Keywords
Multiple Attribute Decision Making, Multi Period, Regression Equations, TOPSIS Model

ABSTRACT
Multiple attribute decision making models which select the best alternative out of all possible alternatives are used in different environments such as community, economy, management, army, etc. In recent years most of the performed researches in multiple attribute decision making’s field have been focused on single period evaluations; while the value of attributes may not be fixing during all periods. Hence this research presents how to use a MADM model, for example TOPSIS model, in case of multi period. In this research, for describing the relations between periods, regression equations are used. The proposed model is also implemented in textile industry as a case study.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 2, All Rights Reserved

* Corresponding author. Ramin Sadeghian
Email: ramin_sadeghian@yahoo.com
استفاده از مدل‌های تصمیم‌گیری چندشاخه بهصورت چنددوره‌ای با
بکارگیری معادلات رگرسیونی

رامین صادق‌پناه* و صبا فروتن

چکیده:
گیری چندشاخه. که تصمیم‌گیری چنددفه‌ای زمانی استفاده می‌شود، به‌خواهید با توجه به محیط‌های موجود، هدف یا مدل‌های مختلف اجتماعی، اقتصادی، مدیریت، نظامی و ... قابل استفاده‌اند. با توجه به اینکه طی
سال‌های اخیر مدل‌های تصمیم‌گیری چندشاخه به‌سیار مورد توجه قرار گرفته، از آن‌ها در اکثر
تحقیقات انجام‌شده، تصمیم‌گیری‌ها فقط بر مبنای داده‌ها و شرایط موجود در یک دوره انجام شده‌اند. در حالی‌که اطلاعات شاخه‌ها باید در گزینه‌های مختلف در هر دوره، زمانی، هم‌وقت و سیستمی
از این‌رو در این مقاله نحوه استفاده از مدل تصمیم‌گیری چندشاخه به‌صورت چنددوره‌ای و با کمک
معادلات رگرسیونی ارائه می‌گردد و مدل سیستم‌های به‌عنوان یک مطالعه‌محوری در
صندای ناسیج پایداری می‌شود.

کلمات کلیدی

- ترتیبی گیری چندشاخه (MADM)
- چند دوره‌ای
- معادلات رگرسیونی
- TOPSIS

1. مقدمه

توصیه گیری در دنیای امروز یکی از مسایل بسیار مهم بشر
می‌باشد که تصمیم‌گیرنده با گزینه‌های مختلف تحت میزان‌های
مختلفی روبه‌رو است. با توجه به اینکه تمام وقت یک جامعه از
در یک دوره به‌دوره و در تمام مراحل زندگی و کاری و به‌صورت روی
همراه انتخاب، بهتر می‌توان به اهمیت و ارزش یک تصمیم‌گیری
صحیح یا برد تصمیم‌گیری چنددوره‌ای از می‌توان به دو
دسته عمده تقسیم‌بندی نمود: تصمیم‌گیری چنددفه و تصمیم

*نویسنده مسئول مقاله، دکتر رامین صادق‌پناه، دانشکده مهندسی صنایع
ramin_sadeghian@yahoo.com

**صاحب‌نظر؛ دکتر صبا فروتن، گروه مهندسی صنایع، دانشگاه پویان،
saba.foroutan@gmail.com

1 Yoon
2 Hwang
3 Location Analysis
4 Human Resources Management
5 Transportation
6 Product Design
7 Quality Control
8 Multiple Attribute Decision Making
9 Multi Period
10 Regression Equations
11 Technique for Order Preference by Similarity to an Ideal Solution
12 MCDM
13 Multiple Objective Decision Making (MODM)
TOPSIS

2.1.2 TOPSIS

TOPSIS مدل یکی از مدل‌های تصمیم‌گیری چندضلعی است که به انتخاب گزینه برای بین گزینه‌های مختلف مکانی می‌پردازد. ابتدا با یک تحلیل ترکیبی، گزینه‌های تصمیم‌گیری را متشابه می‌کند و پس از تحلیل ترکیبی، گزینه‌های تصمیم‌گیری را با یک ترکیب می‌کند. در حال حاضر، این مدل در 11 امتیاز برای استخراج از انتخاب از روش آنلاین استفاده می‌شود.

