An Integrated Model of Aggregate Production Planning With Maintenance Costs

F. Khoshalhan * & A. Cheraghali Khani

Farid Khoshalhan, Assistance Professor, Industrial Engineering, KNTU
Ali Cheraghali Khani, Master of Science, Industrial Engineering, KNTU

Keywords
Aggregate Production Planning, Maintenance, Integrated Model

ABSTRACT
One kind of mid-term production system, aggregate production planning, identifies the optimum production plan for each production period. The goal of aggregate production planning is to forecast future demand swings. On the other hand, maintenance system identifies the proper time for preventive maintenance and restrains from break downs and reduces maintenance costs. Due to the importance of these two systems, in recent years, there has generated different models independently. The current research has proposed an integrated aggregate production planning model considering the time and costs of maintenance. This model indicates the optimum production size among the optimum time of preventive maintenance. As a final point, in order to check the reliability of the proposed model, an example has been examined. Results show that a considerable amount of cost has been saved by applying the model.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 1, All Rights Reserved

* Corresponding author. Farid Khoshalhan
Email: khoshalhan@kntu.ac.ir
ارائه مدل یکپارچه برنامه‌ریزی تولید ادغامی یا هزینه نگهداری و تعمیرات

علی چراغعلی خانی و فرید خوش‌الخان

چکیده:
برنامه‌ریزی تولید ادغامی یکی از الگوهای راه اندازی در صنایع، سازه و سازمان‌های اقتصادی است که در این مقاله مدل یکپارچه برنامه‌ریزی تولید ادغامی و بهینه‌سازی هزینه نگهداری و تعمیرات به کار برده شده است.

کلمات کلیدی:
برنامه‌ریزی تولید ادغامی، نگهداری و تعمیرات، مدل یکپارچه

مقدمه

1. برنامه‌ریزی تولید ادغامی

امروزه با توجه به افزایش نوسانات تقاضا در بازار، هدف سازمانی موفقیت به دست آوردن نیازهای بازار، به‌طور گسترده‌ای و به‌طور کامل مشتریان را به بی‌طرفی همراه شود. برنامه‌ریزی تولید ادغامی یکی از الگوهای نگهداری و تعمیرات است که به کار برده شده است.

مهندسی سازمان‌های اقتصادی در تصمیم‌گیری‌ها مورد استفاده قرار می‌گیرد.

2. هزینه نگهداری و تعمیرات

هزینه نگهداری و تعمیرات یکی از عوامل اصلی در تعیین قیمت محصولات است.

3. مدل یکپارچه برنامه‌ریزی تولید

در طول سال‌های اخیر، نیاز به یک مدل یکپارچه برنامه‌ریزی تولید با توجه به هزینه نگهداری و تعمیرات دیده شده است.

4. نتایج و درک

نتایج این مقاله به کاربران اطلاعاتی در علم و تجربه در تصمیم‌گیری در زمینه برنامه‌ریزی تولید ادغامی فراهم خواهد کرد.

برای خواندن کامل مقاله، لطفاً به مرجع اصلی مراجعه شوید.

ali_cheraghalikhani@sina.kntu.ac.ir

khoshhalhan@kntu.ac.ir

http://IJIEPM.IUST.Ac.IR

ISSN: 2008-4870

Downloaded from ijiepm.iust.ac.ir at 1:37 IRDT on Monday August 3rd 2020
Goal Programming

Step Method

Sequential Multiple Objective Problem Solving

Setup Decisions

5 Decision Support System (DSS)

1. Goal Programming
2. Step Method
3. Sequential Multiple Objective Problem Solving
4. Setup Decisions

5. Decision Support System (DSS)
یک دمل یکپارچه تغییر و تعمیرات و برنامه‌ریزی

Total Productive Maintenance (TPM)
از تلفیق زمان مانشین‌ها، ابتدا کسر می‌گردد و در صورتی که در دوره ۱ عملیات نگهداری و تعمیرات انجام نشده‌اند، زمان انجام در مدل عامل تابع‌شود ولی در عوض در دوره ۱+۱ زمان خرابی به مدل تحلیل شده و زمان خرابی از تلفیق در دسترس ماند. این‌گونه نمی‌شود.

