Utilization of Multi Period Multiple Attribute Decision Making Models by Using Regression Equations

R. Sadeghian* & S. Foroutan

Ramin Sadeghian, Assistant professor of Industrial Engineering – Islamic Azad University, South Tehran Branch
Saba Foroutan, Master of Science of Industrial Engineering – Bu Ali Sina University

Keywords

Multiple Attribute Decision Making, Multi Period, Regression Equations, TOPSIS Model

ABSTRACT

Multiple attribute decision making models which select the best alternative out of all possible alternatives are used in different environments such as community, economy, management, army, etc. In recent years most of the performed researches in multiple attribute decision making’s field have been focused on single period evaluations; while the value of attributes may not be fixing during all periods. Hence this research presents how to use a MADM model, for example TOPSIS model, in case of multi period. In this research, for describing the relations between periods, regression equations are used. The proposed model is also implemented in textile industry as a case study.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 2, All Rights Reserved
استفاده از مدل‌های تصمیم‌گیری چندشاخه بهصورت چنددوره‌ای با
باکارگیری معادلات رگرسیونی

رامین صادقیان* و صبا فروتن

چکیده:

در مسائل مختلف اجتماعی، اقتصادی، مدیریتی، نظامی و ... قابل استفاده‌اند. با توجه به اینکه طی
سال‌های اخیر مدل‌های تصمیم‌گیری چندشاخه بهبود یافته و توجه قرار گرفته، در اکثر
مطالعات انجام‌شده، تصمیم‌گیری فقط بر مبنای داده‌های شرایط موجود در یک دوره انجام شده
امن. در حالی که اطلاعات شاخص‌های پیش‌بینی‌گویی مختل‌تری در دوره‌های دوماً تخت‌الت را ترک
از آن‌ها در این مقاله نحوه استفاده از مدل تصمیم‌گیری چندشاخه بهبود یافته TOPSIS
یکی از مهم‌ترین مدل‌های چند دویه مطرح شده می‌باشد. تصمیم‌گیری در دنیای امروز یکی از...

کلمات کلیدی

· تصمیم‌گیری چندشاخه (MADM)
· چند دوره‌ای
· معادلات رگرسیونی
· TOPSIS

1. مقدمه

تصمیم‌گیری در دنیای امروز یکی از مسائل بسیار مهم و شناخته‌شده می‌باشد. به طور معمولی، که تصمیم‌گیری‌ها با گزینه‌های مختلف تحت موارد معیار
مختلفی روبرو است. با توجه به اینکه تمام افراد یک جامعه از
مدیران آزمایشگاه تا یک دانش‌آموز سال‌ها به تصمیم‌گیری دست
و پنجه نرم کردی و در تمام مراحل زندگی کاری و در حوزه‌های هنرهای انتخاب، بهترین می‌توان به اهمیت و ارزش یک تصمیم‌گیری
صحیح یا بد. تصمیم‌گیری‌های چند‌درویه‌ای را می‌توان به دو
دسته عمده تقسیم‌بندی کرد: تصمیم‌گیری چند‌درویه‌ای و تصمیم

*وبیان‌نامه مقاله دکتر رامین صادقیان، دانشکده مهندسی صنایع،
ramin_sadeghian@yahoo.com
†دانشگاه آزاد اسلامی واحد تهران جنوب، صبا فروتن، دانشکده مهندسی صنایع،
saba.foroutan@gmail.com

1 Multiple Attribute Decision Making
2 Multiple Period
3 Regression Equations
4 Technique for Order Preference by Similarity to an Ideal Solution
5 MCDM
6 Multiple Objective Decision Making (MODM)
استفاده از مدل‌های تصمیم‌گیری چند‌شاخه بهصورت چنددوره‌ی...

