto light company.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 2, All Rights Reserved
یک روش ابتكاری برای تجزیه و تحلیل خط موئن‌تاز بر مبنای شیب‌سازی و طراحی آزمایش‌ها

حسن حسینی نسب، وحید مهدوی اصل و محمدصادر فلاح نژاد*

چکیده:

در این مقاله یک روش ابتكاری برای شیب‌سازی و طراحی آزمایش‌ها برای بهبود عملکرد خط موئن‌تاز معرفی شده است. این روش معرفی شده با نام موئن‌تاز تاچ‌گذار بر عملکرد خط موئن‌تاز را با استفاده از اثر افزایش طبقه شیب‌سازی فضاهای سیسکی در جریان، تأثیر مثبتی بر عملکرد خط موئن‌تاز دارد. این روش به این صورت عمل می‌کند که عملکرد خط موئن‌تاز به‌طور مستقل از اثرات تغییرات طبیعی آب و هوایی بهبود پیدا کند. این روش بنابراین می‌تواند به بهبود عملکرد خط موئن‌تاز کارخانه‌گر داد.

کلمات کلیدی:
شیب‌سازی، گسترش‌پیشانی، طراحی آزمایش‌ها، حیات‌ورزی، بالاترین خط موئن‌تاز

1. مقدمه

روش طراحی آزمایش‌ها کاربرد وسیعی در زمینه‌های مختلف با دارد که از این امر به‌خوبی می‌باشد. در سیستم‌های تاچ‌گذار برای جبران خطا، بهبود عملکرد خط موئن‌تاز طراحی آزمایش‌ها از اهمیت مهم جبران خطا بهبود عملکرد یک فرآیند است. این روش به‌طور پیش‌بینی شده باعث بهبود عملکرد خط موئن‌تاز است. تأثیر این روش بر عوامل مختلف برای جبران خطا به‌طور کلی بهبود عملکرد خط موئن‌تاز است. تأثیر این روش بر عوامل مختلف برای جبران خطا به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

کلیدواژه‌ها:

- شیب‌سازی
- گسترش‌پیشانی
- طراحی آزمایش‌ها
- حیات‌ورزی
- بالاترین خط موئن‌تاز

پیشنهاد مقاله:

پیشنهاد مقاله برای یک سیستم تاچ‌گذار برای جبران خطا بهبود عملکرد خط موئن‌تاز است. این روش به‌طور پیش‌بینی شده باعث بهبود عملکرد خط موئن‌تاز است. تأثیر این روش بر عوامل مختلف برای جبران خطا به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

برنامه‌ریزی و تولید شیب‌ساز برای جبران خطا بهبود عملکرد خط موئن‌تاز است.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد از اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد اجرای این روش بهبود عملکرد خط موئن‌تاز به‌طور کلی بهبود عملکرد خط موئن‌تاز است.

توجه شود که، هر چه باعث بهبود عملکرد خط موئن‌تاز کارخانه‌گر بود.

نتایج و نتیجه‌های:

نتایج و نتیجه‌های بعد اجرا
کمیته کردن تعداد استخراج‌های کاری و بیش‌ترین کردن همواری حجم کار بین داخل استخراج‌های کاری را می‌توان از طریق قرار داده‌ای انتخاب کرد. به‌طور کلی، در این روش همکاری از کارگر به جای همکاری از کارگر به‌طور جداکننده سازه‌ها کاهش داده می‌شود. در نتیجه، به‌طور کلی بهره‌خوری در محدوده‌های مختلف از طریق استخراج‌های کاری را به‌طور کلی بهره‌خوری حداکثر سازی می‌شود. به‌طور کلی، بهره‌خوری به‌طور کلی بهره‌خوری حداکثر سازی می‌شود.

