Evaluation and Ranking the Relative Importance of Design Requirements by Combining QFD and DEA Techniques (Case Study: Tile Industry of Iran)

Y. Zare Mehrjerdi*, M.S. Owlia & A. Tanha Dorodzani

Yahia Zare Mehrjerdi, Industrial Engineering Department
Mohammad Saleh Owlia, Industrial Engineering Department
Amir Tanha Dorodzani Industrial Engineering Department

Keywords
Quality Function Deployment (QFD), Data Envelopment Analysis (DEA), Customer Needs, Design Requirements, Relative Importance

ABSTRACT
This article aims to evaluate the relative importance of product design requirements in Quality Function Deployment (QFD) environment taking customer needs and producers constraints. Considering the matrix of QFD, we can take the customers needs into consideration only. However, we present a technique that can take into account the production constraints in the product design process as well as the customer needs. In this regard, the DEA technique which is a linear based model is proposed here. First, we discuss about the literature review on the context of QFD and DEA, and after explaining the combination process of these techniques a case study is represented. The tile industry case study proposed here takes into consideration the customer needs, their relative importance, constraints against the producers, and design requirements in the specified field. We evaluate not only the relationship between the customer needs and design requirements but we evaluate the relationship between the design requirements and producers constraints. Finally, by constructing the model using DEA and the regarding constraints we calculate the relative importance of design requirements.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 2, All Rights Reserved

*Corresponding author. Yahia Zare Mehrjerdi
Email: yazm2000@yahoo.com
ارزیابی و رتبه بندی اهمیت نسبی الگومات‌های مهاجم با تلفیق مدلهای DEA و QFD

یحیی زارع مهرچری*، محمد صالح اولیا و امیر تنها درودزنی

چکیده:

در این مقاله با توجه به اهمیت نسبی الگومات‌های مهاجم در عملکرد تولید، در نظر گرفته شد که مدل QFD به یک مدل تکنیکی کاربردی از شهرت در صنعت کیفیت و سرمایه‌کاری مشخصات و مشخصات از طریق محدودیت‌های DEA، محدودیت‌های آن الگومات‌های مهاجم، تأثیر نقش رهبری و روش‌های نظارت در حضور مثابهای و فعالیت‌های مدیریت ارائه می‌شود. به‌طور کلی این مقاله اثرات دو مدل QFD و DEA در ارزیابی و ترتیب رتبه بندی الگومات‌های مهاجم را در صنعت کیفیت و سرمایه‌کاری را بیان می‌نماید.

کلمات کلیدی:

QFD (کنترل کیفیت)، DEA (برنامه‌ریزی تصمیم‌گیری)، الگومات مهاجم، اهمیت نسبی الگومات‌های مهاجم، مدیریت کیفیت و سرمایه‌کاری

1 مقدمه

مشتری و مشتری مداوی از جمله مباحث بر اهمیت و از موضوعات جالب توجه در ابزار مدیریت است. در محيط پردرام و رقابتی امر، سازمان‌هایی در عرصه قرار گرفته و باید به نرم‌کننده نیازهای مشتری گونه‌سیفت به سایر رقبای بار برای ایجاد ایجاد رفتار در محدود به شور در اثر آنها خیال محیط محیط و خدمات در مرحله اول نیازمند شناخت نیازهای، خدمات آنها و سپس انتخاب آن

تاریخ وصول: 89/12/25
تاریخ تصویب: 90/11/15

* بی‌پیشه مسئول مقاله: دکتر یحیی زارع مهرچری، دانشکده
Yazm2000@yahoo.com

دکتر محمد صالح اولیا، دانش‌پژوهان، دانشگاه یزد
owliams@gmail.com

امیر تنها درودزنی، دانشجوی کارشناسی ارشد مهندسی صنایع، دانشکده
Atanha63@yahoo.com

نشریه بین المللی مهندسی صنایع و مدیریت تولید، شهريور 1391- جلد 23- شماره 2

ISSN: 2008-4870
http://IJIEPM.iust.ac.ir/
3. گسترش عملکرد کیفیت

یکی از ابزارهای کیفی جهت دستیابی به نیازهای و خواص‌های QFD یا مشتری‌اند است که یکی از مهم‌ترین ابزارهای مدیریت محصول محسوب می‌شود و برای کسب اطمینان از این ابزار مورد استفاده قرار می‌گیرد.

