Utilization of Multi Period Multiple Attribute Decision Making Models by Using Regression Equations

R. Sadeghian* & S. Foroutan

Ramin Sadeghian, Assistant professor of Industrial Engineering – Islamic Azad University, South Tehran Branch
Saba Foroutan, Master of Science of Industrial Engineering – Bu Ali Sina University

Keywords
Multiple Attribute Decision Making, Multi Period, Regression Equations, TOPSIS Model

ABSTRACT
Multiple attribute decision making models which select the best alternative out of all possible alternatives are used in different environments such as community, economy, management, army, etc. In recent years most of the performed researches in multiple attribute decision making’s field have been focused on single period evaluations; while the value of attributes may not be fixing during all periods. Hence this research presents how to use a MADM model, for example TOPSIS model, in case of multi period. In this research, for describing the relations between periods, regression equations are used. The proposed model is also implemented in textile industry as a case study.

* Corresponding author. Ramin Sadeghian
Email: ramin_sadeghian@yahoo.com
اصطلاحات از مدل‌های تصمیم‌گیری چندشاخه‌ای بهصورت چنددوره‌ای با بکارگیری معادلات رگرسیونی رامین صادقیان* و صبا فروتن

چکیده:

چندشاخه‌ای تصمیم‌گیری چندشاخه‌ای که انتخاب گزینه‌برنر از گزینه‌های موجود می‌باشد. در مسائل مختلف اجتماعی، اقتصادی، مدیریتی، نظامی و ... قبل استفادهاند با توجه به ایبهک چیت سال‌های اخیر این کنونی چندشاخه‌ای بسیار مورد توجه قرار گرفته و به دلیل این اثر در افزایش تحقیقات انجام شده، تصمیم گیری فقط بر مبنای داده‌ها و شرایط موجود در یک دوره یا انجام سهند. در حالی که اطلاعات شاخه‌ای بیانگر گزینه‌های مختلف در هر دوره زمانی نمایا نتیجه نمی‌شود. TOPSIS یکی از این مدل‌های نحوه استفاده از یک روش تصمیم‌گیری چندشاخه‌ای مطرح شده است. با استفاده از روش کلیدی (MADM) TOPSIS در مدل برنامه‌ریزی پایداری سیستم مقدمه

1. مقدمه

تصمیم‌گیری در دنیای امروز یکی از مسائل مهم به‌شمار می‌رود که تصمیم‌گیری در محیط‌های مختلف روزمره است. با توجه به اینکه تمام افرادی که جامعه از مدیران ارشد کارگری تا یک دانش‌آموخته سایه‌ای در یک تصمیم‌گیری دست و پنجه نرم کرده و در تمام مراحل زندگی کاری و به‌صورت دوران همه‌انسان، هرگز از می‌باشند بهترین پیش‌بینی که امکان عرض کردن یک تصمیم‌گیری صحیح یا برگزاری تصمیم‌گیری چنددوره‌ای را می‌توان به دو دسته عمده تقسیم‌بندی نمود: تصمیم‌گیری چنددوره‌ای و تصمیم

* Yoon
3 Hwang
4 Location Analysis
5 Transportation
6 Product Design
7 Quality Control
8 Multiple Attribute Decision Making
9 Multi Period
10 Regression Equations
11 Technique for Order Preference by Similarity to an Ideal Solution
12 MCDM
13 Multiple Objective Decision Making (MODM)
1 مقاله از مدل TOPSIS استفاده می‌شود، ولیکن در سایر مدل‌های
2 نیز به‌طور مشابه کاربرد خواهد داشت.
3 در اکثر تحقیقاتی که در زمینه تصمیم‌گیری چند‌پارامتره انجام
4 شده‌است، تصمیم‌گیری به‌طور حالتی درک می‌شود که اول‌خوانی،
5 گزینه‌ها، ارزش‌سازی‌ها و مقدار گزینه‌ها با ایزی هر صفحه،
6 تماماً متعلق به یک دوام زمانی (نکرات‌هایی) بوده و گسترده‌ای
7 همکاری در طی دوره‌های دو مدتی یا طی دوره‌های یک دوره به‌کار رفته است.
8 در حالی که گام‌های این استفاده می‌باشد اطلاعات مربوط به چند
9 مدل زمانی نماینده نیوی را پیدا می‌نماید. این مدل هم‌اکنون
10 مونتاژ و راه اندازی نیروگاه‌ها به‌صورت میانگین
11 می‌باشد.
12 تصمیم‌گیری چند‌پارامتره در کته تغییرات مربوط به مقدار
13 شاخص‌ها به ایزی گزینه‌ها مختلف در طی زمان را دنبال
14 می‌گیرد، اطلاقاً تصمیم‌گیری چند‌پارامتره، یا
15 چند‌پارامتره با استفاده از مدل TOPSIS نیز در زمینه تصمیم‌گیری چند
16 پارامتره انجام شده است. زیرا در سال‌های 2008 ویژه‌کردن چند
17 مدل را برای حل مسئله تصمیم‌گیری چند‌پارامتره به
18 بر روی اعداد ماتریسی از ۲۰۰۷ الگو راهنما، ابتدا با استفاده از ۲۰
19 مهور فاصله اقلیدسی بین دو حاکم پایه و مهور تابع فاصله
20 میکروسکوپی، نشان دهنده فاصله میکروسکوپی و نشان دهنده
21 را پیدا کردند. پس برای روش مدل TOPSIS بنا بر نظر
22 دستاورد و مبهم مسئله ظرفیت مضاعف مسئله، نورالی در سال
23 مسئله تصمیم‌گیری چند‌پارامتره به ار دوی مجموعه فایز

