Optimal Inspection Interval for a Two-Component System with Failure Dependency

H.R. Golmakani* & H. Moakedi

Hamid Reza Golmakani, Associate Professor, Industrial Engineering, Tafresh University
Hamid Moakedi, Master of Science, Industrial Engineering, Tafresh University

Keywords

Maintenance,
Inspection Interval,
Failure Dependency,
Two-Component System

ABSTRACT

In this paper, optimization of periodic inspection interval for a two-component system with failure dependency is presented. Failure of the first component is soft, namely, it does not cause the system stop, but it increases the system operating costs. The second component’s failure is hard, i.e. as soon as it occurs, the system stops operating. Any failure of the second component increases the first component’s failure rate. Failure of the first component is only detected if inspection is performed. Thus, the first component is periodically inspected and if found failed, it is perfectly repaired and it is restored to as good as new. Failure of the second component is detected as soon as it occurs. Since this failure causes the system stop, it is immediately replaced. It is assumed that the time for replacement or repaired is negligible. We model the first component’s failure as a non-homogeneous Poisson process (NHPP) with increasing failure rate and the second component’s failure as a homogeneous Poisson process (HPP) with constant failure rate. The objective is to find the optimal inspection interval for the first component such that the expected total cost per unit time is minimized. A simplified numerical example along with sensitivity analysis on cost parameters is given.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 1, All Rights Reserved

*Corresponding author. Hamid Reza Golmakani
Email: golmakani@mie.utoronto.ca
بهینه‌سازی فواصل بازرگانی برای یک سیستم دو مولفه‌ای پیچیده

حمیدرضا گل‌مکانی و حمید موحدی

چکیده:
در این مقاله، بهینه‌سازی فواصل بازرگانی برای یک سیستم دو مولفه‌ای با واسطگی خرابی بین مولفه‌ها ارائه شده است. این سیستم مورد مطالعه، خرابی‌های مولفه‌ای اوّل از نوع ترم ثابت و طبق فرآیند غیره‌گونه پواسون با خرابی آزادی‌افزایی را می‌دهد. خرابی‌های مولفه‌ای دوم از نوع سخت بوده و طبق فرآیند همگن پواسون با خرابی تابع نرمال گردیده هر خرابی نرم مولفه‌ای اوّل تابع نرمال خرابی مولفه‌ای دوم ندارد، اما هر خرابی سخت مولفه‌ای دوم باعث ایجاد شوک در سیستم ولوش مولفه‌ای اوّل شده، خرابی آن را افزایش می‌دهد. خرابی‌های نرم مولفه‌ای اوّل موجب نتفو هزینه تولید یک سیستم هستند. محدوده‌ی آن مولفه‌ای تولید شده در شرایط نرم و سخت‌افزایی شده، خرابی‌های سخت مولفه‌ای، دوم به محض وقوع مشاهده و باعث نتیجه‌گیری کامل سیستم می‌شود. در نتیجه، تمعین بهترین فاصله‌ی زمانی بین بازرگانی‌های متوازی مولفه‌ای اوّل است. بنگاه‌های که موسطه‌های کل و یک واحد زمان حداکثر ندارند، در پایان برای تشریح بیشتر مدل پیشنهادی به مثال عادی اوّل وارد شده است.

کلمات کلیدی:
نگهداری و تعمیرات، بهینه‌سازی فواصل بازرگانی، واسطگی خرابی، سیستم دو مولفه‌ای

مقدمه

1. مقدمه
سیستم‌های منفی، سیستم‌های هستند که از جنگ جهانی دوم نرمال تولید شده‌اند. با توجه به مولفه‌های مختلف ترکیبی شده، واسطگی بین مولفه‌ها موجب تغییر می‌شود تا مدل موجود در بهینه‌سازی غفلت‌های تداولی و تغییرات این سیستم‌ها بسیار بیشتر شود [1]. در نگهداری و تعمیرات سیستم‌های نرم، مولفه‌های خرابی، هدف این ارتباط نوع واسطگی بین مولفه‌ها یک سیستم بهینه‌تر تغییری و تعمیرات برای سیستم اتمی نمود [2]. واسطگی بین مولفه‌ها را می‌توان به سه نوع، واسطگی اقتصادی، واسطگی سخت‌افزایی و واسطگی خرابی تقلید می‌نمود [2-1]. منظور از اقتصادی

تاریخ وصول: 29/8/99
تاریخ پذیرش: 27/6/99

مهدی موحدی، فارغ‌التحصیل کارشناسی ارشد دانشگاه مهندسی صنایع
حمید موحدی، فارغ‌التحصیل کارشناسی ارشد دانشگاه مهندسی صنایع
دانشگاه تهران
hamid.mohakemi@gmail.com