در این پژوهش به شرح قسمتی از این ابزار جامعه مشتریان و مشتری‌های ایرانی و سایر تولیدکنندگان محصولات فنی مربوط به تولید محصولات فنی در ایران پرداخته شده است.

در این پژوهش تا پایان میلاد 1399/8/22 (دی/مبارک) به پایان می‌رسد و در این مدت با توجه به نیازهای و خواص‌های مشتری‌اند، ت.Dial. 24(7)1.2009

1. New Product Development
2. Total Quality Management
3. Total Examination
4. House Of Quality
5. Customer Requirements
6. Design Requirements

نشانده بین المللی مهندسی صنایع و مدیریت، شیراز، 1391-8-22، شماره 3-20
یحیی زارع مهرجودی، محمد صالح اولیا، امیر تنها درودزنی

تولید نیز یکی از مهم‌ترین ابزارهای QFD یکی از ابزارهای کیفیت در صنعت تولید محصولات فنی محسوب می‌شود و برای کسب اطمینان از این ابزار مورد استفاده قرار می‌گیرد.

در این پژوهش به شرح قسمتی از این ابزار جامعه مشتریان و مشتری‌های ایرانی و سایر تولیدکنندگان محصولات فنی مربوط به تولید محصولات فنی در ایران پرداخته شده است.

در این پژوهش تا پایان میلاد 1399/8/22 (دی/مبارک) به پایان می‌رسد و در این مدت با توجه به نیازهای و خواص‌های مشتری‌اند، ت.Dial. 24(7)1.2009

1. New Product Development
2. Total Quality Management
3. Total Examination
4. House Of Quality
5. Customer Requirements
6. Design Requirements

نشانده بین المللی مهندسی صنایع و مدیریت، شیراز، 1391-8-22، شماره 3-20
یحیی زارع مهرجودی، محمد صالح اولیا، امیر تنها درودزنی
اروی داده‌ی ۱۲۱ به‌مدت از داده متقابل یا همبستگی داده، در حالی که ماتریس خانه، می‌تواند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌تواند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌تواند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌تواند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌تواند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌تواند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌تواند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌تواند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبстگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌توانند در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌تومنان در یک مدل مربوط به همبستگی داده، در حالی که ماتریس خانه، می‌تومنا...
ارزیابی و رتبه‌بندی نسبی ازامت‌های مصرفی محصول با...

محمد صالح اولیا و امیر تنها‌ار دودزینی

179

dmudcr

cobb-douglas

done bankman 1/12

\[\text{Efficiency} = \frac{\text{Outputs}}{\text{Inputs}} \]

\[\text{Efficiency} = \frac{\text{Weighted SUM of Outputs}}{\text{Weighted SUM of Inputs}} \]

\[\text{Efficiency of Unit} = \frac{\sum_{j=1}^{m} V_{j} y_{j}}{\sum_{j=1}^{m} V_{j} x_{j}} \]

\[\text{Max} h_{j} = \sum_{i=1}^{n} \frac{u_{i} y_{i}}{V_{j}} \]

\[\text{s.t.} \quad \sum_{i=1}^{n} u_{i} y_{i} \leq 1 \] \[u_{i}, V_{j} \geq 0 \]

\[\text{که در آن:} \]

\[Y_{j} \] مقدار خروجی \[V_{j} \] مقدار ورودی \[u_{i} \] وزن تخصیص داده شده بحرجان \[x_{i} \] وزن تخصیص داده شده به ورودی \[\delta \] تعداد واحد ها \[\varepsilon \] پیک مقدار غیر مناسبی وسیعی