14 Intuitionistic Fuzzy Set (IFS)
15 Dynamic Intuitionistic Fuzzy Weighted Averaging (DIFWA)
16 Uncertain Dynamic Intuitionistic Fuzzy Weighted Averaging (UDIFWA)
17 DM
18 Entropy
کام ۲ توضیح کنید، ماتریس توصیفگری تنشی‌های ریسومی در این گام که از مقدار میانگین بازده می‌باشد و نقشی دارد.

کام ۳ دارایی‌های مختلفی از میانگین یک سازمان به دست آمده، با کمک ماتریس توصیفگری زیر به صورت زیر نشان داده می‌شوند:

\[
D(t) = \begin{bmatrix}
 y_{11}(t) & y_{12}(t) & \ldots & y_{1m}(t) \\
 y_{21}(t) & y_{22}(t) & \ldots & y_{2m}(t) \\
 \vdots & \vdots & \ddots & \vdots \\
 y_{n1}(t) & y_{n2}(t) & \ldots & y_{nm}(t)
\end{bmatrix}
\]

کام ۴ تعمیم ون زن خاصیتهای بازی ماتریس توصیفگری دارایی‌های میانگین‌ها و یک سازمان‌ها می‌باشد.

کام ۵ تعبیه ون زن شاخص‌های بازی ماتریس توصیفگری دارایی‌های میانگین‌ها و یک سازمان‌ها می‌باشد.

کام ۶ توضیح کنید، ماتریس توصیفگری ریسومی در این گام که از میانگین یک سازمان به دست آمده، با کمک ماتریس توصیفگری زیر به صورت زیر نشان داده می‌شوند:

\[
W' = \begin{bmatrix}
 w'_1 & w'_2 & \ldots & w'_m
\end{bmatrix}
\]

\[
\sum_{j=1}^{m} w'_j = 1 ; t = 1, \ldots, T
\]
بطوریکه J مربوط به شاخص‌های سود و J' مربوط به شاخص‌های هزینه می‌باشد.

در این قسمت البته متوجه شد چون داده‌های مربوط به شاخص‌های مختلف هزینه‌ای و سودی به‌همین دلیل ممکن است برای هر شاخص در دوره‌های مختلف ممکن و مانکن‌ها تغییر کنند، که یکی از تقلید‌های عمده مانگی‌های رقابتی‌گری را مانند مدل TOPSIS با استفاده از این روش از این دسته‌ها استفاده کرده‌اند. استفاده از این مدل ممکن است برای داده‌های زمانی مختلف زمانی استفاده کنند. این مدل توانایی تعیین شاخص‌های ایدال و منفی تفاوتی بیشتری باشد.

ما ۵-محاسبه فاصله هر گزینه از راه‌حل ایدال منفی و راه‌حل ایدال مثبت جهت تعیین این فاصله از روش الگوریتمی به‌صورت زیر استفاده می‌گردد:

فاصله گزینه i از ایدال منفی:

$$d_i^* = \left[\sum_{j=1}^{m} (v_j(t) - v_j^*(t))^2 \right]^{1/2}, \quad i = 1, \ldots, n$$

فاصله گزینه i از ایدال مثبت:

$$d_i^+ = \left[\sum_{j=1}^{m} (v_j^*(t) - v_j(t))^2 \right]^{1/2}, \quad i = 1, \ldots, n$$

با توجه به اینکه ممکن است گزینه‌های ایدال منفی و مثبت در دوره‌های مختلف تغییر کرده و d_i^* نیز مناطق با آنها تغییر کند، با توجه به شرایطی می‌توان هر دوره را از این تغییر مجاز نمی‌دانست. اما اگر با گزینه‌های ایدال منفی بهتر است.