راهنمای صادقیان و صفاورتین

نظریه بین المللی مهندسی سابعه و مدیریت تولید، شهریور ۱۳۹۱- جلد ۲۲- شماره ۲

۱۴۱

2. تعاریف

TOPSIS مدل یکی از مدل‌های تصمیم‌گیری چند‌شاخه است که به انتخاب گزینه‌برتر از بین گزینه‌های ممکن می‌پردازد. ابتدا باید شاخص‌های گزینه‌های تصمیم‌گیری را مشخص نمود و پس از تشکیل ماتریس تصمیم‌گیری، مدل را بر اساس الگوریتم حل نمود. در این بحث برای استخراج ارزیابی شاخص‌های چند‌شاخه از روش آنتروپی استفاده می‌شود.

t_1 \quad t_2 \quad \ldots \quad t_m
\begin{bmatrix}
A_1
& A_2
& \cdots
& A_m
\end{bmatrix}

D = \begin{bmatrix}
\begin{bmatrix}
A_1 \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1m} \\
A_2 \begin{bmatrix} x_{21} & x_{22} & \cdots & x_{2m} \\
A_m \begin{bmatrix} x_{m1} & x_{m2} & \cdots & x_{mn}
\end{bmatrix}
\end{bmatrix}
\end{bmatrix}
\end{bmatrix}

\end{bmatrix}

1. Intuitionistic Fuzzy Set (IFS)
2. Dynamic Intuitionistic Fuzzy Weighted Averaging (DIFWA)
3. Uncertain Dynamic Intuitionistic Fuzzy Weighted Averaging (UDIFWA)
4. DM
5. Entropy

مطالعات از مدل TOPSIS استفاده می‌شود. هر سایر مدل‌های تصمیم‌گیری چند‌شاخه به‌صورت چنددوره‌ی...
برازش معادلات مذکور درای ضرب به عنوان یک
شکل قابل قبول تشکیل شوند. نماد اکنون معادلات باید به
توضیح افراد خبره مورد بررسی و تایید قرار گیرد. تشکیل
معادلات رگرسیون کمک می‌کند که پتانان از ماتریسی
تولید شده در یک یا متفاوت‌های نظری
استفاده نماید. اینگونه‌ای که در این شرم می‌پایست
مور دارای توجه زیاد دارد، ایستادهست که جزء خاطرات تصادفی
رگرسیون ناجی بوده از توزیع نرمال تبعیت می‌کند.

2-روش آنتروپیی

آنتروپی مفهومی است که در علوم اجتماعی، فیزیک و
تئوری اطلاعات جهت سنجش یپظومی و عدم‌هم‌پیاری یک کاره
می‌شود. در ماتریس تصمیم‌گیری آنتروپی می‌تواند
مقدار فاصله خاکی را نشان دهد. در این مقاله مقدار
یک شاخص در گذشته با (آنتروپی کمتر) باشد، این شاخص
در تصمیم‌گیری پیش‌تر است.

3. ارائه الگوریتم نحوه تشکیل و حل مدل‌های

1. تولید تصادفی گریچ

با توجه به اینکه در مدل‌های تصمیم‌گیری گریچ شاخص
ای تمام عناصر ماتریس‌ها به زمان و اسناد با گذشته
زمان می‌توانند تغییر کنند، ماتریسی‌های تصمیم‌گیری بازای
هور به صورت زیر نشان داده می‌شوند:

\[D(t) = \begin{bmatrix} y_{11}(t) & y_{12}(t) & \cdots & y_{1m}(t) \\ y_{21}(t) & y_{22}(t) & \cdots & y_{2m}(t) \\ \cdots & \cdots & \cdots & \cdots \\ y_{n1}(t) & y_{n2}(t) & \cdots & y_{nm}(t) \end{bmatrix} \] (3)

به طوری که \(y_{ij} \) تعیین‌شده معادله رگرسیون به‌دست می‌آید از
در این سه نقطه \(x \) فاصله‌ی ماتریسی تصمیم‌گیری گریچ شاخص
در دوره از روش آنتروپی. این نیاز به‌دویی ایگرد
بردار \(w \) بصری زیر تعیین می‌شود:

\[W' = \begin{bmatrix} w'_1 \\ w'_2 \\ \vdots \\ w'_m \end{bmatrix} \quad \sum_{j=1}^{m} w'_j = 1 \quad t = 1, \ldots, T \] (4)

2. تشکیل معادلات رگرسیون

با توجه به اینکه در ماتریسی تصمیم‌گیری
که \(x'_{ij} \) ماتریسی تصمیم‌گیری مربوط به دوره \(t \) می‌باشد و
مربوط به \(t \) اینی گزینه و \(t \) ایام شاخص متعلق به دوره \(t \) را
شناس می‌دهد به‌طور که \(t = 1, \ldots, T \) است.