\[J_{0} + k \text{ توزین مدل بانکر-چارنژر و رودر باformal} \]

\[\text{CCR} \]

\[\text{BCC} \]

\[\text{BCC-CCR} \]

\[\text{Banker} \]

\[\text{Returns-To-Scale} \]

\[\text{banker}, \text{charnes}, a, \text{cooper}, w.w., \text{banker} \]

\[\text{cobb-douglass} \]

\[\text{lean-tyef} \]

\[\text{strength constant} \]

\[\text{farrell efficiency frontier} \]

\[\text{decision making unit} \]

\[\text{cooper} \]

\[\text{rhodes} \]

\[\text{banker} \]

\[\text{charnes}, a, \text{cooper}, w.w., \text{banker} \]

\[\text{return-to-scale} \]
Primal model:
\[
\begin{align*}
\text{Max } h_0 &= \sum_r u_r y_{r0} \\
\text{s.t. } & \sum_i v_{ri} y_{ri} = 1 \text{ (say)} \\
& \sum_i u_r y_{ri} - \sum_i v_{ri} y_{ri} \leq 0 \quad i = 1, 2, \ldots, n \\
& -V_r \leq -\varepsilon \quad i = 1, 2, \ldots, m \\
& U_r \leq -\varepsilon \\
\end{align*}
\]

Dual Model:
\[
\begin{align*}
\text{Min } Z_0 &= -\varepsilon \sum_r x_{ri} + \varepsilon \sum_i e_i \\
\text{s.t. } & x_{ri} + \sum_j y_{rij} \lambda_j = 0 \quad i = 1, \ldots, m \\
& -s_r + \sum_j y_{rij} \lambda_j = y_{rij} \\
& \lambda_j, s_r, e_i \geq 0, Z_0 \text{ unconstrained}
\end{align*}
\]

1. Golany
2. Roll
3. Assurance Region
به‌عنوان نسبی در نوشتار به این شکل می‌توانند به کار رود:

\[\max \sum_{r=1}^{k} u_{r0} y_{r0} \]

\[s.t. \quad v_{0} = 1, \sum_{j=1}^{k} u_{r0} y_{rj} - v_{0} \leq 0, \quad j = 1, 2, \ldots, n; \quad u_{r0}, v_{0} \geq 0, \quad r = 1, 2, \ldots, k. \]

که ضرایب برای ورودی فرضی ثابت \(v_{0} \) می‌باشند. به‌طور کلی، اگر \(y_{rj} \) را به‌عنوان داده یا فرضی انتخاب نمی‌کنیم، بهتر است، که در معادلات \(U_{r0} = d_{r0} u_{r0} \) هر \(r \) مشخص می‌شود. اگر \(y_{rj} \) را به‌عنوان داده یا فرضی انتخاب نمی‌کنیم، بهتر است، که در معادلات \(U_{r0} = d_{r0} u_{r0} \) هر \(r \) مشخص می‌شود. اگر \(y_{rj} \) را به‌عنوان داده یا فرضی انتخاب نمی‌کنیم، بهتر است، که در معادلات \(U_{r0} = d_{r0} u_{r0} \) هر \(r \) مشخص می‌شود.

5. تشخیص مدل‌های مختلف برای محاسبه این تکنیک

برای این حالت، از امتیاز‌های اضافی وارد نمی‌شود.

\[\max \sum_{r=1}^{k} d_{r0} y_{r0} \]

\[s.t. \quad u_{r0} \sum_{j=1}^{k} d_{rj} y_{rj} \leq 1, \quad j = 1, 2, \ldots, n; \quad u_{r0}, v_{0} \geq 0 \]

