A Method for Volatility Estimation for Application in Real Options Approach

A.M. Kimiagari* & M. Akbai Nasiri

Ali mohammad Kimiagari, Assistant professor, Industrial Engineering Faculty, Amir Kabir University of Technology.
Maryam Akbari Nasiri, Ms in Financial engineering, Industrial Engineering Faculty, Amir Kabir University of Technology

Keywords
Real option analysis, Financial options, Volatility, South pars Gas field

ABSTRACT
Traditional project evaluation based on discounted cash flow analysis which ignores the upside potentials to an investment from managerial flexibility and innovation is not a suitable approach for evaluating high risk projects such as projects in oil industry. Nowadays, real options valuation approach that borrows ideas from financial options attracts the expert's attentions. In spite of the fact that experts have paid attention to this new method, applying this approach has some limitations. For applying this method successfully, we need to estimate some input parameters. One of the most important ones is volatility. Volatility is a key parameter, but it is difficult to estimate. From a traditional investment viewpoint, volatility reduces project value because it increases its discount rate via a higher risk premium. The estimation of project volatility is very complicated since there is not a historical series of project values and most of projects are done for the first time and they are irreversible. In this article a method based on present value of future cash flows that we named profitability index and Monte Carlo simulation is proposed to estimate the volatility of projects. This method is applied to estimate the volatility of south pars gas field development phase 15 & 16 as a case study.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 1, All Rights Reserved
ارائه روشی جهت تخمین پارامتر نوسان پذیری برای کاربرد در تئوری ارزش گذاری اختیارات واقعی (مطالعه موردی-پروژه های پارس جنوبی)

مریم اکبری نصیری و علی محمد کیمیاکری

چکیده:
روش های ارزیابی اقتصادی سنی مانند ریکارد و چرخه‌های نقیض تئوری پذیری های موجود در پروژه ها را بحث می‌کنند و این این باید برای ارزیابی پروژه‌های که درآمد را در برابر هزینه‌های مشاهده می‌کنند، هزینه نیستید و به‌طور اینکه پروژه را به‌طور نهایی ارزیابی کنند. برای ارزیابی این تئوری‌ها، مطالعه‌ای انجام شد.

کلمات کلیدی:
رویکرد‌های اقتصادی واقعی، اختیارات مالی، نوسان پذیری، میدان کاری پارس جنوبی

1 مقدمه
در ارزیابی پروژه‌ها عموماً از روی جریان نقدی تنظیم شده استفاده می‌شود. این روی روش پایدار سنی است که یک سیستم تصمیم‌گیری شامل باید برای انتخاب یکی از سیستم‌های مختلف هزینه‌های اختیارات مالی در حوزه‌های مختلف اقتصادی جهت حفظ نقشه‌های انتخابی پیشنهاد می‌دهد.

* Real Option Valuation
* Financial options
* volatility
* Discounted Cash Flow (DCF)
روش‌های تخمین‌برای پارامتر نوسان پذیری

1. Real options valuation (ROV)
2. Discounted Cash Flows
3. Logarithmic cash Flow Returns Approach or Logarithmic stock price

روش‌های مختلف برای تخمین نوسان پذیری را به سه دسته کلی زیر تقسیم می‌کنیم:
- روشهای مبتنی بر جریان‌های نقدی
- روشهای مبتنی در ارزیابی مالی قابل قیاس
- روشهای مبتنی بر نظریه شرکت

در ادامه روش‌های موجود در این مقاله با این دسته شرح داده شده است:

1-2. رویکرد لگاریتمی بازده جریان‌های نقدی با روش قسمت سه

لگاریتم نوسان پذیری اگرچه این روش به طور عمده برای محاسبه نوسان پذیری در دارایی‌های نقدی شونده و قابل مبادله مناسب سهام در دارایی‌های مالی به یک می‌رود، اما در بعضی موارد برای سیار دارایی‌های قابل داد و ستد مناسب قیمت کلیدی نپردازد کاربرد دارد.

اشکالاتی که در این روش وجود دارد و به این نام ایستاده می‌شود و کلمات نوسان پذیری می‌توانند نقدی تنزلی یا نقدی نزولی با جریان‌های نقدی، کم میزان نوسان پذیری را عدم‌تو به طور افزایشی نشان دهد و همچنین برای جریان‌های نقدی منفی قابل استفاده نیست، زیرا لگاریتم اعداد منفی تعریف نشده است.