بتای ماتریس تصمیم‌گیری می‌تواند به صورت زیر نشان داده شود:

\[D = \begin{bmatrix}
 A_1 & u_1 & u_2 & \cdots & u_m \\
 A_2 & x_{11} & x_{12} & \cdots & x_{1m} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 A_n & x_{n1} & x_{n2} & \cdots & x_{nm}
\end{bmatrix} \]

\[u_i = \begin{bmatrix}
 A_1 & x_{11} & x_{12} & \cdots & x_{1m} \\
 A_2 & x_{21} & x_{22} & \cdots & x_{2m} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 A_n & x_{n1} & x_{n2} & \cdots & x_{nm}
\end{bmatrix} \]

\[D = \begin{bmatrix}
 A_1 & u_1 & u_2 & \cdots & u_m \\
 A_2 & x_{11} & x_{12} & \cdots & x_{1m} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 A_n & x_{n1} & x_{n2} & \cdots & x_{nm}
\end{bmatrix} \]

14 Intuitionistic Fuzzy Set (IFS)
15 Dynamic Intuitionistic Fuzzy Weighted Averaging (DIFWA)
16 Uncertain Dynamic Intuitionistic Fuzzy Weighted Averaging (UDIFWA)
17 DM
18 Entropy

\[D = \begin{bmatrix}
 A_1 & u_1 & u_2 & \cdots & u_m \\
 A_2 & x_{11} & x_{12} & \cdots & x_{1m} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 A_n & x_{n1} & x_{n2} & \cdots & x_{nm}
\end{bmatrix} \]

\[u_i = \begin{bmatrix}
 A_1 & x_{11} & x_{12} & \cdots & x_{1m} \\
 A_2 & x_{21} & x_{22} & \cdots & x_{2m} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 A_n & x_{n1} & x_{n2} & \cdots & x_{nm}
\end{bmatrix} \]

\[D = \begin{bmatrix}
 A_1 & u_1 & u_2 & \cdots & u_m \\
 A_2 & x_{11} & x_{12} & \cdots & x_{1m} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 A_n & x_{n1} & x_{n2} & \cdots & x_{nm}
\end{bmatrix} \]

\[u_i = \begin{bmatrix}
 A_1 & x_{11} & x_{12} & \cdots & x_{1m} \\
 A_2 & x_{21} & x_{22} & \cdots & x_{2m} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 A_n & x_{n1} & x_{n2} & \cdots & x_{nm}
\end{bmatrix} \]

\[D = \begin{bmatrix}
 A_1 & u_1 & u_2 & \cdots & u_m \\
 A_2 & x_{11} & x_{12} & \cdots & x_{1m} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 A_n & x_{n1} & x_{n2} & \cdots & x_{nm}
\end{bmatrix} \]
A.M. Samadian and S.M. Fotouhi

daraz daroone, Fashale va rehate mabad hal-e nanb afzol-e gherote darkard. Fashale keik gurnegi az rehale abilad 1, abilad 2, abilad 3 va abilad 4 ke gherote.

1 Minkowski
2 Euclidean Distance
3 Anne Jordan
4 Barry Shriver
استفاده از مدل‌های تسمیم‌گری چندشاخه بهصورت چنددوره‌ای...

شماره 2- ۱۳۹۱ جلد ۲۳ صفحه ۱۴۲
با توجه به اهمیت میزان کارا بودن کاتالیزور از نقاطی، در این مقاله کاتالیزور پیشنهادی در یک مطالعه کاربردی و واقعی در صنعت نانو یا پلاستیک مورد بررسی قرار گرفته است.

مساله مورد بررسی: این مقاله به بررسی شناخته شده بوده است که در طول و ارائه صنعت نانو مایعات بیشترین دانسته‌های فیزیکی و شیمیایی از ماده فیزیکی و شیمیایی از ماده مورد بررسی قرار گرفته می‌شوند.

شکل ۱: نوسان فیزیکی در نزدیکی هر دوره با استفاده از روش آنتروپی

جدول ۱: نوسان فیزیکی در نزدیکی هر دوره

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قبل از برگرداندن وزن مانیتورینگ می‌تواند کالری کاتالیزور به مقدار میزان مورد نیاز در یک مطالعه کاربردی و واقعی در صنعت نانو و پلاستیک مورد بررسی قرار گرفته است.