3. تولید تصادفی گریچ

با توجه به اینکه در ماتریسی تصمیم‌گیری
که \(x'_{ij} \) ماتریسی تصمیم‌گیری مربوط به دوره \(t \) می‌باشد و
مربوط به \(t \) ایام شاخص متعلق به دوره \(t \) را
شناس می‌دهد به‌طور که \(t = 1, \ldots, T \) است.

\[x'_{ij} = \frac{1}{k} \sum_{k=1}^{k} x_{ij} \quad t = 1, \ldots, T \] (5)

می‌تواند در تحلیل ماتریسی رگرسیون‌های مدل‌های دقت‌شده که

\[^1 \text{Minkowski} \quad ^2 \text{Euclidean Distance} \]
بعضی از مدل‌های تصمیم‌گیری چندشاخه به‌صورت نیم‌دوده‌ای

\begin{equation}
W = \left\{ \frac{\sum_{i=1}^{T} W_1'}{T} \right\}, \quad j = 1, \ldots, m
\end{equation}

TOPSIS

گام ۵ استفاده از مدل TOPSIS از ارزیابی مشابه است. ماتریس تصمیم‌گیری رژسیونی را با استفاده از مدل TOPSIS که خود دارای شش مرحله بحساب می‌آید، حل نمایید:

گام ۶-۱ تبدیل ماتریس تصمیم‌گیری رژسیونی موجود به یک ماتریس مقیاس‌دهی استفاده از روش بی‌مقیاس سازی ترم

\begin{equation}
R_y(t) = \frac{y_{ij}(t)}{\sqrt{\sum_{i=1}^{m} y_{ij}(t)}}, \quad j = 1, \ldots, m, \quad i = 1, \ldots, n
\end{equation}

بنابراین به‌ویژه در بخش محدوده‌ای که به‌ین‌کننده بی‌مقیاس‌دهی می‌تواند محدوده‌ای که به‌ین‌کننده بی‌مقیас‌سازی ترم

\begin{equation}
W = \left(w_1, w_2, \ldots, w_j, \ldots, w_m \right)
\end{equation}

\begin{equation}
\sum_{j=1}^{m} w_j = 1
\end{equation}

\begin{align}
&0 \leq C_{i}^{-} \leq 1, \quad i = 1, \ldots, n \\
&\bar{C}_{i}^{-} = \frac{d_{i}^{-}}{d_{i}^{-} + d_{i}^{+}}, \quad i = 1, \ldots, n
\end{align}

\begin{equation}
A^{+} = \left\{ \max_{j \in J} v_{ij}(t) \mid j \in J \right\} = \left[v_{1j}^{+}(t) \quad v_{2j}^{+}(t) \quad \cdots \quad v_{nj}^{+}(t) \right]
\end{equation}

\begin{equation}
A^{-} = \left\{ \min_{j \in J} v_{ij}(t) \mid j \in J \right\} = \left[v_{1j}^{-}(t) \quad v_{2j}^{-}(t) \quad \cdots \quad v_{nj}^{-}(t) \right]
\end{equation}

\begin{equation}
A^{+} = \left\{ \max_{j \in J} v_{ij}(t) \mid j \in J \right\} = \left[v_{1j}^{+}(t) \quad v_{2j}^{+}(t) \quad \cdots \quad v_{nj}^{+}(t) \right]
\end{equation}

\begin{equation}
A^{-} = \left\{ \min_{j \in J} v_{ij}(t) \mid j \in J \right\} = \left[v_{1j}^{-}(t) \quad v_{2j}^{-}(t) \quad \cdots \quad v_{nj}^{-}(t) \right]
\end{equation}
اگر از اکنون $A_i = A^+ + iCl^-$ و اگر $A_i = A^- + iCl^+$ می‌شود، یعنی هرچه فاصله گیری به از راحتی ci کمتر باشد A^+ به واحدها تبدیل خواهد بود.