روش‌های موجود در این مقاله با این دسته شرح داده شده است:

1. Cash flow base approach
2. Financial asset base approach
3. Expert Assumption Approach
4. Logarithmic cash flow Returns Approach or Logarithmic stock price

1. Real options valuation (ROV)
2. Discounted Cash Flows

جدول 1. رویکرد لگاریتمی برای جریانات تقاضا

<table>
<thead>
<tr>
<th>Time Period</th>
<th>cash flow</th>
<th>Cash Flow Relative Returns</th>
<th>Natural Logarithm of Cash Flow Returns(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$125</td>
<td>125/100=1.25</td>
<td>Ln(125/100)=0.2231</td>
</tr>
<tr>
<td>2</td>
<td>$95</td>
<td>95/125=0.76</td>
<td>Ln(95/125)=-0.2744</td>
</tr>
<tr>
<td>3</td>
<td>$105</td>
<td>105/95=1.11</td>
<td>Ln(105/95)=0.1001</td>
</tr>
<tr>
<td>4</td>
<td>$155</td>
<td>155/105=1.48</td>
<td>Ln(155/105)=0.3895</td>
</tr>
<tr>
<td>5</td>
<td>$146</td>
<td>146/155=0.94</td>
<td>Ln(146/155)=-0.0598</td>
</tr>
</tbody>
</table>

برای شروع بیشترین آن، از یک سری از جریانات تقاضا آن‌ها یا تبدیل می‌کنیم و سپس لگاریتمی این باره نسبی را می‌پذیریم. این برای اثبات است. برای این‌ها همان طور که در جدول 1 نشان داده شده است، ما می‌توانیم روابط زیر را داشته باشیم:

\[\text{EBITDA} = 0.1 \times \text{EBITDA} \]

\[\text{EBITDA} \]
X = \ln \left(\frac{\sum_{i=1}^{n} PVCF_i}{\sum_{i=1}^{n} PVCF_i} \right)

Logarithmic Present Value Returns Approach
2-روش‌های مبتنی بر دارایی‌های مالی قابل قیاس
درادیه‌ای روش‌های مربوط به این دسته بررسی می‌شود:

2-1. روش‌های مبتنی بر ساخته‌های بایار و یا مقایسه با نمایه‌های بازار
روش‌های مبتنی بر ساخته‌های بایار و یا مقایسه با نمایه‌های بازار بر اساس عملکرد اقتصادی و اجتماعی و تغییرات در بازار بورس به‌دست می‌آیند. این روش‌ها به‌صورت مستقیم بازار در نظرگرفته می‌شوند که با برابری قابل مقایسه و سادگی در معامله و سرمایه‌گذاری در سطح کلی بیش از روش‌های دیگر استفاده می‌شوند.

2-2. روش‌های مبتنی بر روش‌های ارزیابی خریدار
روش‌های مبتنی بر روش‌های ارزیابی خریدار بر اساس ارزیابی استراتژیک و نیازهای خاص سرمایه‌گذار جهت سرمایه‌گذاری در سطح کلی بیش از روش‌های دیگر استفاده می‌شود.

2-3. روش‌های مبتنی بر روش‌های ارزیابی مالی
روش‌های مبتنی بر روش‌های ارزیابی مالی بر اساس ارزیابی مالی و نیازهای خاص سرمایه‌گذار جهت سرمایه‌گذاری در سطح کلی بیش از روش‌های دیگر استفاده می‌شود.

مشکل این روش‌ها در این است که فرض کردن می‌تواند به روش‌های دیگر در نظر گرفته شود. این روش‌ها به‌صورت مستقیم بازار در نظر گرفته می‌شوند که با برابری قابل مقایسه و سادگی در معامله و سرمایه‌گذاری در سطح کلی بیش از روش‌های دیگر استفاده می‌شود.

*underlying asset base approach
*Management Assumption and Guesses

\[
\sigma_{RO} = \frac{\sigma_{Equity}}{1 + D/E}
\]

\[
\sigma_{Business} = \frac{\sigma_{Equity}}{1 + D_{Market}/E_{Market}}
\]

\[
\sigma_{RO} = \sigma_{Business} \cdot \left(1 + \frac{D_{Company}}{E_{Company}}\right)
\]

\[
\sigma_{RO} = \frac{\sigma_{Equity}}{1 + D/E}
\]

\[
\sigma_{Business} = \frac{\sigma_{Equity}}{1 + D_{Market}/E_{Market}}
\]

\[
\sigma_{RO} = \sigma_{Business} \cdot \left(1 + \frac{D_{Company}}{E_{Company}}\right)
\]

\[
\sigma_{RO} = \frac{\sigma_{Equity}}{1 + D/E}
\]

\[
\sigma_{Business} = \frac{\sigma_{Equity}}{1 + D_{Market}/E_{Market}}
\]

\[
\sigma_{RO} = \sigma_{Business} \cdot \left(1 + \frac{D_{Company}}{E_{Company}}\right)
\]
درایه‌ی پایه‌ای مرحله اصلی از تابع توزیع تابع نسبت لگاریتمی از ارتفاع فعالیت می‌باشد.