1. Chemical Engineering
2. Materials Processing Technology
3. Engineering Structures
4. permanent mold casting
در این مقاله، یک روش ابتکاری برای تجزیه و تحلیل خط مونتاژ از آزمایشگاههای طراحی از صنعت که به‌منظور کنترل و اطمینان خط مونتاژ برای بهبود عملکرد خط مونتاژ کار به‌کارهای است. در بخش ۲ کامپیوتر روش ابتکاری، توضیح داده شده که شامل: اطلاعات خط مونتاژ، کاراکتری مورد مطالعه، مدل شبیه‌سازی خط مونتاژ و نحوه تعیین انتخاب ان تریکه‌شناسی و گرایش عوامل تأثیرگذار تجزیه و تحلیل طرح عمومی است. نتایج این تحقیق در بخش ۴ امده است.

۲. روش ابتکاری

مدیران برای تصمیم‌گیری‌های خود همواره نیازمند ابزارهای کارآمد و قابل اطمینان می‌باشند. در اینجا یک روش نظا مند برای کمک به مدیران خط مونتاژ در بهبود عملکرد سیستم تولید معرفی شده است. در کارخانه‌های عمومی متعادلی بر روی بیشترین فراوانی، در بازار عمومی و بهبود یکی از این روش‌ها، با انتخاب فنون و راهکارهای تفاوتی در ابعاد مدل شبیه‌سازی تأثیر می‌گذارد. با این رویکرد، در بخش ۱ از این مقاله روش ابتکاری در شکل ۱ اورده شده است.

۳. گام اول: مدل شبیه‌سازی

این مرحله مدل شبیه‌سازی به‌صورتی صورت می‌گیرد که خط مونتاژ طراحی گردیده و خروجی مدل شبیه‌سازی تعداد متحمله نهایی در یک دوره زمانی مشخص در گرایش قرار گرفته شود. در این مرحله، ابعاد مدل شبیه‌سازی با در نظر گرفتن فاکتور فشرده باینیش برای مدیران شبیه‌سازی می‌تواند با آزمون فرض زیر انتهاگره باشد.

\[
\sum_{n=1}^{N} x_n = x_{M} = \text{تعداد محصول نهایی تولید شده در خط مونتاژ واقعی}
\]

روزکار ۱ ام:

\[
\sum_{n=1}^{N} x_n = x_{R} = \text{تعداد محصول نهایی برای یک ساعت ام جدا مدل شبیه‌سازی}
\]

خط مونتاژ در اجرای آزمایشگاه:

\[
\sum_{n=1}^{N} x_{M} = n_{M} = \text{تعداد زیستگی مدل شبیه‌سازی (30% ≥ n_{M})}
\]

\[
\sum_{n=1}^{N} x_{R} = n_{R} = \text{تعداد روزکاری (30% ≥ n_{R})}
\]

شکل ۱: فلوجارته کامپیوتر روش ابتکاری

در این مقاله هر روزکار ۸ ساعت در نظر گرفته شده است.
کام ۴ تغییر سطوح مونتری‌بندی عوامل
سطح ممکن مونترین‌بندی عوامل انتخاب شده در گام ۳ توسط افراد خبره و کارشناسان خط مونتاژ مشخص گردید. در این مرحله می‌توانند سطح‌های نیز برای کرایه در ۰.۰۵ درصد احتمال در طبقه‌بندی پیاده کردن این خط مونتاژ تقلید یکدیگر باشد. مثلاً اگر عمالت کارگر بی‌میانه از مونترین‌بندی عوامل انتخاب شد، آنگاه با توجه به شرایط کارخانه، کارشناس بالیعی کند که ممکن است می‌تواند بارهای آن در نظر گرفته شود.

گام ۵ تغییر طرح عاملی
مدل طراحی آزمایش‌های عامل را با در نظر گرفتن تعداد محصول تولید شده به عنوان متغیر پاسخ بر روی مدل شیپسازی و مدل مونترین‌بندی بررسی می‌شود. مدل مونترین‌بندی در هر اجرای کامل با تکرار طبقاتی، تمام نظرات تکراری‌های حاصل از سطوح عوامل مورد نظر بررسی می‌شود. فاکتور مدل از طریق تحلیل باقی‌مانده‌ها ارائه می‌شود. در صورت رد کام‌های طراحی آزمایش‌ها، گام فوق باید بعد از رفع عيب آن تکرار شود. در غیر این صورت به گام ۶ برود.

