An Integrated Model of Aggregate Production Planning With Maintenance Costs

F. Khoshalhan * & A. Cheraghali Khani

Farid Khoshalhan, Assistance Professor, Industrial Engineering, KNTU
Ali Cheraghali Khani, Master of Science, Industrial Engineering, KNTU

Keywords
Aggregate Production Planning, Maintenance, Integrated Model

ABSTRACT
One kind of mid-term production system, aggregate production planning, identifies the optimum production plan for each production period. The goal of aggregate production planning is to forecast future demand swings. On the other hand, maintenance system identifies the proper time for preventive maintenance and restrains from break downs and reduces maintenance costs. Due to the importance of these two systems, in recent years, there has generated different models independently. The current research has proposed an integrated aggregate production planning model considering the time and costs of maintenance. This model indicates the optimum production size among the optimum time of preventive maintenance. As a final point, in order to check the reliability of the proposed model, an example has been examined. Results show that a considerable amount of cost has been saved by applying the model.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 1, All Rights Reserved
ارائه مدل یکپارچه برنامه‌ریزی تولید ادغامی با هزینه نگهداری و تعمیرات

علي چراغعلی خانی و فرید خوش الحان

چکیده:
برنامه‌ریزی تولید ادغامی گونه‌های از افراد برنامه‌ریزی تولید ادغامی می‌باشد که به راه‌هایی از افزایش سطح تولید بهره‌برداری از راه‌هایی از از اجزا و تعمیرات بهبودی گونه‌های از افزایش سطح تولید ادغامی می‌باشد که به راه‌هایی از افزایش سطح تولید بهره‌برداری از راه‌هایی از اجزا و تعمیرات بهبودی

کلمات کلیدی:
برنامه‌ریزی تولید ادغامی، نگهداری و تعمیرات، مدل یکپارچه.

مقدمه
1- برنامه‌ریزی تولید ادغامی
امروزه با توجه به افزایش نوسانات تقاضا در بازار، هدف سازمانی موقع خواهد بود که در برابر تغییرات با سرعت بیشتری واکنش مناسب نشان دهد و سازمان را با تغییرات محیطی هموار سازد.
برنامه‌ریزی تولید ادغامی یک برنامه‌ریزی نظری می‌باشد که به‌منظور بهینه‌سازی برنامه‌ریزی تولید ادغامی به صورت همزمان بهینه‌سازی و تولید ادغامی برای پاسخگویی

1 مقدمه
به تفاوتی کلی مشتری برای همه محصولات و با در نظر گرفتن
محدودیت متحفظه در صورت محصولات را به عنوان یکی از عوامل
دسته اصلی تصمیم‌گیری برنامه‌ریزی تولید در سیستم‌های تولیدی
مورد مطالعه قرار گرفته است.

در طی سال‌های اخیر قابل توجه قابل ملاحظه‌ای از سوی محققین و
متخصصان به برنامه‌ریزی تولید ادغامی شده است و دلیل آن هم
تولیدی برای افراد برنامه‌ریزی افزایش سطح تولید و موجودی
می‌باشد که برنامه‌ریزی تولید ادغامی و روش‌های استفاده از
نظر محدودیت‌های موجودی‌های سازمان می‌باشد و نتایجی در تغییر
محدودیت‌های موجودی و وارد نمودن با سیستم تولید ادغامی

ثنایی‌الات و نیروی انسانی، ضایعات موجودی و
سایر محدودیت‌ها، بهترین گزینه موجودی را در اختیار
 تصمیم‌گیری کننده تولید قرار می‌دهد.

منظر از واز ادغامی، برنامه‌ریزی تولید ادغامی این است که
گروه‌های خواندن محصول که از لحاظ ظاهر مشابه بوده و یا دارای

Goal Programming

Step Method

Sequential Multiple Objective Problem Solving

Setup Decisions

Decision Support System (DSS)
2-1 مدل‌های یکپارچه نگهداری و تعمیرات و برنامه‌ریزی تولید

بهره‌مند سطح دسترسی به عنوان یکی از ده حلقه‌های مهم‌ترین توانایی‌ها به‌نظیر بهره‌مند سطح دسترسی به‌نوعی سیستم نگهداری و تعمیرات سیستم تولیدی می‌باشد.