در ادامه پارامترها، توابع هدف و محدودیت‌های مدل یکپارچه پیشنهادی امده است:

۲-۲. مدل ریاضی پیشنهادی

اندیس‌ها:

- ۱: اندرس محصول
- ۲: اندرس دور زمان

توجه: در صورتی که الگوهای اولیه و تابعی که برای محاسبه‌ی تایپیک و تعمیرات در دوره ۱ انجام شود در همان دوره هزینه‌ی نگهداری و تعمیرات به مدل تحلیل شده و زمان مورد نیاز انجام عملیات نگهداری و تعمیرات در این‌جا اعمال می‌شود.

پارامترها:

- η
- d
- C
- C
- ε
- W
- a
- u
- n
- e
- I
- w
- S
- SM
- SM
- WC
ظرفیت مالی‌ها در دسترس در زمان عادی

درصدی از ظرفیت مالی‌ها که در هر دو روز به‌طور هم‌زمان انجام نگهداری و تعمیرات در دوره قبل بیش از دست می‌رود

متغیرهای تصمیم:

یک میزان محصول خانواده آم در زمان تولید عادی در دوره آم

میزان محصول خانواده آم در زمان اضافه کاری در دوره آم

تعداد نیروی کار مورد نیاز در دوره آم

تعداد نیروی کار استخدام شده در دوره آم

ساعت اضافه کاری مورد نیاز در دوره آم

سطح موجود محصول خانواده آم در اختیار دوره آم

سطح کسری (سپارش عقب افتاده) محصول خانواده آم در دوره آم

میزان محصول خانواده آم که در دوره آم توسط فرآیند جدید به‌طور مجازی است

متغیر نگهداری و تعمیرات در صورت انجام نگهداری تعمیرات در دوره آم مقدار یک و در غیر این موارد مقدار صفر می‌گیرد

تابع هدف: حداقل نمودن هزینه کل

\[
\begin{align*}
\sum_{i=1}^{I} \sum_{t=1}^{T} (C_1, X_{it} + C_2, Y_{it}) + \sum_{i=1}^{I} \left(C_3, W_t + C_4, OT_t \right) + \sum_{t=1}^{T} \sum_{i=1}^{I} (C_5, SC_{it}) = \\
\sum_{i=1}^{I} \sum_{t=1}^{T} \left(C_8, Inv_{it} + C_9, B_{it} \right) + \sum_{i=1}^{I} \sum_{t=1}^{T} (C_{10}, H_t + C_{11}, L_t) + \sum_{t=2}^{T} C_{6}, (1 - PM_{t-1}) + \sum_{i=1}^{I} C_{7}, PM_{it} \\
B_{it} \leq w_{1}, S_{mi_{it}} \\
SC_{it} \leq SC_{max_{it}} \\
W_{it} \leq W_{max_{it}} \\
W_{it} = W_{t-1} + H_t - L_t \\
H_t, L_t = 0 \\
Inv_{it} = 0 \\
OT_{it} \leq g_{W_t} \\
\sum_{t=1}^{T} u_{1} X_{it} \leq g_{W_t} \\
\sum_{t=1}^{T} u_{1} Y_{it} \leq OT_{it} \\
\sum_{t=1}^{T} e_{it} X_{it} + PM_{it} MT_{t} + (1 - PM_{t-1})kM_{t} \leq M_{it} \\
d_{it} = I_{it-1} - B_{it-1} + X_{it} + Y_{it} + SC_{it} - L_{it} + B_{it} \\
\sum_{i=1}^{I} L_{it} \leq I_{max_{it}}
\end{align*}
\]

نتیجه بین الیلی مهندسی صنایع و مدیریت تولید. خرداد 1391-جلد 23-شماره 1
مورد نیاز جهت تولید اضافه کاری و زمان خریدری در اضافه کاری
که در صورت انجام نشدن نگهداری و تعمیرات درصد معیینی از
زمان در دسترس مانشین صرف خرای می‌گردد، با یاد کردن از
ظرفیت مانشین در زمان اضافه کاری باید که این ظرفیت کسر
شده درصد معیینی از ظرفیت عادی مانشین می‌باشد. این رابطه (15)
می‌تواند توضیح انجام عملیات نگهداری و تعمیرات در
دوره t آزاد یک و در سایر صورت مقدار صفر می‌گیرد. (16)
مقدار تعداد مدل حیاتی در نظر گرفته می‌شوند که
عبارتند از:
میزان تولید در زمان عادی،
میزان تولید در اضافه کاری،
میزان استفاده،
میزان اخرج،
زمان اضافه کاری،
مقدار دوره،
کسب دوره،
میزان نگهداری دوره و منبع صفر و یک انجام نگهداری و
تعمیرات در دوره می‌باشد که غیر از زمان اضافه کاری باید
مقدار به توصیف کلید مدل، مدل تعمیرات صبح‌های مستقیم.