شکل ۲: نوسان فیزیکی در نزدیکی هر دوره با استفاده از روش آنتروپی

جدول ۱: نوسان فیزیکی در نزدیکی هر دوره

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قبل از برگرداندن وزن مانیتورینگ می‌تواند کالری کاتالیزور به مقدار میزان مورد نیاز در یک مطالعه کاربردی و واقعی در صنعت نانو و پلاستیک مورد بررسی قرار گرفته است.

شکل ۲: نوسان فیزیکی در نزدیکی هر دوره با استفاده از روش آنتروپی

جدول ۱: نوسان فیزیکی در نزدیکی هر دوره

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قبل از برگرداندن وزن مانیتورینگ می‌تواند کالری کاتالیزور به مقدار میزان مورد نیاز در یک مطالعه کاربردی و واقعی در صنعت نانو و پلاستیک مورد بررسی قرار گرفته است.

شکل ۲: نوسان فیزیکی در نزدیکی هر دوره با استفاده از روش آنتروپی

جدول ۱: نوسان فیزیکی در نزدیکی هر دوره

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قبل از برگرداندن وزن مانیتورینگ می‌تواند کالری کاتالیزور به مقدار میزان مورد نیاز در یک مطالعه کاربردی و واقعی در صنعت نانو و پلاستیک مورد بررسی قرار گرفته است.

شکل ۲: نوسان فیزیکی در نزدیکی هر دوره با استفاده از روش آنتروپی

جدول ۱: نوسان فیزیکی در نزدیکی هر دوره

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قبل از برگرداندن وزن مانیتورینگ می‌تواند کالری کاتالیزور به مقدار میزان مورد نیاز در یک مطالعه کاربردی و واقعی در صنعت نانو و پلاستیک مورد بررسی قرار گرفته است.

شکل ۲: نوسان فیزیکی در نزدیکی هر دوره با استفاده از روش آنتروپی

جدول ۱: نوسان فیزیکی در نزدیکی هر دوره

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قبل از برگرداندن وزن مانیتورینگ می‌تواند کالری کاتالیزور به مقدار میزان مورد نیاز در یک مطالعه کاربردی و واقعی در صنعت نانو و پلاستیک مورد بررسی قرار گرفته است.

شکل ۲: نوسان فیزیکی در نزدیکی هر دوره با استفاده از روش آنتروپی

جدول ۱: نوسان فیزیکی در نزدیکی هر دوره

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قبل از برگرداندن وزن مانیتورینگ می‌تواند کالری کاتالیزور به مقدار میزان مورد نیاز در یک مطالعه کاربردی و واقعی در صنعت نانو و پلاستیک مورد بررسی قرار گرفته است.

شکل ۲: نوسان فیزیکی در نزدیکی هر دوره با استفاده از روش آنتروپی

جدول ۱: نوسان فیزیکی در نزدیکی هر دوره

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قبل از برگرداندن وزن مانیتورینگ می‌تواند کالری کاتالیزور به مقدار میزان مورد نیاز در یک مطالعه کاربردی و واقعی در صنعت نانو و پلاستیک مورد بررسی قرار گرفته است.

شکل ۲: نوسان فیزیکی در نزدیکی هر دوره با استفاده از روش آنتروپی

جدول ۱: نوسان فیزیکی در نزدیکی هر دوره

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قبل از برگرداندن وزن مانیتورینگ می‌تواند کالری کاتالیزور به مقدار میزان مورد نیاز در یک مطالعه کاربردی و واقعی در صنعت نانو و پلاستیک مورد بررسی قرار گرفته است.

شکل ۲: نوسان فیزیکی در نزدیکی هر دوره با استفاده از روش آنتروپی

جدول ۱: نوسان فیزیکی در نزدیکی هر دوره

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قبل از برگرداندن وزن مانیتورینگ می‌تواند کالری کاتالیزور به مقدار میزان مورد نیاز در یک مطالعه کاربردی و واقعی در صنعت نانو و پلاستیک مورد بررسی قرار گرفته است.

شکل ۲: نوسان فیزیکی در نزدیکی هر دوره با استفاده از روش آنتروپی

جدول ۱: نوسان فیزیکی در نزدیکی هر دوره

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
کام ۵- استفاده از MCDM

کام ۶- بهبود طولاتی و پیچیده‌تری بودن عملیات این دو قسمت و معادلات بهبودی آنها، از این مشاهده شده است.