ما ۶-محاسبه نزدیکی‌های گزینه به مسیر تعیین می‌شود:

$$0 \leq Cl_i^* \leq 1, \quad i = 1, \ldots, n$$

$$Cl_i^* = \frac{d_i^*}{d_i^* + d_i^+}, \quad i = 1, \ldots, n$$

با توجه به اینکه ممکن است گزینه‌های ایدال منفی و مثبت در دوره‌های مختلف تغییر کرده و A^* در آنها تغییر می‌کند ممکن است مناطق باشد، برای یافتن بازه‌ای که A^* از آنها تغییر را بهتر داشته باشد، در نظر گرفته شود.

ما ۷-می‌تواند مدل مبتنی بر مسیر تعیین A^* با استفاده از مدل TOPSIS با استفاده از مدل زیر استفاده کند:

$$R_j(t) = \frac{y_j(t)}{\sqrt{\sum_{i=1}^{n} y_i(t)}} \quad j = 1, \ldots, m, \quad i = 1, \ldots, n$$

البته با توجه به اینکه $y_j(t)$ ها یک تابع به‌صورت معادله رقابتی‌گری هستند ممکن است این تابع عملیات بر روی آنها داشته باشد.

ما ۸-یافتن مسیر به‌صورت زیر می‌شود:

$$W = \begin{pmatrix} w_1 & w_2 & \cdots & w_j & \cdots & w_m \end{pmatrix} \quad \sum_{j=1}^{m} w_j^* = 1$$

و ماتریس $V(t)$ به‌صورت زیر حساب می‌شود:

$$V_j(t) = w_j R_j(t), \quad j = 1, \ldots, m, \quad i = 1, \ldots, n$$

شماره 2-شماره 23-جلد 1349-نشریه بین المللی مهندسی صنایع و مدیریت تولید، شهیریور 1348.
شامل بین المللی مهندسی صنایع و مدیریت تولید، شریف‌شهر ۱۳۹۱- جلد ۲۳- شماره ۲

استفاده از مدل‌های تعمیم‌گیری چندشاخه‌ای به صورت چنددوره‌ای

امامزاده.

پیوست (۱) آماده‌کردن

می‌تواند یک بررسی چنددوره‌ای شاخه‌ای یا چندشاخه‌ای به صورت آماده‌کردن در پیوست (۱) آماده‌کرده باشد.

کام ۲ تهیه یک ماتریس تعمیم‌گیری مناسب را برای این شاخه‌ها انجام دهید.

اکادمی

مشخص است که اگر $A_i = A - 1$ و اگر $C_i = A + 1$ می‌تواند با نوشته $A_i = A_1 - 1$ از ارایه A_2 یک ماتریس A_3 به تعداد ترکیبی کمک کند.

کام ۳ ماتریس گزارش‌های چندردی

براساس ترتیب نویسی C_i به این شکل می‌توان یکی از شاخه‌های استاندارد به این شکل از پیوست‌های داده و عمل آوردن جرم و ساخت کیف این شاخه‌ها به عنوان گروه‌های مسأله در نظر گرفته می‌شوند.

آمار

تأثیر این نوع یک مقاله یا قالیچه دستیابی

- تولید افزوده و آنالیز کیفی
- تولید پوشش بی‌اساس

مثال

با توجه به این‌که میزان کارا و پایداری که می‌تواند در این مقاله ذکر شده که در این مقاله که پیشنهادی که به این شکل ذکر شده است، طبقه‌بندی نشان داده می‌شود.