گام ۶ بسته‌سازی و پشتیبانی عامل
نتایج از تحلیل واریانس سطح عامل ۵ تجزیه و تحلیل گردید. نمونه‌ای از اثربخشی و عدم اثربخشی عوامل برای کرایه با تحلیل نتایج طرح عاملی است. اثر اصلی یکی از مونترین‌بندی عوامل و اثرات اکثریت آنرا با مقایسه متغیر پاسخ انتخاب گردید. از این عوامل با توجه به سیاست‌های مدیریتی، انتخاب گردید.

۱ Factorial Design
۲ Main Effect

تغییر سطوح مونترین‌بندی عوامل با این فرض که معنی‌داری از انتخاب بی‌میانه در نظر می‌گیریم، تعداد محصول نهایی تولید شده در خط مونتاژ واقعی (x) و میانگین تعداد محصول نهایی در مدل شیپسازی خط مونتاژ (x) دارای توزیع ترتیبی باشد، آماره T دارای توزیع t با درجه آزادی ν است [14].

\[T = \frac{(R_x - M_x)}{\sqrt{S^2_R/n_R + S^2_M/n_M}} \]

\[v = \frac{S^2_R/n_R + S^2_M/n_M}{n_R + 1 + S^2_R/n_R + S^2_M/n_M} \]

در این مرحله فاکتورهایی که از نظر افراد خبره و کارشناسان خط مونتاژ در همواره عملکرد خط مونتاژ می‌باشند، شناسایی می‌گردد. این کار می‌تواند از طریق افراد، مسئول کارخانه با افراد خبره و یا دکتر مراقبت‌ها صورت گرفد. کارشناسان تمام عوامل تاثیر گذار در عملکرد خط مونتاژ بررسی می‌شود. در حالی که در غیر این مورد، نیاز به تطبیق کارشناس در این مورد نظر گرفته شود، عملکرد روش انتخابی بهتر خواهد بود.

کام ۲ شناسایی عوامل تاثیرگذار
در این مرحله فاکتورهایی که از نظر افراد خبره و کارشناسان خط مونتاژ در همواره عملکرد خط مونتاژ می‌باشند، شناسایی می‌گردد. این کار می‌تواند از طریق افراد، مسئول کارخانه با افراد خبره و یا دکتر مراقبت‌ها صورت گرفد. کارشناسان تمام عوامل تاثیر گذار در عملکرد خط مونتاژ بررسی می‌شود. در حالی که در غیر این مورد، نیاز به تطبیق کارشناس در این مورد نظر گرفته شود، عملکرد روش انتخابی بهتر خواهد بود.

کام ۳ اجرای طرح عاملی
دو سطح برای هر یک از عوامل به‌دست آمده از گام ۲ در نظر گرفته شود. با توجه به محدودیت‌های امکان‌پذیری هر عامل سعی شود تا در سطح انتخاب شده بیشترین فاصله را داشته باشد. مثلاً عامل تعیینی نیروی انسانی خط مونتاژ در طرح عاملی ۳ به طراحی حداقل تعداد نیروی انسانی و حداقل تعداد نیروی آسانسی در نظر گرفته شود.

طرح عاملی ۳ را با در نظر گرفتن، تعداد محصول تولید شده در خط مونتاژ به عنوان متغیر پاسخ بر روی مدل شیپسازی بسته
کلیه قطعات از ابتدا تهیه می‌شوند. قطعات جرگ اتومیل در بین استیگانجها بازگشتند و در این خصوص هر اتومیل تعداد محصول نهایی استیگانج با توجه به میزان فرضی برای مسایل‌سازی‌ها در جدول 1 آمده است.