نگهداری و تعمیرات به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی، منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

نتایج و نتایج بایستی، به‌طور کلی، نگهداری و تعمیرات سیستم تولیدی را به‌صورت گروهی، بایستی و بایستی توانایی‌ها را به‌عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

پیشگیری از وابستگی به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه تولید و عمده‌ریزی به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه جمع‌ای، تولید به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه حرفه‌ای ساختاری، هم‌اکنون، به‌صورت تولید به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه حرفه‌ای جمع‌یایی، به‌صورت تولید به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه حرفه‌ای جمع‌یایی، به‌صورت تولید به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنамه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه حرفه‌ای جمع‌یایی، به‌صورت تولید به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه حرفه‌ای جمع‌یایی، به‌صورت تولید به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه حرفه‌ای جمع‌یایی، به‌صورت تولید به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه حرفه‌ای جمع‌یایی، به‌صورت تولید به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه حرفه‌ای جمع‌یایی، به‌صورت تولید به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه حرفه‌ای جمع‌یایی، به‌صورت تولید به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه حرفه‌ای جمع‌یایی، به‌صورت تولید به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.

رویکرد یکپارچه حرفه‌ای جمع‌یایی، به‌صورت تولید به‌صورت گروهی، بایستی و بایستی عنوان یکی از حاقل‌های اصلی منابع کار، قابلیت اطمینان و در سطح برنامه‌ریزی تولیدی، بایستی و با اجرای منابع اطلاع‌رسانی از عملکرد مناسب‌تر آنها از زمان دمای در اجرای سیستم تولیدی، نگهداری و تعمیرات سیستم تولیدی می‌باشد.
از طرفیت زمان‌مانشین آنت کسر می‌گردد و در صورتی که در دوره ۱ عملیات نگهداری و تعمیرات انجام نشده هزینه و زمان آن در مدل عملیات‌های بیشتری در عوض در دوره ۱+۱ هزینه خرابی به مدل تعیین شده و زمان خرابی از طرفیت در دسترس مانشین- آلات کسر می‌شود.

در ادامه برآمدها، توابع هدف و محدودیت‌های مدل یکپارچه پیشنهادی امده است:

<table>
<thead>
<tr>
<th>اندیس:</th>
<th>اندرس محصول</th>
<th>اندرس دوره زمانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>مجموعه محصولات</td>
<td>مجموعه دوره‌های زمانی</td>
</tr>
</tbody>
</table>

در مدل اندیس برآمده هزینه برآمده نگهداری و تعمیرات در دوره ۱ انجام شود در همان دوره نهایی هزینه نگهداری و تعمیرات به مدل تعیین شده و زمان مورد نیاز انجام عملیات نگهداری و تعمیرات برآمده هزینه نگهداری و تعمیرات تیز بحث می‌زند.

<table>
<thead>
<tr>
<th>پارامترها:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_i)</td>
</tr>
<tr>
<td>(C_i)</td>
</tr>
<tr>
<td>(C_{i1})</td>
</tr>
<tr>
<td>(C_{i2})</td>
</tr>
<tr>
<td>(C_{i3})</td>
</tr>
<tr>
<td>(C_{i4})</td>
</tr>
<tr>
<td>(C_{i5})</td>
</tr>
<tr>
<td>(C_{i6})</td>
</tr>
<tr>
<td>(I_{max})</td>
</tr>
<tr>
<td>(W_{max})</td>
</tr>
</tbody>
</table>

درصدی از حداکثر مقداری پیش‌بینی شده محصول \(i \) که تعبیه کننده سقف کسر در دوره می‌باشد

خادثاقیت پیش‌بینی محصول \(i \) کم می‌باشد، تعداد اضافه کاری در دوره می‌باشد

تعداد اضافه کاری در دوره می‌باشد

تعداد نفر ساعت مونتاژی به‌کار برده یک واحد محصول \(i \) در زمان کار

تعداد نفر ساعت مونتاژی به‌کار برده یک واحد محصول \(i \) در زمان کار

ریاضی بیشتری پیش‌بینی در دوره \(i \)
ظرفیت مابین در دسترس در زمان عادی

(از طرفیت مابین الات اشغال می‌شود)

درصدی از طرفیت مابین که در هر دوره (به علت عدم انجام نگهداری و تعمیرات در دوره قبل) به علت خرابی از دست می‌رود

درصدی از طرفیت مابین که برای اضافه کاری در دسترس می‌باشد

متغیرهای تصمیم:

\[X_t \]

\[Y_t \]

\[W_t \]

\[H_t \]

\[L_t \]

\[OT_t \]

\[Inv_t \]

\[B_t \]

\[SC_t \]

\[PM_t \]