\[Z = \frac{X - \mu}{\sigma} \Rightarrow \sigma = \frac{X - \mu}{Z} \] (8)

2. معرفی روش پیشنهادی استفاده از انحراف معیار

روش پیشنهادی ارائه‌شده از دسته‌روش‌های مبتنی بر جریان‌ها، تغییرات در سیستم شیب روش لگاریتم باره‌ای تغییر فعالیت تبدیل می‌شود.

\[Z^t = \frac{X - \mu}{\sigma} \Rightarrow \sigma = \frac{X - \mu}{Z} \]

3. استفاده از انحراف معیار

زیر محاسبه می‌شود:

\[PI = \frac{PV \text{ Future Cash Flow}}{Outlay} = \frac{NPV + Outlay}{Outlay} = 1 + \frac{NPV}{outlay} \] (9)

\[Ln(1 + \frac{NPV}{Outlay}) = Ln (PI) = \mu \] (10)

\[Volatility = STD(LN(P)) \] (11)

فرز 1: ما مقدار کننده‌ای می‌توانیم از تابع توزیع ذهنی پایه‌ای تابع توزیع تابع نسبت لگاریتمی بوده‌ای که برای توزیع ذهنی پایه‌ای که برای توزیع درون‌روش‌های باره‌ای تا در میان رشته‌های شیب پایه‌ای به صورت توزیع‌های صافانه در حیت‌ها یا تغییرات در زمان شیب توزیع مقدار می‌یابد.

\[Z = \frac{X - \mu}{\sigma} \Rightarrow \sigma = \frac{X - \mu}{Z} \]

فرز 2: ما مقدار تابع توزیع تابع نسبت لگاریتمی با تابع توزیع مربوط به تابع نسبت لگاریتمی باره‌ای که برای توزیع ذهنی پایه‌ای که برای توزیع درون‌روش‌های باره‌ای تا در میان رشته‌های شیب پایه‌ای به صورت توزیع‌های صافانه در حیت‌ها یا تغییرات در زمان شیب توزیع مقدار می‌یابد.

\[Z = \frac{X - \mu}{\sigma} \Rightarrow \sigma = \frac{X - \mu}{Z} \]

فرز 3: ما مقدار تابع توزیع تابع نسبت لگاریتمی باره‌ای که برای توزیع ذهنی پایه‌ای که برای توزیع درون‌روش‌های باره‌ای تا در میان رشته‌های شیب پایه‌ای به صورت توزیع‌های صافانه در حیت‌ها یا تغییرات در زمان شیب توزیع مقدار می‌یابد.