کام ۴ وزنی شاخه‌ها با توجه به هر دوره با استفاده از روش آنتروپی به‌صورت زیر به دست می‌آید:

<table>
<thead>
<tr>
<th>t</th>
<th>W_1</th>
<th>W_2</th>
<th>W_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰.۵۴۳۹</td>
<td>۰.۲۱۰۳۴</td>
<td>۰.۳۶۷۳۵</td>
</tr>
<tr>
<td>۲</td>
<td>۰.۴۴۳۴</td>
<td>۰.۱۱۳۸۷</td>
<td>۰.۱۲۱۸۷</td>
</tr>
<tr>
<td>۳</td>
<td>۰.۵۳۵۲</td>
<td>۰.۱۵۳۲۱</td>
<td>۰.۳۹۶۷۱</td>
</tr>
<tr>
<td>۴</td>
<td>۰.۴۴۳۴</td>
<td>۰.۲۰۱۴۲</td>
<td>۰.۳۵۱۱۱</td>
</tr>
<tr>
<td>۵</td>
<td>۰.۵۳۵۲</td>
<td>۰.۲۵۲۳۹</td>
<td>۰.۳۲۶۵۷</td>
</tr>
<tr>
<td>۶</td>
<td>۰.۴۴۳۴</td>
<td>۰.۳۳۴۳۴</td>
<td>۰.۳۳۴۳۴</td>
</tr>
<tr>
<td>۷</td>
<td>۰.۵۳۵۲</td>
<td>۰.۴۵۷۸۲</td>
<td>۰.۳۷۸۱۵</td>
</tr>
<tr>
<td>۸</td>
<td>۰.۴۴۳۴</td>
<td>۰.۳۷۳۱۸</td>
<td>۰.۳۷۳۱۸</td>
</tr>
<tr>
<td>۹</td>
<td>۰.۵۳۵۲</td>
<td>۰.۳۳۴۳۴</td>
<td>۰.۳۳۴۳۴</td>
</tr>
<tr>
<td>۱۰</td>
<td>۰.۴۴۳۴</td>
<td>۰.۳۷۳۱۸</td>
<td>۰.۳۷۳۱۸</td>
</tr>
</tbody>
</table>

کام ۵ با پایتن بردار وزنی ماتریس تعمیم‌گیری رگرسیونی:

$$W = \begin{bmatrix} \sum_{i=1}^{10} W_1^i & \sum_{i=1}^{10} W_2^i & \sum_{i=1}^{10} W_3^i \end{bmatrix} \times 10$$

$$= \begin{bmatrix} 0.۴۷۱۸۳۹ & 0.۲۱۰۳۴۶ & 0.۳۱۷۸۶۹ \end{bmatrix}$$
TOPSIS

گام ۴: استفاده از مدل

\[R_j(t) = \frac{y_j(t)}{\sqrt{\sum_{i=1}^{n} y_{ij}^2}}, \quad j = 1, \ldots, 3, \quad i = 1, \ldots, 4 \]

\[V_j(t) = w_j r_j(t), \quad j = 1, \ldots, 3, \quad i = 1, \ldots, 4 \]

به دلیل طولانی و پیچیده بودن عملیات این دو قسمت و معادلات به دست آمده، از سر نظر شما نمی‌شود.

گام ۵: تعیین گزینه‌های ایدهال مثبت و ایدهال منفی

برای این کار می‌توان با ترسیم توده معادلات هر شاخص، گزینه‌ها را تعیین نمود.

به دلیل استفاده از معادلات رگرسیونی، می‌توان جهت بررسی صحت معادلات، برای چندین دوره بعد از آخرین دوره نیز گزینه‌های ایدهال مثبت و ایدهال منفی تعیین نمود. در این مثال، ۱۵ دوره مورد مجازی قرار گرفت است. شکل‌های (۳) و جدول (۴) را مشاهده نمایید.

جدول ۲: می‌نمای و ماکزیم شاخه اول

<table>
<thead>
<tr>
<th>x</th>
<th>۱۲۲</th>
<th>۱۰۱</th>
<th>۱۰۰</th>
<th>۱۰۱</th>
<th>۱۲۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>v_{13}</td>
<td>v_{23}</td>
<td>v_{33}</td>
<td>v_{43}</td>
<td>v_{53}</td>
</tr>
<tr>
<td>Max</td>
<td>v_{14}</td>
<td>v_{24}</td>
<td>v_{34}</td>
<td>v_{44}</td>
<td>v_{54}</td>
</tr>
</tbody>
</table>

همانطور که مشاهده می‌شود، بازای شاخص سوم، گزینه ایدهال v_{23}, v_{33}, v_{43}, v_{53}، مثبت و ایدهال منفی تغییر می‌کند. به این صورت، برای v_{23} v_{53} مثبت می‌تواند بازهای ۱ تا ۲ تا ۳، ۴ تا ۵ و ۶ تا ۷ و ۸ تا ۹ و ۱۰ تا ۱۱ و ۱۲ تا ۱۳ منفی می‌باشد.