2- مقدار مدل بیشتری باید مدل‌های مشابه قبیل
در این بخش عنوان مقدار مدل بیشتری با مدل‌های مشابه
مقدار بین مدل‌های بیشتری و مدل‌های باره ارائه
شده توسط سمیع و هواگدن [13]. بیکنالو [14]، لیونگ و آن
مقدار مقیاس معیار ذیل قابل مقایسه قابل توجه و
وجود با یا عدم وجود مشخصات در مدل 1) هم
مقدار مشاهده دید. جدول 1 مشخصات اصلی مدل تشریح: تعداد
خبایه‌ها محصول، تعداد دامنه زمانی، تعداد بازاری
فرش، میزان بودن انواع کمی و موجودی در مدل، شرایط و
زمان نگهداری و تعمیرات. شرایط و زمان خرایی در سیستم،
مراقبت‌های و تولید هر موجود در مدل 2 را در مدل‌های
متغیرین مدل می‌کنند.

مقدار PM، در هر دوره می‌باشد که در این تعداد
تغییرات هر محصول برای اعمال اعمال موجودی دوره قبل به
علاوه تولید عادی و اضافه‌کاری انجام محصول با تعمیر آندرادیک

متغیر اعمالت در محصول موجود دوره تحت تاثیر اعمالت مختلف در
دوره موجود در دوره کمتر بانش. در محصول (5) یک ورودی موجودی به روش به روش باید از صورت
می‌باشد از حاصل اعمالت دانسته آن محصول در هر دوره می‌باشد.

در محصول (5) حجم قراردادی برای هر محصول در هر
دوره باید از حداکثر مقدار قراردادی باید آن محصول در هر دوره
کمتر بانش. در محصول (5) یک ورودی کار در هر دوره باید از
حداکثر نرخ کار در دسترس در آن دوره کمتر بانش. مقدار
(2) تعداد نرخ کاری را به می‌شنود که بر اساس این تنها
تعداد نرخ کار در هر دوره برای اعمال موجودی کار قبلی با تعمیر
استخراج از خارج علی می‌باشد.

بر اساس محصولات (8) در هر دوره با استفاده از برنامه‌داری و
بر اساس محصولات (9) در هر دوره با ورودی و یا کمیسیون داماری
که به توجه به شرایط و در تعداد موجودی ها در محصولات (8)
و (9) محصولات زانید به حساب می‌یند. مقدار (16)

\[\sum e_i Y_{ij} + (1 - PM) b_i M_i \leq b_i M_i \]

\[\sum X_{ij} + Y_{ij} + W_i + H_j + L_i + Inv_{ij} + B_i + SC_{ij} \geq 0 \text{ and integer } i, t \in T \]

\[OT_i \geq 0 \text{ for } t \in T, X_{ij}, Y_{ij}, W_i, H_j, L_i, Inv_{ij}, B_i, SC_{ij} \geq 0 \text{ and integer } i, t \in T \]
Table 1. Comparison of the Proposed Model with Other Models

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of products</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
</tr>
<tr>
<td>Number of markets</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
</tr>
<tr>
<td>Planning horizon</td>
<td>Multi-Period</td>
<td>Multi-Period</td>
<td>Multi-Period</td>
<td>Multi-Period</td>
<td>Multi-Period</td>
</tr>
<tr>
<td>Number of plants</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
</tr>
<tr>
<td>Backorder</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Maintenance time</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Maintenance cost</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Repair cost</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Repair time</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Objectives</td>
<td>Profit (or cost)</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
</tr>
<tr>
<td></td>
<td>Change in workforce level</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
</tr>
<tr>
<td></td>
<td>Inventory</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
</tr>
<tr>
<td></td>
<td>Backorders</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
</tr>
<tr>
<td></td>
<td>Repair cost</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
</tr>
<tr>
<td></td>
<td>Overtime</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
</tr>
<tr>
<td></td>
<td>Subcontracting</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
<td>Not Considered</td>
</tr>
</tbody>
</table>