کام ۷- تعریف: گزینه‌های ایده‌آل مثبت و ایده‌آل منفی، برای این کار می‌توان با ترسیم نمودار معادلات هر شاخه، گزینه‌ها را تعریف نمود.

به دلیل استفاده از معادلات رگرسیونی، می‌توان جهت بررسی صحت معادلات، برای چندین دوره بعد از آن‌ها نرگزینه‌های ایده‌آل مثبت و ایده‌آل منفی تعریف نمود. در این مقاله
تا ۱۵ دوره مورد محاسبه قرار گرفته است. شکل‌های ۵–۴ و
۷–۲ تا (۳) و جدول (۳) را مشاهده نمایید.

<table>
<thead>
<tr>
<th>x</th>
<th>۱،۲</th>
<th>۳،۷،۱۲</th>
<th>۱۳،۱۴،۱۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>v_{13}</td>
<td>v_{23}</td>
<td>v_{33}</td>
</tr>
<tr>
<td>Max</td>
<td>v_{43}</td>
<td>v_{53}</td>
<td>v_{63}</td>
</tr>
</tbody>
</table>

محاسبات که مشاهده می‌شود، بازی شاخه‌ای شاخص سوم، گزینه ایده‌آل
v_{43}، v_{53}، v_{63}، مثبت و ایده‌آل منفی تغییر می‌کند. به این صورت که
باید گزینه ایده‌آل مثبت در مجموعه همزمان با گزینه ایده‌آل منفی در ۱۵ تا
۱۲۷ و از ۱۴ تا ۱۷ تا ۱۰ و از ۹ تا ۱۵ تا ۱۰ و از ۹ تا ۱۵ می‌باشد.

کام ۴- تعیین قابلیت از گزینه‌های ایده‌آل مثبت و ایده‌آل
منفی نشان داد که چون از سه تا ۱۲ و از ۱۵ تا
۱۷ در سه باره ۱۰ و از ۱۵ تا ۱۷ نرگزینه می‌کند،
نیز می‌باشد در این باره بطور جدایگان به صورت

<table>
<thead>
<tr>
<th>x</th>
<th>۱،۲</th>
<th>۳،۷،۱۲</th>
<th>۱۳،۱۴،۱۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>v_{11}</td>
<td>v_{21}</td>
<td>v_{31}</td>
</tr>
<tr>
<td>Max</td>
<td>v_{41}</td>
<td>v_{51}</td>
<td>v_{61}</td>
</tr>
</tbody>
</table>

شکل ۱- ارزیابی اطلاعات پی‌مقياس سه از منیتماتیک شاخه ورنی شاخه اول

شکل ۲- ارزیابی اطلاعات پی‌مقياس سه ورنی شاخه دوم

شکل ۳- ارزیابی اطلاعات پی‌مقياس سه ورنی شاخه اول

<table>
<thead>
<tr>
<th>x</th>
<th>۱،۲</th>
<th>۳،۷،۱۲</th>
<th>۱۳،۱۴،۱۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>v_{22}</td>
<td>v_{32}</td>
<td>v_{42}</td>
</tr>
<tr>
<td>Max</td>
<td>v_{52}</td>
<td>v_{62}</td>
<td>v_{72}</td>
</tr>
</tbody>
</table>
5 نتیجه‌گیری

در این مقاله ابتدا کریمی نمونه‌هایی از مدل‌های تصمیم‌گیری چند‌پارامتره را ارائه داده و سپس شکل همانگونه که مشاهده است با تغییر رتبه‌ی عوامل مانند، مدل‌های تصمیم‌گیری چند‌پارامتره را ارائه داده و کاربرد مدل‌های تصمیم‌گیری چند‌پارامتره را در این مقاله پرداخته است.

به همراه با پیشرفت در مدل‌های تصمیم‌گیری، متغیرهای مختلفی از جمله مدل‌های تصمیم‌گیری چند‌پارامتره را با پیشرفت در این مقاله پرداخته است.

1. مقدارهای مختلف از جمله مدل‌های تصمیم‌گیری چند‌پارامتره را با پیشرفت در این مقاله پرداخته است.