\[Z = \frac{X - \mu}{\sigma} \Rightarrow \sigma = \frac{X - \mu}{Z} \]
<table>
<thead>
<tr>
<th>سال</th>
<th>CAPEX (میلیون $)</th>
<th>Cost of operation (میلیون $)</th>
<th>Inflation effect</th>
<th>Cash out flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1,292.57</td>
<td>0</td>
<td>0</td>
<td>1,292.57</td>
</tr>
<tr>
<td>2001</td>
<td>1,568.73</td>
<td>0</td>
<td>0</td>
<td>1,568.73</td>
</tr>
<tr>
<td>2002</td>
<td>1,010.93</td>
<td>0</td>
<td>0</td>
<td>1,010.93</td>
</tr>
<tr>
<td>2003</td>
<td>145.77</td>
<td>0</td>
<td>0</td>
<td>145.77</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>105.63</td>
<td>1.10</td>
<td>116.19</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>105.63</td>
<td>1.21</td>
<td>127.81</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>105.63</td>
<td>1.33</td>
<td>140.59</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>105.63</td>
<td>1.46</td>
<td>154.65</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>105.63</td>
<td>1.61</td>
<td>170.12</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>105.63</td>
<td>1.77</td>
<td>187.13</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>105.63</td>
<td>1.95</td>
<td>205.84</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>105.63</td>
<td>2.14</td>
<td>226.43</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>105.63</td>
<td>2.36</td>
<td>249.07</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
<td>105.63</td>
<td>2.59</td>
<td>273.98</td>
</tr>
<tr>
<td>2014</td>
<td>0</td>
<td>105.63</td>
<td>2.85</td>
<td>301.37</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
<td>105.63</td>
<td>3.14</td>
<td>331.51</td>
</tr>
<tr>
<td>2016</td>
<td>0</td>
<td>105.63</td>
<td>3.45</td>
<td>364.66</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>105.63</td>
<td>3.80</td>
<td>401.13</td>
</tr>
<tr>
<td>2018</td>
<td>0</td>
<td>105.63</td>
<td>4.18</td>
<td>441.24</td>
</tr>
<tr>
<td>2019</td>
<td>0</td>
<td>105.63</td>
<td>4.59</td>
<td>485.37</td>
</tr>
<tr>
<td>2020</td>
<td>0</td>
<td>105.63</td>
<td>5.05</td>
<td>533.90</td>
</tr>
<tr>
<td>2021</td>
<td>0</td>
<td>105.63</td>
<td>5.56</td>
<td>587.29</td>
</tr>
<tr>
<td>2022</td>
<td>0</td>
<td>105.63</td>
<td>6.12</td>
<td>646.02</td>
</tr>
<tr>
<td>2023</td>
<td>0</td>
<td>105.63</td>
<td>6.73</td>
<td>710.63</td>
</tr>
<tr>
<td>2024</td>
<td>0</td>
<td>105.63</td>
<td>7.40</td>
<td>781.69</td>
</tr>
<tr>
<td>2025</td>
<td>0</td>
<td>105.63</td>
<td>8.14</td>
<td>859.86</td>
</tr>
<tr>
<td>2026</td>
<td>0</td>
<td>105.63</td>
<td>8.95</td>
<td>945.84</td>
</tr>
<tr>
<td>2027</td>
<td>0</td>
<td>105.63</td>
<td>9.85</td>
<td>1,040.43</td>
</tr>
<tr>
<td>2028</td>
<td>0</td>
<td>105.63</td>
<td>10.83</td>
<td>1,144.47</td>
</tr>
</tbody>
</table>
\[
\frac{ds}{s} = \mu dt + \sigma dz
\]

In this equation, \(s \) is the random variable, \(\mu \) is the drift coefficient, \(\sigma \) is the volatility coefficient, and \(dz \) is a normally distributed random variable.

Table 2: Cash Flows, Net Cash Flows, and NCF after Tax

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash inflows</th>
<th>Cash outflows</th>
<th>net cash flows</th>
<th>NCF after Tax</th>
<th>CNCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>357.865</td>
<td>-357.87</td>
<td>-357.87</td>
<td>-357.87</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>1918.8549</td>
<td>-1918.85</td>
<td>-1918.85</td>
<td>-2276.72</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1236.555</td>
<td>-1236.56</td>
<td>-1236.56</td>
<td>-3513.28</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1583.363</td>
<td>-1583.31</td>
<td>-1583.31</td>
<td>-3909.58</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>142.1258</td>
<td>-142.18</td>
<td>-142.18</td>
<td>-1549.40</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>156.3383</td>
<td>-156.43</td>
<td>-156.43</td>
<td>-3691.58</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>171.9722</td>
<td>-172.09</td>
<td>-172.09</td>
<td>-3880.03</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>189.1694</td>
<td>-189.21</td>
<td>-189.21</td>
<td>-5041.59</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>208.0863</td>
<td>-208.12</td>
<td>-208.12</td>
<td>-3578.93</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>228.8950</td>
<td>-228.98</td>
<td>-228.98</td>
<td>-5421.85</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>251.7844</td>
<td>-251.87</td>
<td>-251.87</td>
<td>-7020.44</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>276.9629</td>
<td>-277.02</td>
<td>-277.02</td>
<td>-7983.78</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>304.6952</td>
<td>-304.73</td>
<td>-304.73</td>
<td>-9986.86</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>335.1251</td>
<td>-335.17</td>
<td>-335.17</td>
<td>-11983.95</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>368.3676</td>
<td>-368.42</td>
<td>-368.42</td>
<td>-13987.04</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>409.5401</td>
<td>-409.57</td>
<td>-409.57</td>
<td>-16013.73</td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td>446.0515</td>
<td>-446.09</td>
<td>-446.09</td>
<td>-18040.42</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>490.6587</td>
<td>-490.72</td>
<td>-490.72</td>
<td>-20097.11</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>553.7223</td>
<td>-553.80</td>
<td>-553.80</td>
<td>-22177.92</td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td>593.6946</td>
<td>-593.75</td>
<td>-593.75</td>
<td>-24291.73</td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td>653.0640</td>
<td>-653.11</td>
<td>-653.11</td>
<td>-26467.54</td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>717.3038</td>
<td>-717.35</td>
<td>-717.35</td>
<td>-28787.35</td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>790.2047</td>
<td>-790.25</td>
<td>-790.25</td>
<td>-31207.16</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>869.2822</td>
<td>-869.33</td>
<td>-869.33</td>
<td>-33787.97</td>
<td></td>
</tr>
<tr>
<td>2031</td>
<td>956.1510</td>
<td>-956.20</td>
<td>-956.20</td>
<td>-36507.78</td>
<td></td>
</tr>
<tr>
<td>2032</td>
<td>1051.7661</td>
<td>-1051.81</td>
<td>-1051.81</td>
<td>-39487.59</td>
<td></td>
</tr>
<tr>
<td>2033</td>
<td>1156.9427</td>
<td>-1157.00</td>
<td>-1157.00</td>
<td>-42707.40</td>
<td></td>
</tr>
<tr>
<td>2034</td>
<td>1272.6370</td>
<td>-1272.68</td>
<td>-1272.68</td>
<td>-46227.21</td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td>1399.9007</td>
<td>-1399.95</td>
<td>-1399.95</td>
<td>-49947.02</td>
<td></td>
</tr>
</tbody>
</table>