شکل 2 نمودار مونتزا جرگ اتومیل

مدل شبیه‌سازی خروجی‌های سیستم واقعی و متعلقات بیشتر از مدل شبیه‌سازی است. زیرا در دنبال واقع عمده‌ای اعتنایی ناشی از غلبه کنترل و جویدارهای نتایج آزمون. مواردی مانند‌گی‌ها در جدول 1 آمده است.

شکل 2 نمودار مونتزا جرگ اتومیل

اگر در مدل‌سازی مونتزا کارخانه تولید جرگ اتومیل مدل مفهومی با میزان توانا و منابع‌سازی‌ها مدل شبیه‌سازی و استفاده‌کننده‌ی آن جهت پیش‌بینی کارایی انجام خواهد داد. طراحی گراید برای مدل کردن استفاده‌ی که یک نرم افزار Arena انتخاب مورد واحدهایهای ارتباطی با استفاده از داده‌های آماری حداکثری مسایل‌سازی خط 3 نرم افزار استفاده شده است. پردازش توزیع احتمال و پارامترهای آن از ابرای Nuisance factors توزیع استفاده می‌شود. پردازش این اطلاعات با استفاده از داده‌های آماری حداکثری مسایل‌سازی خط Arena نرم‌افزار استفاده شده است. مدل شبیه‌سازی مورد باین‌پینی 9 را گرفته و برای اشکال زدایی آن از استیگانج استفاده شد. شبیه‌سازی تصوری از طریقه‌ی کارکردین مدل شبیه‌سازی میده ترم افزار 9 با عبور مدل شبیه‌سازی نمایش داده می‌شود. روندی است که مشخص می‌کند. این مدل شبیه‌سازی مجدداً حاکم بر مدل را نشان میدهد.

با مقایسه طریقه‌ی کردن نشان‌داده در مدل شبیه‌سازی با خط مونتزا واقعی خطا‌های منطقی مدل رفع گردید. بعد از باین‌پینی مدل شبیه‌سازی آن از طریقه کارایی استابتور سنجی روندی است که مشخص می‌کند. این مدل شبیه‌سازی مجدداً حاکم بر مدل را نشان میدهد.

c

1 Entity
2 Verification
3 Validation

جدول 1. بررسی تفاوت معناداری میانگین فرضی و میانگین واقعی

p-value	α	v	T	نماد تعداد	انحراف معنی	میانگین تعداد محصول به‌همت	میانگین تعداد محصول به‌هم‌کار
0.1/0.05	118 162	nM nR	SM SR	xM xR	474/4	423/8	0/10

شکل 3. توزیع و فاصله فاصله در نرمال

طرح اطلاعات ارائه شده در جدول 1 نشان می‌دهد که تعداد محصولات به‌هم‌کاری نسبت به محصولات به‌هم‌کاری از همیار مورد بررسی قرار گرفتند.

۳.۴ طراحی آزمایش‌ها

در اغلب آزمایش‌ها مطالعه‌های گروهی و یا چند عامل مورد نظر است. طرح‌هایی شامل یک تفاوت معناداری در میانگین آزمایشهای محصول می‌شود که یکی از طرح‌هایی مربوط به میانگین می‌شود. وسایل سایر محققان در مقایسه با طرح‌هایی که میانگین آزمایش‌ها مقایسه وجود داشته باشند، مشابه در این مالکه با هدف استفاده از طرح وسایل به‌کار برده می‌شود. این شتجیز می‌گردد و در نتیجه میانگین محاسبه شود که برای مثال خواننده‌ها در این مطالعه مدل‌های طراحی آزمایش‌ها به روزی مدل‌سازی‌ای است. این مدل‌سازی مدل‌های طراحی آزمایش‌ها به آزمایش‌های مدل‌سازی‌ای مورد بررسی قرار گرفتند. در این مطالعه مدل‌های طراحی آزمایش‌ها به روزی مدل‌سازی‌ای مدل‌سازی است. آزمایش‌های مورد بررسی قرار گرفتند.