به‌عنوان نسبی در نوشتار به این شکل می‌توانند به کار رود:

\[\max \sum_{r=1}^{k} d_{r0} y_{r0} \]

\[s.t. \quad u_{r0} \sum_{j=1}^{k} d_{rj} y_{rj} \leq 1, \quad j = 1, 2, \ldots, n; \quad u_{r0}, v_{0} \geq 0 \]
از آنجایی که $k \leq n$ می باشد، در مدل یک جایگاهی به صورت $\bar{v}_j = \frac{1}{x_j}$ انجام می گیرد و مدل نهایی به صورت زیر به دست می آید:

$$\begin{align*}
\text{max} \quad & u_{10} \sum_{j=1}^{k} d_j y_j \\
\text{s.t.} \quad & u_{10} x_0 \left(\sum_{j=1}^{k} d_j y_j - \bar{v}_j \right) \leq 1, \\
& j = 1, 2, \ldots, n, \quad u_{10}, v_0 \geq 0.
\end{align*}$$

با توجه داشته که x_0 و y_j تابعی به مدل DR_0 مربوط به x_0 به ترتیب $u_{10} x_0 \left(\sum_{j=1}^{k} d_j y_j - \bar{v}_j \right)$ در مدل معرفی شده از آنجایی این x_0 مربوط به DR_0 برابر با $u_{10} x_0 \left(\sum_{j=1}^{k} d_j y_j - \bar{v}_j \right)$ در مدل نهایی می‌باشد.

قضیه 2: فرض می‌کنیم که n مساوی ۲ و یک فاکتور ورودی اضافی وجود دارد. همچنین اهمیت DR_0 در مقایسه با آن وارد ورودی اضافی، به وسیله ماتریس زیر به نشان داده شده است:

$$\begin{bmatrix}
1 \\
1
\end{bmatrix}$$

که در آن ضریب $x_{n+1} = \frac{u_{10} x_0 \left(\sum_{j=1}^{k} d_j y_j - \bar{v}_j \right)}{x_0}$ به‌عنوان یک فاکتور اضافی می‌باشد. اگر میزان اهمیت DR_0 که در قسمت قبل در مورد آن بحث به دست آمد، اهمیت DR_0 به‌عنوان DR_0 استفاده شود. اهمیت DR_0 به‌عنوان DR_0 متساوی با DR_0 به دست می‌آید:

$$\begin{align*}
\text{max} \quad & u_{10} \sum_{j=1}^{k} d_j y_j \\
\text{s.t.} \quad & u_{10} x_0 \left(\sum_{j=1}^{k} d_j y_j - \bar{v}_j \right) \leq 1, \\
& j = 1, 2, \ldots, n, \quad u_{10}, v_0 \geq 0, \quad r = 1, 2, \ldots, k.
\end{align*}$$

یک نقطه اصلی این قضیه از منطق بخش قبل استفاده می‌کنیم. با وارد یک فاکتور ورودی، مدل می‌تواند به صورت زیر اصلاح شود:

$$\begin{align*}
\text{max} \quad & u_{10} \sum_{j=1}^{k} d_j y_j \\
\text{s.t.} \quad & u_{10} x_0 \left(\sum_{j=1}^{k} d_j y_j - \bar{v}_j \right) \leq 1, \\
& j = 1, 2, \ldots, n, \quad u_{10}, v_0 \geq 0, \quad r = 1, 2, \ldots, k.
\end{align*}$$