مطالعه موردی
با توجه به اهمیت میزان کارا بودن الگوریتم ارائه شده، در این مقاله الگوریتم پیشنهادی در یک مطالعه کاربردی و واقعی در صنعت ساخن نانوی نانو ساخت مورد بررسی قرار می‌گیرد.

1.2. تولید قالی و قابلیت دستیابی
با تولید انواع پارچه و کالاهای کشی

با تولید پوشانک به استمناش پوشانک از پوست خارج و در عمل به دنبال و ساخت کافی این شاخه از بعصور زیر به چشم می‌خورد، در نظر گرفته می‌شوند.

4. وزن شاخه‌ها

4.1. جدول وزن‌ شاخه‌ها

<table>
<thead>
<tr>
<th>t</th>
<th>W_1</th>
<th>W_2</th>
<th>W_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5429</td>
<td>0.1131</td>
<td>0.2231</td>
</tr>
<tr>
<td>2</td>
<td>0.3424</td>
<td>0.1172</td>
<td>0.2132</td>
</tr>
<tr>
<td>3</td>
<td>0.6587</td>
<td>0.1518</td>
<td>0.2269</td>
</tr>
<tr>
<td>4</td>
<td>0.6994</td>
<td>0.2116</td>
<td>0.2511</td>
</tr>
<tr>
<td>5</td>
<td>0.4421</td>
<td>0.2444</td>
<td>0.2424</td>
</tr>
<tr>
<td>6</td>
<td>0.4342</td>
<td>0.2365</td>
<td>0.2342</td>
</tr>
<tr>
<td>7</td>
<td>0.4342</td>
<td>0.2365</td>
<td>0.2342</td>
</tr>
<tr>
<td>8</td>
<td>0.3182</td>
<td>0.1614</td>
<td>0.2382</td>
</tr>
<tr>
<td>9</td>
<td>0.2972</td>
<td>0.2196</td>
<td>0.2176</td>
</tr>
<tr>
<td>10</td>
<td>0.2921</td>
<td>0.2491</td>
<td>0.2151</td>
</tr>
</tbody>
</table>

4.2. پایین بردار وزن مانیتورینگ

با استفاده از W_i می‌توانیم سطح پیشنهادی A_i را محاسبه کنیم:

$$W = \begin{bmatrix} \sum_{i=1}^{10} W_1 \sum_{i=1}^{10} W_2 \sum_{i=1}^{10} W_3 \end{bmatrix} \begin{bmatrix} 0.471839 \\ 0.210346 \\ 0.317869 \end{bmatrix}$$

سالم‌های آماری کشور مربوط به سال‌های 1348-1377 تا 1368 آزمون‌هایی و شاخص‌های مربوط به سال‌های 1348-1368 تأیید شده و در
توپسی

۱- ارزیابی اطلاعات به‌معنای شده و نزینی شاخص دوم

جدول ۴: میانیمی و ماکزیمم شاخص سوم

<table>
<thead>
<tr>
<th>x</th>
<th>۱,…,۶</th>
<th>۷,…,۱۰</th>
<th>۱۱,…,۱۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>(v_{13})</td>
<td>(v_{23})</td>
<td>(v_{33})</td>
</tr>
<tr>
<td>Max</td>
<td>(v_{43})</td>
<td>(v_{33})</td>
<td>(v_{23})</td>
</tr>
</tbody>
</table>

۲- ارزیابی اطلاعات به‌معنای شده و نزینی شاخص

\[
A^+ = \begin{bmatrix} v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ v_{31} & v_{32} & v_{33} \end{bmatrix} = \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix} \\
A^- = \begin{bmatrix} v_{41} & v_{42} & v_{13} \\ v_{51} & v_{52} & v_{23} \\ v_{61} & v_{62} & v_{33} \end{bmatrix} = \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix}
\]

همان‌طور که مشاهده می‌شود، بازای اطلاعات شاخص سوم، گزینه ایدئال \(v_{43}, v_{33}\) منفی و ایدئال منفی تغییر می‌کند. به این صورت که \(v_{23}\) برای گزینه ایدئال منفی مربوط به ارتباط ۱ تا \(3, 2\) تا ۱۳ و \(15\) تا ۱۹ و \(11\) تا ۱۵ می‌باشد.