Drift

A drift is the constant term in the process that pulls the price to a specific target over time. It is often used in financial models to represent the expected change in the price of a security. In this context, the drift term is represented by \(\mu \), which is the expected return per unit of time. The drift is significant because it influences the long-term behavior of the stochastic process and is crucial for understanding the expected growth or decline of the underlying asset.
جدول ۵: مقادیر شاخص‌های آماری برای متفق‌الصادقی نوسان پذیری به روش لگاریتم شاخص سوددهی در نرخ

<table>
<thead>
<tr>
<th>حالت</th>
<th>مقادیر نوسان پذیری</th>
<th>میانگین</th>
<th>مانند</th>
<th>جایگاه</th>
<th>میانگین مطلق</th>
<th>استاندارد شاخص</th>
<th>کورتیس</th>
<th>چگونگی شاخص</th>
<th>مانند</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.083621646</td>
<td>1.0723255</td>
<td>N/A</td>
<td>Variance</td>
<td>0.4721152</td>
<td>0.222892781</td>
<td>0.643049592</td>
<td>Range Min</td>
<td>0.004721152</td>
</tr>
<tr>
<td>Median</td>
<td>1.0723255</td>
<td>N/A</td>
<td>Variance</td>
<td>0.4721152</td>
<td>0.222892781</td>
<td>0.643049592</td>
<td>Range Min</td>
<td>0.004721152</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>N/A</td>
<td>N/A</td>
<td>Variance</td>
<td>0.4721152</td>
<td>0.222892781</td>
<td>0.643049592</td>
<td>Range Min</td>
<td>0.004721152</td>
<td></td>
</tr>
<tr>
<td>Standard Error</td>
<td>0.004721152</td>
<td>0.004721152</td>
<td>0.004721152</td>
<td>0.004721152</td>
<td>0.004721152</td>
<td>0.004721152</td>
<td>0.004721152</td>
<td>0.004721152</td>
<td>0.004721152</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.127433889</td>
<td>0.127433889</td>
<td>0.127433889</td>
<td>0.127433889</td>
<td>0.127433889</td>
<td>0.127433889</td>
<td>0.127433889</td>
<td>0.127433889</td>
<td>0.127433889</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>0.101874248</td>
<td>0.101874248</td>
<td>0.101874248</td>
<td>0.101874248</td>
<td>0.101874248</td>
<td>0.101874248</td>
<td>0.101874248</td>
<td>0.101874248</td>
<td>0.101874248</td>
</tr>
</tbody>
</table>

همانطور که مشاهده می‌شود مقادیر انحراف میانگین تابع نوسان شبیه مسایل شده برای یک اقلام نشان داده می‌باشد. حال این مقدار به عنوان یکی از ویژگی‌های اصلی نوسان پذیری به عنوان یک از مدل‌های انتخاب واقعی در نظر گرفته می‌شود.

4. جمع‌بندی و نتیجه‌گیری

روش‌های مختلف تخمین نوسان پذیری درخشش ۲ مورد بررسی گرفته‌اند. همانطور که مشاهده می‌شود هر یک از روش‌ها مزایا و معایبی دارد. اما توجه به مزایای انجام شده روش لگاریتم بایده به روش دقیقی که از دسته روش‌های میانی بر جریان‌های نقدی