2. مقدارهای مختلف از جمله مدل‌های تصمیم‌گیری چند‌پارامتره را با پیشرفت در این مقاله پرداخته است.

るものهای مختلف از جمله مدل‌های تصمیم‌گیری چند‌پارامتره را با پیشرفت در این مقاله پرداخته است.

1. مقدارهای مختلف از جمله مدل‌های تصمیم‌گیری چند‌پارامتره را با پیشرفت در این مقاله پرداخته است.

2. مقدارهای مختلف از جمله مدل‌های تصمیم‌گیری چند‌پارامتره را با پیشرفت در این مقاله پرداخته است.

مراجع

Berlin, 1981.

جدول ۱۰ ماتریس تصمیم‌گیری دوره ۶

<table>
<thead>
<tr>
<th>t</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>۴۱۱</td>
<td>۵۱۶۸</td>
<td>۷۴۶۰۱</td>
</tr>
<tr>
<td>A₂</td>
<td>۳۲۷</td>
<td>۱۸۸۴</td>
<td>۱۴۴۱۲۲</td>
</tr>
<tr>
<td>A₃</td>
<td>۷۱۹۲</td>
<td>۸۴۹</td>
<td>۳۶۵۶۲۳</td>
</tr>
<tr>
<td>A₄</td>
<td>۶۱۷۰</td>
<td>۲۸۸۷</td>
<td>۲۱۶۸۸۱</td>
</tr>
</tbody>
</table>

جدول ۱۱ ماتریس تصمیم‌گیری دوره ۷

<table>
<thead>
<tr>
<th>t</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>۱۱۴</td>
<td>۴۸۸۵</td>
<td>۱۱۶۳۳۳</td>
</tr>
<tr>
<td>A₂</td>
<td>۴۵۸۳</td>
<td>۲۲۰۹</td>
<td>۵۵۴۴۱۴</td>
</tr>
<tr>
<td>A₃</td>
<td>۸۸۹۴</td>
<td>۸۱۵۴</td>
<td>۳۱۹۸۶۳</td>
</tr>
<tr>
<td>A₄</td>
<td>۸۸۹۹</td>
<td>۳۰۵۵</td>
<td>۲۲۵۹۹۹</td>
</tr>
</tbody>
</table>

جدول ۱۲ ماتریس تصمیم‌گیری دوره ۸

<table>
<thead>
<tr>
<th>t</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>۳۸۸</td>
<td>۴۱۷۲</td>
<td>۸۵۱۵۵</td>
</tr>
<tr>
<td>A₂</td>
<td>۲۰۷۷</td>
<td>۱۱۱۰</td>
<td>۹۳۴۷۹</td>
</tr>
<tr>
<td>A₃</td>
<td>۷۶۷۲</td>
<td>۶۵۹۷</td>
<td>۲۴۹۲۸۸</td>
</tr>
<tr>
<td>A₄</td>
<td>۸۸۹۹</td>
<td>۳۲۱۱۲</td>
<td>۹۹۳۱۴۶</td>
</tr>
</tbody>
</table>

جدول ۱۳ ماتریس تصمیم‌گیری دوره ۹

<table>
<thead>
<tr>
<th>t</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>۳۱۸۱</td>
<td>۳۸۷۲۸۱</td>
<td></td>
</tr>
<tr>
<td>A₂</td>
<td>۱۴۲۲</td>
<td>۱۰۴۴۳۲</td>
<td></td>
</tr>
<tr>
<td>A₃</td>
<td>۸۶۹۹</td>
<td>۶۵۴۹</td>
<td>۴۱۹۸۶۹</td>
</tr>
<tr>
<td>A₄</td>
<td>۱۱۴۰۷</td>
<td>۲۸۰۰</td>
<td>۲۱۰۴۵۰۱</td>
</tr>
</tbody>
</table>

جدول ۱۴ ماتریس تصمیم‌گیری دوره ۱۰

<table>
<thead>
<tr>
<th>t</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>۹۰۸</td>
<td>۲۸۸۷</td>
<td>۹۶۸۲۰</td>
</tr>
<tr>
<td>A₂</td>
<td>۳۵۶۳</td>
<td>۱۱۸۸</td>
<td>۱۰۵۰۴۴</td>
</tr>
<tr>
<td>A₃</td>
<td>۱۰۶۸</td>
<td>۷۰۰۳</td>
<td>۵۷۴۱۷۷</td>
</tr>
<tr>
<td>A₄</td>
<td>۱۱۲۰۷</td>
<td>۸۳۰۰</td>
<td>۲۸۹۴۱۷</td>
</tr>
</tbody>
</table>