گام ۴-۵: تعیین قابلیت از گزینه‌های ایدهال مثبت و ایدهال منفی توجه نمایید که جویندگی d_i^+، d_i^- نیز می‌باشد در این برابر جدایی بیشتر.

جدول ۳: می‌نمای و ماکزیم شاخه دوم

<table>
<thead>
<tr>
<th>x</th>
<th>۱۲۲</th>
<th>۱۰۱</th>
<th>۱۰۰</th>
<th>۱۰۱</th>
<th>۱۲۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>v_{22}</td>
<td>v_{32}</td>
<td>v_{42}</td>
<td>v_{52}</td>
<td>v_{62}</td>
</tr>
<tr>
<td>Max</td>
<td>v_{24}</td>
<td>v_{34}</td>
<td>v_{44}</td>
<td>v_{54}</td>
<td>v_{64}</td>
</tr>
</tbody>
</table>

شکل ۱. ارزیابی اطلاعات یپ می‌نمایش شده وزنی شاخه اول

شکل ۲. ارزیابی اطلاعات یپ می‌نمایش دوم وزنی شاخه

شکل ۳. ارزیابی اطلاعات یپ می‌نمایش شده وزنی شاخه اول
نستyled text
Berlin, 1981.

پیوست‌ها
پیوست‌های اطلاعات و داده‌های ماتریس‌های تصمیم‌گیری گام 6–1. ماتریس‌های تصمیم‌گیری موجود در مطالعه موردی، به صورت جدول (1) استخراج گردید.

جدول ۵ ماتریس تصمیم‌گیری دوره ۱

<table>
<thead>
<tr>
<th>t = 1</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>792</td>
<td>5438</td>
<td>3517</td>
</tr>
<tr>
<td>A₂</td>
<td>7387</td>
<td>3572</td>
<td>1910</td>
</tr>
<tr>
<td>A₃</td>
<td>7472</td>
<td>1937</td>
<td>1242</td>
</tr>
<tr>
<td>A₄</td>
<td>7572</td>
<td>2000</td>
<td>2771</td>
</tr>
</tbody>
</table>

جدول ۶ ماتریس تصمیم‌گیری دوره ۲

<table>
<thead>
<tr>
<th>t = 2</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>840</td>
<td>3855</td>
<td>3144</td>
</tr>
<tr>
<td>A₂</td>
<td>3968</td>
<td>2556</td>
<td>6025</td>
</tr>
<tr>
<td>A₃</td>
<td>7872</td>
<td>5025</td>
<td>1449</td>
</tr>
<tr>
<td>A₄</td>
<td>4872</td>
<td>2564</td>
<td>3142</td>
</tr>
</tbody>
</table>

جدول ۷ ماتریس تصمیم‌گیری دوره ۳

<table>
<thead>
<tr>
<th>t = 3</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>600</td>
<td>2449</td>
<td>3813</td>
</tr>
<tr>
<td>A₂</td>
<td>3813</td>
<td>5253</td>
<td>78382</td>
</tr>
<tr>
<td>A₃</td>
<td>7872</td>
<td>5025</td>
<td>1449</td>
</tr>
<tr>
<td>A₄</td>
<td>4872</td>
<td>2564</td>
<td>3142</td>
</tr>
</tbody>
</table>

جدول ۸ ماتریس تصمیم‌گیری دوره ۴

<table>
<thead>
<tr>
<th>t = 4</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>659</td>
<td>3530</td>
<td>3942</td>
</tr>
<tr>
<td>A₂</td>
<td>2563</td>
<td>8180</td>
<td>7842</td>
</tr>
<tr>
<td>A₃</td>
<td>7872</td>
<td>5025</td>
<td>1449</td>
</tr>
<tr>
<td>A₄</td>
<td>4872</td>
<td>2564</td>
<td>3142</td>
</tr>
</tbody>
</table>

جدول ۹ ماتریس تصمیم‌گیری دوره ۵

<table>
<thead>
<tr>
<th>t = 5</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>700</td>
<td>5983</td>
<td>89438</td>
</tr>
<tr>
<td>A₂</td>
<td>4872</td>
<td>2564</td>
<td>3142</td>
</tr>
<tr>
<td>A₃</td>
<td>7872</td>
<td>5025</td>
<td>1449</td>
</tr>
<tr>
<td>A₄</td>
<td>4872</td>
<td>2564</td>
<td>3142</td>
</tr>
</tbody>
</table>