تابع هدف: حداقل نمو هزینه کل

\[
\sum_{i=1}^{T} \sum_{t=1}^{T} (C1, X_t + C2, Y_t) + \sum_{i=1}^{T} (C3, W_t + C4, OT_t) + \sum_{i=1}^{T} \sum_{t=1}^{T} (C5, SC_t) + \\
\sum_{i=1}^{T} \sum_{t=1}^{T} (C8, Inv_t + C9, B_t) + \sum_{i=1}^{T} (C10, H_t + C11, L_t) + \sum_{i=1}^{T} C6_t (1 - PM_i, i) + \sum_{i=1}^{T} C7_t, PM_t
\]

\[B_t \leq w1, Smi_t \] (4)

\[SC_t \leq SC_{max} \] (5)

\[W_t \leq W_{max} \] (6)

\[W_t = W_{t-1} + H_t - L_t \] (7)

\[H_tL_t = 0 \] (8)

\[Inv_tB_t = 0 \] (9)

\[OT_t \leq gW_t \] (10)

\[\sum_{i=1}^{T} u_t X_t \leq g W_t \] (11)

\[\sum_{i=1}^{T} u_t Y_t \leq OT_t \] (12)

\[\sum_{i=1}^{T} e_t X_t + PMMT_t + (1 - PM_i, i)kM_t \leq M_t \] (13)

\[\sum_{i=1}^{T} I_{u_t} \leq I_{max} \] (14)

محدودیت‌ها

\[d_t = I_{u_{t+1}} - B_{t+1} + X_{t+1} + Y_{t+1} + SC_{t+1} - I_t + B_t \] (15)

تنشیه بین المللی مهندسی سنایی و مدریت تولید، خرداد 1391- جلد 22- شماره 1
محدودیت (3) تعادل تولید در هر دوره می‌باشد که در این تعادل مقاضات از مجموع موجود دوره قبل به علاوه تولید عادی و اضافه‌کاری از مجموع بعلاوه قراردادهای باشد.

محدودیت (4) مجموع موجود دوره کمتر از مجموع موجود در دوره‌های مختلف می‌باشد.

محدودیت (5) حجم قراردادهایی برای هر محمول در هر دوره باید از حداکثر مجموع قراردادهایی که از مجموع موجود در هر دوره کمتر باشد.

محدودیت (6) مجموع موجود در هر دوره باید از حداکثر مجموع موجود دوره قبل بعلاوه استفاده و با اخراج دام و بر اساس محدودیت (7) در هر دوره برای موجودی از مجموع موجود در هر دوره باقی می‌ماند.

محدودیت (7) حجم تولید در هر دوره باقی می‌ماند.

در محدودیت (8) حجم قراردادهایی برای هر دوره از مجموع موجود در هر دوره باقی می‌ماند.

در محدودیت (9) مجموع موجود دوره بیش از مجموع موجود در هر دوره باقی می‌ماند.

در محدودیت (10) هر دوره باید از حداکثر مجموع موجود دوره قبل بعلاوه استفاده و با اخراج دام و بر اساس محدودیت (11) مجموع موجود دوره بیش از مجموع موجود در هر دوره باقی می‌ماند.

در محدودیت (12) هر دوره باید از حداکثر مجموع موجود دوره قبل بعلاوه استفاده و با اخراج دام و بر اساس محدودیت (13) مجموع موجود دوره بیش از مجموع موجود در هر دوره باقی می‌ماند.

در محدودیت (14) مجموع موجود دوره بیش از مجموع موجود دوره قبل بعلاوه استفاده و با اخراج دام و بر اساس محدودیت (15) مجموع موجود دوره بیش از مجموع موجود در هر دوره باقی می‌ماند.
جدول ۱ مقایسه مدل برنامه‌ریزی پیشنهادی با مدل‌های مانده

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of products</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
</tr>
<tr>
<td>Number of markets</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
</tr>
<tr>
<td>Planning horizon</td>
<td>Multi-Period</td>
<td>Multi-Period</td>
<td>Multi-Period</td>
<td>Multi-Period</td>
<td>Multi-Period</td>
</tr>
<tr>
<td>Number of plants</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Maintenance time</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Considered*</td>
</tr>
<tr>
<td>Maintenance cost</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Considered*</td>
</tr>
<tr>
<td>Repair cost</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Repair time</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
</tr>
<tr>
<td>Objectives</td>
<td>Prof (or cost)</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Change in workforce level</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Inventory</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Backorders</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Repair cost</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
</tr>
<tr>
<td>Overtime</td>
<td>Subcontracting</td>
<td>Not Considered</td>
<td>Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
</tr>
</tbody>
</table>