۳.۵ شناسایی عوامل تأثیرگذار

برای شناسایی تمام عوامل تأثیرگذار بر عملکرد خط مواد مورد بررسی قرار گرفتند. کار لازم مشابه با لازم برای شناسایی خط مواد مورد بررسی قرار گرفتند. کار لازم مشابه با لازم برای شناسایی خط مواد مورد بررسی قرار گرفتند. کار لازم مشابه با لازم برای شناسایی خط مواد مورد بررسی قرار گرفتند. کار لازم مشابه با لازم برای شناسایی خط مواد مورد بررسی قرار گرفتند. کار لازم مشابه با لازم برای شناسایی خط مواد مورد بررسی قرار گرفتند.
ملا در مورد تعداد ایستگاه‌های کاری با توجه به فضای موجود در کارخانه و ماهیت فعالیت‌ها در سطح 5 و 6 ایستگاه کاری انتخاب شد.

با توجه به تعداد سطوح انتخاب شده در طرح عمليه 12 تیمار ایجاد گشت. با فرض نیبراندی توزیع فارلی‌ها، پارامترهای جدید توزیع مشخص شده و تغییرات مورد نیاز بر روی مدل شیب‌سازی اعمال شد و برای هر تیمار یک مدل شیب‌سازی بدست آمد. مدل‌های شیب‌سازی بدست آمده برای هر تیمار بار اجرا گشت و خروجی های آن در جدول طراحي آزمایشي عاملی نشان از 14 برای تحلیل وارد شد (جدول 2). در Minitab

این مدل طراحی آزمایش‌ها تعداد محصول نهایی به عنوان متغیر پاسخ در نظر گرفته شد. ستون اول جدول 2 ترتیب انجام آزمایش‌ها را از 1 تا 10 نشان می‌دهد که به صورت تصادفی انتخاب شده‌اند. ستون دوم مشخص کننده بلژیکا می‌باشد، چون در مدل شیب‌سازی مدل نام‌گذاری شاخته شده و قابل کنترلی که بر روی متغیر پاسخ تاثیرگذار پایش و جدول نشان داده، تنا ویک بلژیکا در نظر گرفته شده است. ستون سوم جدول شامل اعداد 1 و 3 که این ترتیب سرعت تعداد نیروی انسانی 15 و 23 نفر نشان می‌دهد. ستون چهارم جدول معرف سرعت مانشین‌ها، بینی 1 معادل سرعت استاندارد مانشین‌ها و 2 معادل حداکثر سرعت مانشین‌ات می‌باشد. ستون پنجم جدول تعداد ایستگاه‌های کاری، بینی 1 معادل 5 ایستگاه و 2 معادل 6 ایستگاه است، ستون آخر نشان می‌دهد تعداد محصول نهایی تولید شده در هر اجرا با همان خروجی مدل شیب‌سازی شده‌است.

مینیتوب

مدل 2 تحلیل واریانس برای طرح 2 عاملی

<table>
<thead>
<tr>
<th>مدل</th>
<th>اعداد</th>
<th>SS</th>
<th>SS محاسبه</th>
<th>MS</th>
<th>پاسخ</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارگر</td>
<td>2</td>
<td>364039</td>
<td>364039</td>
<td>364039</td>
<td>340694.63</td>
</tr>
<tr>
<td>ماشین</td>
<td>1</td>
<td>42000</td>
<td>42000</td>
<td>42000</td>
<td>78613.91</td>
</tr>
<tr>
<td>کارگر*ماشین</td>
<td>1</td>
<td>138924</td>
<td>138924</td>
<td>138924</td>
<td>260031.20</td>
</tr>
<tr>
<td>ماشین*کارگر</td>
<td>2</td>
<td>5427</td>
<td>5427</td>
<td>5427</td>
<td>5078.54</td>
</tr>
<tr>
<td>کارگرماشینکارگر</td>
<td>1</td>
<td>1548</td>
<td>1548</td>
<td>1548</td>
<td>2897.49</td>
</tr>
<tr>
<td>ماشینکارگرماشین</td>
<td>2</td>
<td>3544</td>
<td>3544</td>
<td>3544</td>
<td>3317.04</td>
</tr>
<tr>
<td>خطای</td>
<td>108</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول 2 قسمتی از جدول طراحی عاملی 14 عامل در نرم افزار 14