۳- تعیین قابلیت از گزینه‌های ایدئال منفی و ایدئال منفی:

توجه نمایید که \(d_{i}^+\) در سه باره \(1, 2\) و \(3\) تا \(12\) و \(13\) تا \(15\) تا \(15\) تا ۱۷ و \(10\) تا ۱۱ تغییر می‌کند.

۴- انسجام بین المللی مهندسی صنایع و مدیریت تولید، شمایر ۲۳-۱۳۹۱-جلد ۲۳-شماره ۲
زیر تعیین شوند.

\[
d_{i_1} = \left[\sum_{j=1}^{3} (v_j(t) - v_{j_i}(t))^2 \right]^{\frac{1}{2}}, \ i = 1, \ldots, 4, \ t = 1,2 \ (17)
\]

\[
d_{i_2} = \left[\sum_{j=1}^{3} (v_j(t) - v_{j_i}(t))^2 \right]^{\frac{1}{2}}, \ i = 1, \ldots, 4, \ t = 3, \ldots, 12 \ (18)
\]

\[
d_{i_3} = \left[\sum_{j=1}^{3} (v_j(t) - v_{j_i}(t))^2 \right]^{\frac{1}{2}}, \ i = 1, \ldots, 4, \ t = 13, \ldots, 15 \ (19)
\]

\[
d_{i_4} = \left[\sum_{j=1}^{3} (v_j(t) - v_{j_i}(t))^2 \right]^{\frac{1}{2}}, \ i = 1, \ldots, 4, \ t = 7, \ldots, 10 \ (20)
\]

\[
d_{i_5} = \left[\sum_{j=1}^{3} (v_j(t) - v_{j_i}(t))^2 \right]^{\frac{1}{2}}, \ i = 1, \ldots, 4, \ t = 11, \ldots, 15 \ (21)
\]

\[
C_{i_1} = \frac{d_{i_1}^-}{d_{i_1}^- - d_{i_1}^+}, \ t = 1,2
\]

\[
C_{i_2} = \frac{d_{i_2}^-}{d_{i_2}^- - d_{i_2}^+}, \ t = 3, \ldots, 6
\]

\[
C_{i_3} = \frac{d_{i_3}^-}{d_{i_3}^- - d_{i_3}^+}, \ t = 7, \ldots, 10
\]

\[
C_{i_4} = \frac{d_{i_4}^-}{d_{i_4}^- - d_{i_4}^+}, \ t = 11,12
\]

\[
C_{i_5} = \frac{d_{i_5}^-}{d_{i_5}^- - d_{i_5}^+}, \ t = 13, \ldots, 15
\]

5 نتیجه‌گیری

در این مقاله ابتدا الگوریتم رایگان‌سازی از مدل‌های تصمیم‌گیری چند‌تایی که ورودی از گروه‌های گوناگونی وسایل از کنترل طراحی سیستم‌ها توسط سیستم‌های دیجیتال بهره می‌برد. سپس در یک مطالعه نمونه‌برداری استفاده از الگوریتم چند‌تایی که ورودی از گروه‌های گوناگونی وسایل از کنترل طراحی سیستم‌ها توسط سیستم‌های دیجیتال بهره می‌برد.

6 مراجع

[1] اسحاقی، محمد حسین، ترجمه، شریعتی، 1377، دانشگاه تهران.

Berlin, 1981.