جدول ۵ ماتریس تصمیم‌گیری دوره ۱

<table>
<thead>
<tr>
<th>t</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>۲۹۲</td>
<td>۵۶۴۵</td>
<td>۳۹۶۷۱</td>
</tr>
<tr>
<td>A₂</td>
<td>۳۸۸۷</td>
<td>۲۸۸۷</td>
<td>۵۵۷۱۰</td>
</tr>
<tr>
<td>A₃</td>
<td>۲۸۸۷</td>
<td>۸۰۴۷</td>
<td>۱۰۶۸۶۷</td>
</tr>
<tr>
<td>A₄</td>
<td>۴۸۸۷</td>
<td>۴۴۰۰</td>
<td>۱۱۳۹۹۲</td>
</tr>
</tbody>
</table>

جدول ۶ ماتریس تصمیم‌گیری دوره ۲

<table>
<thead>
<tr>
<th>t</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>۶۶۰</td>
<td>۱۹۱۳</td>
<td>۲۸۸۶۸</td>
</tr>
<tr>
<td>A₂</td>
<td>۲۵۶۷</td>
<td>۶۰۷۵۵</td>
<td>۴۶۸۷۲</td>
</tr>
<tr>
<td>A₃</td>
<td>۳۴۳۵</td>
<td>۳۹۵۵</td>
<td>۱۴۴۴۱۰</td>
</tr>
<tr>
<td>A₄</td>
<td>۲۸۸۷</td>
<td>۲۴۴۵</td>
<td>۱۳۹۹۹۸</td>
</tr>
</tbody>
</table>

جدول ۷ ماتریس تصمیم‌گیری دوره ۳

<table>
<thead>
<tr>
<th>t</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>۴۵۰</td>
<td>۴۴۹۹</td>
<td>۲۸۸۱۳</td>
</tr>
<tr>
<td>A₂</td>
<td>۲۸۸۷</td>
<td>۲۸۸۷</td>
<td>۸۷۳۸۸</td>
</tr>
<tr>
<td>A₃</td>
<td>۲۴۵۱</td>
<td>۵۰۵۰</td>
<td>۱۰۶۸۶۷</td>
</tr>
<tr>
<td>A₄</td>
<td>۲۸۸۷</td>
<td>۴۴۸۲</td>
<td>۱۳۹۹۹۹</td>
</tr>
</tbody>
</table>

جدول ۸ ماتریس تصمیم‌گیری دوره ۴

<table>
<thead>
<tr>
<th>t</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>۵۱۳</td>
<td>۵۳۸۰</td>
<td>۳۴۹۲۲</td>
</tr>
<tr>
<td>A₂</td>
<td>۲۸۸۷</td>
<td>۲۸۸۷</td>
<td>۸۷۳۸۸</td>
</tr>
<tr>
<td>A₃</td>
<td>۲۴۵۱</td>
<td>۵۰۵۰</td>
<td>۱۰۶۸۶۷</td>
</tr>
<tr>
<td>A₄</td>
<td>۲۸۸۷</td>
<td>۴۴۸۲</td>
<td>۱۳۹۹۹۹</td>
</tr>
</tbody>
</table>

جدول ۹ ماتریس تصمیم‌گیری دوره ۵

<table>
<thead>
<tr>
<th>t</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>۵۱۳</td>
<td>۵۳۸۰</td>
<td>۳۴۹۲۲</td>
</tr>
<tr>
<td>A₂</td>
<td>۲۸۸۷</td>
<td>۲۸۸۷</td>
<td>۸۷۳۸۸</td>
</tr>
<tr>
<td>A₃</td>
<td>۲۴۵۱</td>
<td>۵۰۵۰</td>
<td>۱۰۶۸۶۷</td>
</tr>
<tr>
<td>A₄</td>
<td>۲۸۸۷</td>
<td>۴۴۸۲</td>
<td>۱۳۹۹۹۹</td>
</tr>
</tbody>
</table>