جدول ۲ داده‌های مربوط به محصولات

<table>
<thead>
<tr>
<th>wi</th>
<th>Ci</th>
<th>C2i</th>
<th>C5i</th>
<th>C8i</th>
<th>C9i</th>
<th>U1</th>
<th>U2</th>
<th>e1</th>
<th>w1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
</tr>
</tbody>
</table>

به‌منظور اعتبار سنجی مدل ارائه شده در این مقاله و بررسی ناتیب یکپارچه نمونه‌های برنامه‌ریزی تولید ادغامی نگهداری و تعمیرات، در این بخش نتایج حاصل در مدل (با اضافه نمونه‌های تعمیرات و تعمیرات و افزونی در این مقاله) نگهداری و تعمیرات و بدون (با این مقاله) باید در مدل فرض بر این است که نگهداری و تعمیرات در مدل وارد شده است و در هر دوره زمان‌یابی (زمان خرابی در این جا است در هر دوره زمان‌یابی) در این دوره وارد نمی‌شود. بنابراین ۱۷ داده‌ای که مورد انتخاب قرار گرفته‌اند به‌منظور تغییرات نگهداری و تعمیرات در دوره‌های ۱.۲.۳ و ۴ مقدار یک همان گونه و در این دوره‌ها نگهداری و تعمیرات انجام می‌شود. این کار هزینه کل سیستم می‌باشد. بنابراین در جدول ۲، مجموعه نهایی تغییرات نگهداری و تعمیرات انجام می‌شود. بنابراین تفاوت مدل بدون وارد نمی‌شود.
جدول 3. داده‌های مربوط به دوره‌های مختلف

<table>
<thead>
<tr>
<th>دوره 1</th>
<th>دوره 2</th>
<th>دوره 3</th>
<th>دوره 4</th>
<th>دوره 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>tC_3</td>
<td>tC_4</td>
<td>tC_7</td>
<td>tC_6</td>
<td>tC_10</td>
</tr>
<tr>
<td>tC_11</td>
<td>a_1</td>
<td>b_1</td>
<td>MT_1</td>
<td>M_{t1}</td>
</tr>
<tr>
<td>W_{max}</td>
<td>W_{max}</td>
<td>W_{max}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 4. حد بالای قرارداد جانبی مجاز

<table>
<thead>
<tr>
<th>SC_{max}</th>
<th>محصول 1</th>
<th>محصول 2</th>
</tr>
</thead>
</table>

جدول 5. حداقل قضاطی فاصله بین پیشرینی از روز داده های بیشترین

<table>
<thead>
<tr>
<th>Sm_{t1}</th>
<th>محصول 1</th>
<th>محصول 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

جدول 6. قضاطی بیشترین شده

<table>
<thead>
<tr>
<th>d_{t1}</th>
<th>محصول 1</th>
<th>محصول 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
</tbody>
</table>

جدول 7. مقدار نتایج مدل و شرایط اولیه مساله

<table>
<thead>
<tr>
<th>g</th>
<th>Inv_{10}</th>
<th>B_{10}</th>
<th>Inv_{20}</th>
<th>B_{20}</th>
<th>W_{0}</th>
<th>k</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>مقدار 160</td>
</tr>
</tbody>
</table>

جدول 8. مقدار متغیر نگهداری و تعیینات در مدل نیکیشیادی این مقاله

<table>
<thead>
<tr>
<th>دوره 1</th>
<th>دوره 2</th>
<th>دوره 3</th>
<th>دوره 4</th>
<th>دوره 5</th>
<th>دوره 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM_{t1}</td>
<td>PM_{t2}</td>
<td>PM_{t3}</td>
<td>PM_{t4}</td>
<td>PM_{t5}</td>
<td>PM_{t6}</td>
</tr>
</tbody>
</table>

جدول 9. مقایسه نتایج حل دو مدل

<table>
<thead>
<tr>
<th>PM_{t1}</th>
<th>PM_{t2}</th>
<th>PM_{t3}</th>
<th>PM_{t4}</th>
<th>PM_{t5}</th>
<th>PM_{t6}</th>
</tr>
</thead>
</table>
| مقدار تابع هدف در مدل بدون اضافه نمونه نگهداری و تعیینات | 41466914 | 61492412 | $77217%

نشانه بین المللی مهندسی صنایع و مدیریت تولید، خرارداد 1391-جلد 23-شماره 1
4. Aggregate Production Planning