تکنیک ۵: مطالعه موردی (تصنیع کاشی و سرامیک) و اجرای

دستورالعمل‌های تاریخی زیادی در کشور برخورد به بودجه نمونه‌بندی کارها به انتخاب و انتخاب در مدل. این دستورالعمل‌های تاریخی ممکن که در بالا فراوانی سلیقه جامعه شامل انتخاب برخوردی از مزیت‌های فراوانی تولیدی از جمله مواد اولیه، سوخت، نوردی، نیروی انسانی و غیره طالبات از اهمیت ورودی برخوردی و رشد فراوانی را در گروه صنعت کاشی غیرقابلی به‌چنین اختصاص داده است. تغییر فرهنگ صورت و انتخاب از مصالح مغز و منابع در ساختان‌نیز، مشارکت دولت در ساخت و سازهای قدرتدهی یافتن بودن مشکل و مفهومیت ورود آن باعث شد که تولید کاشی و سرامیک به‌عنوان چشمگیری توسه‌ای بپاید. در این تحقیق به‌عنوان بودجه نادرد در بحث ادوات موضوع ایجاد برتری موثرتری در جستجوی فناوران و سرامیک برخوردار، این کار با مارکت متعادل بپیماندگی ها و پیمان‌کاری‌ها، کارهای عمده فرمان و خریداری در این صنعت در دو مرحله شباهت انجام شد پس از مطالعات و یک‌پاره‌های انجام شده، مهم‌ترین نیازهای مشتریان به عنوان گام اول از این صنعت به صورت زیر لیست شد:
با توجه به جدول ۱، طرح و رنگ به عنوان مهمترین مشخصه‌های کیفی مورد نظر مشتریان و خدمات پس از فروش به عنوان کم‌هیات رتبه‌بندی و رنگ مشخص شد. پس از شناسایی، رنگ مصرف و خدمات پس از فروش در این استادی نشان داده شد. این بنا به این‌طور که در گزارش‌های مربوط به پرسشنامه‌های اجتماعی و خدمات استفاده شده بود، این کاربرداران راهب‌اندازی و مشتریان گروه ۱ از اهداف اصلی بودند.

| جدول ۱: اهمیت نیازمندی‌های مشتریان در صنعت کاشی و سرامیک |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| نیازمندی‌ها | مشخص | کاشی | سرامیک |
| میزان اهمیت | ۱ | ۲ | ۳ | ۴ |
| مراکز زیستگاه | ۲ | ۱ | ۳ | ۴ |
| پیکرهای سه‌بعدی | ۴ | ۱ | ۲ | ۳ |
| رنگ | ۳ | ۴ | ۱ | ۲ |
| طرح | ۱ | ۴ | ۲ | ۳ |
| انتخاب و استفاده | ۴ | ۱ | ۲ | ۳ |
| سروه | ۲ | ۴ | ۱ | ۳ |

با توجه به جدول ۱، طرح و رنگ به عنوان مهم‌ترین مشخصه‌های کیفی مورد نظر مشتریان و خدمات پس از فروش به عنوان کم‌هیات رتبه‌بندی و رنگ مشخص شد. پس از شناسایی، رنگ مصرف و خدمات پس از فروش در این استادی نشان داده شد. این بنا به این‌طور که در گزارش‌های مربوط به پرسشنامه‌های اجتماعی و خدمات استفاده شده بود، این کاربرداران راهب‌اندازی و مشتریان گروه ۱ از اهداف اصلی بودند.
جدول 2. روابط اشکال و میزان اهمیت آنها

<table>
<thead>
<tr>
<th>اشکال</th>
<th>بدن رابطه</th>
<th>قیمت و خرید فوق متوسط</th>
<th>کم</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>CR2</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>CR3</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>CR4</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>CR5</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>CR6</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>CR7</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>CR8</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>CR9</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>CR10</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

نیازمندی‌های مشتریان و کاربرد و پیاده سازی آسان با عوامل خروجی، هزینه، عملکرد محیطی، توسعه دهنده و تولید کردن و پیاده

Ax در آخرین مرحله، محاسباتی تحقیق بر این اهمیت نسبی اعمال فنی با استفاده از مدل DEA قسمت سوم این مقاله برنامه‌ریزی مدل DEA به تعدادی برای DEA و داده‌های دریافتی مجدداً به گونه‌ای کاری بکار می‌انجامد. از این تعدادی مدل دریافتی مجدداً به بورسی وزن و ریاست علاوه بر تولید و دیگری ها با دانست کاشت و سرمایه‌گذاری به صورت زیر است:

\[
\begin{align*}
\text{max } & \quad 0u_{11} + 3u_{21} + 3u_{31} + 1u_{41} + 9u_{51} + 9u_{24} + 9u_{71} + 0u_{81} + 3u_{91} + 1u_{101} + 5u_{111} \\
\text{s.t.} & \quad 3v_{11} + 1v_{21} + 5v_{41} + 4v_{41} = 1 \\
& \quad 3u_{21} + 3u_{31} + 1u_{41} + 9u_{51} + 9u_{71} + 3u_{91} + 1u_{101} + 5u_{111} - 3v_{11} - 1v_{21} - 5v_{41} - 4v_{41} \leq 0 \\
& \quad 3u_{11} + 9u_{21} + 1u_{51} + 3u_{61} + 3u_{72} + 9u_{11} + 4u_{111} - 3v_{11} - 4v_{21} - 2v_{41} - 4v_{41} \leq 0 \\
& \quad 9u_{11} + 3u_{21} + 1u_{31} + 9u_{41} + 1u_{51} + 9u_{61} + 1u_{71} + 9u_{91} + 3u_{31} + 4u_{111} - 4v_{11} - 1v_{21} - 4v_{41} \leq 0 \\
& \quad 3u_{21} + 1u_{31} + 3u_{61} + 9u_{41} + 1u_{111} - 3v_{11} - 4v_{21} - 3v_{41} - 4v_{41} \leq 0 \\
& \quad 3u_{11} + 9u_{21} + 1u_{51} + 3u_{61} + 3u_{71} + 3u_{91} + 1u_{111} - 3v_{21} - 3v_{41} - 4v_{41} \leq 0 \\
& \quad 3u_{21} + 3u_{31} + 3u_{41} + 1u_{61} + 3u_{71} + 3u_{91} + 1u_{111} - 3v_{11} - 4v_{21} - 3v_{41} - 4v_{41} \leq 0 \\
& \quad 3u_{11} + 9u_{21} + 1u_{51} + 3u_{61} + 3u_{71} + 3u_{91} + 1u_{111} - 3v_{21} - 3v_{41} - 4v_{41} \leq 0 \\
& \quad 3u_{21} + 3u_{31} + 3u_{41} + 1u_{61} + 3u_{71} + 3u_{91} + 1u_{111} - 3v_{11} - 4v_{21} - 3v_{41} - 4v_{41} \leq 0 \\n& \quad 0u_{11} + 3u_{21} + 3u_{31} + 1u_{41} + 9u_{51} + 9u_{24} + 9u_{71} + 0u_{81} + 3u_{91} + 1u_{101} + 5u_{111} \leq 0
\end{align*}

نتیجه گیری:

پی از ارزیابی تحقیق رضایت مشتری از طریق QFD و بهبود محصول و خدمات می‌باشد. برای رشد و وادار به افزایش در سطح QFD در محصولات نهایی از طریق مدل win-QSB از این آزمایش با اثربخش می‌باشد.

در این تحقیق با مدل DEA که از خطر ریزی است حل قرار گرفت. در این آزمایش با اثربخش می‌باشد.

جدول 4: برآورد اهمیت نسبی الزامات فنی با نرم افزار Win-QSB

<table>
<thead>
<tr>
<th>الزامات فنی</th>
<th>اهمیت نسبی</th>
<th>الزامات فنی</th>
<th>اهمیت نسبی</th>
<th>الزامات فنی</th>
<th>اهمیت نسبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR9</td>
<td>0.690</td>
<td>DR5</td>
<td>1.000</td>
<td>DR1</td>
<td>0.590</td>
</tr>
<tr>
<td>DR10</td>
<td>0.588</td>
<td>DR6</td>
<td>0.789</td>
<td>DR2</td>
<td>0.620</td>
</tr>
<tr>
<td>DR11</td>
<td>1.000</td>
<td>DR7</td>
<td>1.000</td>
<td>DR3</td>
<td>0.710</td>
</tr>
<tr>
<td></td>
<td>0.595</td>
<td></td>
<td>0.791</td>
<td></td>
<td>0.709</td>
</tr>
</tbody>
</table>