Table 2. Cost Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>9.5</td>
</tr>
<tr>
<td>C_2</td>
<td>10.0</td>
</tr>
<tr>
<td>C_5</td>
<td>0.5</td>
</tr>
<tr>
<td>C_8</td>
<td>2.0</td>
</tr>
<tr>
<td>C_9</td>
<td>1.5</td>
</tr>
<tr>
<td>U_1</td>
<td>100.0</td>
</tr>
<tr>
<td>e_i</td>
<td>0.5</td>
</tr>
<tr>
<td>w_l</td>
<td>1.0</td>
</tr>
</tbody>
</table>

3. Model Validation

The model was validated through a case study in the context of a manufacturing company. The results showed a significant reduction in cost compared to the existing system. The model was also compared with existing models, and it was found to be more efficient and effective in achieving the objectives set forth by the company.

4. Conclusion

The proposed model provides a robust framework for decision-making in the context of production planning and inventory management. It is recommended for use in similar scenarios where multiple products, markets, and planning horizons are involved.

Note: The table and formulas are placeholders and should be replaced with actual data and calculations.
جدول ۳. داده‌های مربوط دوره‌های مختلف

<table>
<thead>
<tr>
<th>دوره ۱</th>
<th>دوره ۲</th>
<th>دوره ۳</th>
<th>دوره ۴</th>
<th>دوره ۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₃</td>
<td>C₄</td>
<td>C₇</td>
<td>C₆</td>
<td>C₁₀</td>
</tr>
<tr>
<td>C₁₁</td>
<td>a₁</td>
<td>b₁</td>
<td>MTₗ</td>
<td>Mₗ</td>
</tr>
<tr>
<td>Wₘₗ</td>
<td>SCₘₘ</td>
<td>SMᵢₘ</td>
<td>dᵢ</td>
<td>k</td>
</tr>
</tbody>
</table>

مقدار ۱

جدول ۴ حداکثر قرارداد جانبی مجاز

<table>
<thead>
<tr>
<th>دوره ۱</th>
<th>دوره ۲</th>
<th>دوره ۳</th>
<th>دوره ۴</th>
<th>دوره ۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>محصول ۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۵ حداقل تقاضای قابل پیشرفتی از روی داده‌های پیش‌بین

<table>
<thead>
<tr>
<th>دوره ۱</th>
<th>دوره ۲</th>
<th>دوره ۳</th>
<th>دوره ۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۰۰۰</td>
<td>۳۰۰۰</td>
<td>۳۰۰۰</td>
<td>۳۰۰۰</td>
</tr>
<tr>
<td>محصول ۱</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۶ تقاضای پیشرفتی شده

<table>
<thead>
<tr>
<th>دوره ۱</th>
<th>دوره ۲</th>
<th>دوره ۳</th>
<th>دوره ۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۰۰۰</td>
<td>۳۰۰۰</td>
<td>۳۰۰۰</td>
<td>۳۰۰۰</td>
</tr>
<tr>
<td>محصول ۲</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۷ مقادیر پایانی و شرایط اولیه مساله

<table>
<thead>
<tr>
<th>g</th>
<th>Invₐ₀</th>
<th>Bₐ₀</th>
<th>Invₐ₂₀</th>
<th>B₂₀</th>
<th>W₀</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>پارامتر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>№۱۷۰۰۰۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۸ مقادیر متغیر نگهداری و تعمیرات در مدل پیشنهادی ۱

<table>
<thead>
<tr>
<th>دوره ۱</th>
<th>دوره ۲</th>
<th>دوره ۳</th>
<th>دوره ۴</th>
<th>دوره ۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>۱۰۰۰</td>
<td>۱۰۰۰</td>
<td>۱۰۰۰</td>
<td>۱۰۰۰</td>
</tr>
</tbody>
</table>

جدول ۹ مقایسه نتایج حل دو مدل

<table>
<thead>
<tr>
<th>نتایج تابع هدف در مدل بدون اضافه نمونه‌نگهداری و تعمیرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۴۶۷۴۹۱۴</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نتایج تابع هدف در مدل با اضافه نمونه‌نگهداری و تعمیرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۱۹۴۱۲</td>
</tr>
</tbody>
</table>

درصد کاهش در هزینه کل ۱۷٪

نشیمه بنی الملی مهندسی صنایع و مدیریت تویله، خرداد ۱۳۹۱-جلد ۲۲-شماره ۱
4. Bibliography