<table>
<thead>
<tr>
<th>Std Order</th>
<th>Blocks</th>
<th>A(Operators)</th>
<th>B(Machines)</th>
<th>C(Work Stations)</th>
<th>Number of product</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>487</td>
</tr>
<tr>
<td>77</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>563</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>564</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>563</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

مدل 3 تحلیل واریانس برای طرح 3 عاملی

برای اجرای طرح عمالي بر روی عوامل ذکر شده تعداد سطوح ممکن باید با نظر مدنیان و سربرسان خط مونتاژ انتخاب گردد. عامل نیروی انسانی در سطح 5.1 و 33 سرعت مانشین‌ات در 2 سطح سرعت استاندارد و حداکثر سرعت و تعداد ایستگاه‌های کاری در سطح 5 و 6 ایستگاه‌های کاری در نظر گرفته شد. برای انتخاب سطوح ممکن هر از این عوامل مدل و سربرسان خط شرایط کارخانه‌ها در نظر گرفته‌اند.
برای ارزیابی کلیات مدل طراحی آزمایش‌ها از تحلیل باقیمانده‌ها استفاده گردیده‌است. شکل 5 نشان می‌دهد که آزمایش مدل 1 از تشخیص ناپایداری از نظر نسبی است. استاندارد تابع مدل در این مدل می‌باشد. نسخه‌های باقی‌مانده‌ها و روز اغاز مدل 1 نشان می‌دهد که این گروه در این مدل برای تیمارها نسبت به سایر گروه‌ها ناپایداری ندارند. برای تحلیل و نتایج طرح عاملی تحلیل و رایانش انجام شده بر روی خروجی‌های مدل‌های شبیه‌سازی در جدول 2-آمده است. همان‌گونه که در جدول تحلیل و رایانش مشاهده می‌گردد، هر سه عامل تعداد نیروی انسانی، سرعت ماشین‌آلات و تعداد ایستگاه‌های کاری به طور معناداری بر
شکل 7 نمودارهای اثرات مقابل عوامل

و طراحی آزمایش‌ها برای تجزیه و تحلیل خروجی مونتاژ استفاده می‌کند.

این روش تمام عوامل را که احتمالاً موجود بود در عملکرد سیستم خواهد شد، در نظر می‌گیرد. سپس مقدار مونتاژ عوامل را انتخاب می‌کند به تغییر در مقدار خروجی کمتر می‌پیامد. نتایج بدست آمده از این روش با توجه به استاندارد آن از طریق روش‌های آماری قابل اطمینان است. مطالعه موردی صورت گرفته در کارخانه تولید چراغ‌الosg دخترانه این روش را در ایجاد بهبود در عملکرد مونتاژ نشان داد. روش آموزشی‌هایی که در این مقاله به طور مشترک دارای بالاترین سطح متوسط محسوب شدند.

فهرست

1. مونگو، د. «دالاسی؛ تحقیق در عملکرد سیستم و بهبود مونتاژ»، انتشارات دانشگاه علم و صنعت ایران، جلد 1، صفحه 347-311، 1382.
2. بیگن، گری؛ «کارنی، جان؛ تحقیق مالی شناسی و تغییراتی که در عوامل اقتصادی اثر دارند»، انتشارات علمی دانشگاه صنعتی شریف، صفحه 15-22، 1382.
3. ایزائی، مهیج، واکنش، ایالی، اسامی، یاسین، «بایانات و اثراتAMA مهندسی» انتشارات تهران، جلد 2، صفحه 282-242، 1386.
4. نشیمند تولیدی مهندسی صنایع و مدیریت تولید، شریف، 1391-1392، جلد 12-11، شماره 2.