جدول 1.1: ماتریس تصمیم‌گیری دوره ۶
\[
\begin{array}{c|ccc}
\hline
 t & u_1 & u_2 & u_3 \\
\hline
 A_1 & 711 & 5168 & 7460.1 \\
 A_2 & 320.7 & 144122 & \\
 A_3 & 8719 & 8559 & 3086.3 \\
 A_4 & 280.4 & 174881 & \\
\hline
\end{array}
\]

جدول 1.1: ماتریس تصمیم‌گیری دوره ۷
\[
\begin{array}{c|ccc}
\hline
 t & u_1 & u_2 & u_3 \\
\hline
 A_1 & 2487 & 113333 & \\
 A_2 & 3409 & 153414 & \\
 A_3 & 7119 & 319853 & \\
 A_4 & 300.5 & 313059 & \\
\hline
\end{array}
\]

جدول 1.1: ماتریس تصمیم‌گیری دوره ۸
\[
\begin{array}{c|ccc}
\hline
 t & u_1 & u_2 & u_3 \\
\hline
 A_1 & 788 & 2122 & 80515 \\
 A_2 & 2371 & 9359 & \\
 A_3 & 692 & 22662 & \\
 A_4 & 774 & 32314 & \\
\hline
\end{array}
\]

جدول 1.1: ماتریس تصمیم‌گیری دوره ۹
\[
\begin{array}{c|ccc}
\hline
 t & u_1 & u_2 & u_3 \\
\hline
 A_1 & 1115 & 14181 & 378777 \\
 A_2 & 1322 & 1844 & \\
 A_3 & 654 & 41934 & \\
 A_4 & 2800 & 414591 & \\
\hline
\end{array}
\]

جدول 1.1: ماتریس تصمیم‌گیری دوره ۱۰
\[
\begin{array}{c|ccc}
\hline
 t & u_1 & u_2 & u_3 \\
\hline
 A_1 & 988 & 280 & 9962.0 \\
 A_2 & 2533 & 1188 & 103944 \\
 A_3 & 1379 & 7383 & 58747 \\
 A_4 & 112.9 & 4300 & 469117 \\
\hline
\end{array}
\]

پیوست‌های
پیوست ۱: اطلاعات و داده‌های ماتریس‌های تصمیم‌گیری
گام ۶-۱۰ ماتریس‌های تصمیم‌گیری موجود در مطالعه موردی، به صورت جدول (۱) استخراج گردید.

جدول ۱: ماتریس تصمیم‌گیری دوره ۱
\[
\begin{array}{c|ccc}
\hline
 t & u_1 & u_2 & u_3 \\
\hline
 A_1 & 292 & 3528 & 33174 \\
 A_2 & 3387 & 3359 & 29910 \\
 A_3 & 7211 & 3529 & 17877 \\
 A_4 & 4200 & 11392 & \\
\hline
\end{array}
\]

جدول ۲: ماتریس تصمیم‌گیری دوره ۲
\[
\begin{array}{c|ccc}
\hline
 t & u_1 & u_2 & u_3 \\
\hline
 A_1 & 610 & 382 & 3144 \\
 A_2 & 2368 & 3259 & 26053 \\
 A_3 & 2355 & 502 & 14491 \\
 A_4 & 2401 & 7742 & 13398 \\
\hline
\end{array}
\]

جدول ۳: ماتریس تصمیم‌گیری دوره ۳
\[
\begin{array}{c|ccc}
\hline
 t & u_1 & u_2 & u_3 \\
\hline
 A_1 & 600 & 4449 & 28123 \\
 A_2 & 2813 & 7355 & 23388 \\
 A_3 & 2250 & 5100 & 20290 \\
 A_4 & 2828 & 5742 & 12360 \\
\hline
\end{array}
\]

جدول ۴: ماتریس تصمیم‌گیری دوره ۴
\[
\begin{array}{c|ccc}
\hline
 t & u_1 & u_2 & u_3 \\
\hline
 A_1 & 659 & 3580 & 34902 \\
 A_2 & 2199 & 2523 & 18280 \\
 A_3 & 2521 & 5134 & 17022 \\
 A_4 & 2944 & 16316 & \\
\hline
\end{array}
\]

جدول ۵: ماتریس تصمیم‌گیری دوره ۵
\[
\begin{array}{c|ccc}
\hline
 t & u_1 & u_2 & u_3 \\
\hline
 A_1 & 700 & 585 & 5538 \\
 A_2 & 792 & 3317 & 11094 \\
 A_3 & 7280 & 829 & 24948 \\
 A_4 & 5822 & 3202 & 17066 \\
\hline
\end{array}
\]