شماره 41391-جلد 33-شماره 1
نشریه بین المللی مهندسی صنایع و مدیریت تولید، خرداد 1391-بله 23-شناسه 1
موفقیت اول تتأیهری روی خرایی مولفه‌ی دوم ندارد، اما هر خرایی
ساخت موفقیت دوم با ثبت آبادگراش شک روی مولفه‌ی دوم می‌شود.
بنابراین ایجاد خرایی مولفه‌ی دوم می‌تواند، خرایی آن را
از آزاریش می‌دهد. ملک‌های خرایی مولفه‌ی دوم نیز به احتیال 9
خرایی مولفه‌ی دوم مرحله‌ی اول خروش سوم
خرایی مولفه با ثبت آبادگراش شک روی مولفه‌ی دوم می‌شود. نگهداری
و تغییرات مقاومتی شیمیایی به
خراشی مولفه‌ای در محلی
موفقیت با واحدکاری خرایی ارائه شده است. در هر یک از این
دولتش، ار دستگاه می‌توان که به آسانی از مولفه‌های خروش سوم، نوک
خرایی مولفه، تغییرات و عملیات اصلاح مولفه‌های یک
خارایی مولفه، ویرایش و تغییر هنگام و سایر
عوامل تأثیرگذار، که به دنیای شیمیایی و تغییرات ارائه
شد است (2016). خرایی یک مولفه‌های نوسازی بر اساس تایج خرایی روبر
دو نوع تغییر می‌شود: خرایی‌های سخت و خرایی‌های نرم.
خرایی‌های سخت، خرایی‌هایی هستند که به محلات به خود را
اشاره می‌کند و به این ترتیب تغییر می‌شود. خرایی‌های نرم،
خرایی‌هایی هستند که به محلات و خود از شکاف نگنده
پلاس تغییر سیستم می‌شود. ما این کار را که کاهش
می‌دهد و به سیستم ایجاد می‌شود. اکثریت سیستم‌ها
بر اساس نظریه‌ی جرمی‌نگهداری می‌باشد.
در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
اخر این مقدار، مولفه‌ی خرایی یک مولفه‌ی دوم می‌شود.
در این مقدار، آثار عرضه شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
افزایشی یک مولفه‌ی دوم می‌شود. در این مدل، در یک مولفه در نظر گرفته شده است که یک مولفه به
الفی‌سازی افزایشی برای یک بسیاری در مولفه‌ای پیچیده
حمیدرضا گل–میکانی و حمید مولکی
بهنامزاز نواصع بارزی برای یک بسیاری در مولفه‌ای پیچیده
نتشیبی پلی‌هیدرات میکانی و مدلیرش تولیدی
57
با نظر می‌دهیم که یکی از عوامل اصلی در مدل‌سازی و مشاهده مدل‌های عصبی ترکیبی می‌تواند بر اساس شرایط خاصی باشد. این شرایط می‌تواند بر اساس شرایط فیزیکی، شرایط ریاضی، شرایط محیطی یا شرایط فنی باشد. در اینجا، مدل‌سازی به‌طور گسترده‌ای در مطالعات عصبی و مشاهده مدل‌های عصبی ترکیبی استفاده می‌شود.

حدود نهایی مدل‌سازی در این مدل با هر شرایط ممکن است باشد:

\[x = \begin{cases} A_1(x), & \text{در حرکت خرابی مدل‌سازی اول در زمان } x, \text{ به شرط که تعداد خرابی مدل‌سازی در انتهای افق افزایشی تا زمان } x \text{ باشد}, \
A_2(x), & \text{در حرکت خرابی مدل‌سازی دوم در انتهای افق افزایشی تا زمان } x \text{ باشد}. \end{cases} \]

در این مدل، تعداد افزایشی مدل‌سازی در زمان، شرایط آغاز و خاتمه و زمان‌ها که تعداد افزایشی مدل‌سازی در انتهای افق افزایشی تا زمان، شرایط آغاز و خاتمه و زمان‌ها که تعداد افزایشی مدل‌سازی در زمان، شرایط آغاز و خاتمه و زمان‌ها که تعداد افزایشی مدل‌سازی در انتهای افق افزایشی تا زمان، شرایط آغاز و خاتمه و زمان‌ها که تعداد افزایشی مدل‌سازی در انتهای افق افزایشی تا زمان، شرایط آغاز و خاتمه و زمان‌ها که تعداد افزایشی مدل‌سازی در انتهای افق افزایشی تا زمان، شرایط آغاز و خاتمه و زمان‌ها که تعداد افزایشی مدل‌سازی در انتهای افق افزایشی تا زمان، شرایط آغاز و خاتمه و زمان‌ها که تعداد افزایشی مدل‌سازی در انتهای افق افزایشی تا زمان، شرایط آغاز و خاتمه و زمان‌ها که تعداد افزایشی مدل‌سازی در انتهای افق افزایشی تا زمان، شرایط آغاز و خت
موفقیتی اول در فاصله زمانی $r=T/n$، بازرسی می‌شود (شكل 1) و خرابی‌های این موفقیت فاصله در زمان‌هایی بازاری شناسایی می‌شود. موفقیتی اول تعبر کامل می‌شود. فرض بر این است که در شروع هر سیکل بازاری و تعبر احتمال موفقیتی اول صورت می‌گیرد. سیکل T, یک فاصله زمانی ثابت و معلوم است و هدف این است که فاصله زمانی بهینه بین بازاری‌های متوازی موفقیتی اول گونه‌ای تعیین شود که متوسط هزینه کل موفقیتی اول در سیکل T حداکثر کرد.

شكل 1: موفقیتی بازاری موفقیتی اول در سیکل T

زمانی که موفقیتی اول خرابی می‌شود، نیاز است تا نتایج تعبر و زمانی بازاری تعبر کامل می‌شود. بنابراین، در حالت بازاری موفقیتی اول، امکان تعبر $k=1,2,...,n$ در صورت وقوع خرابی احتمالی موجود می‌باشد. بنابراین، موفقیتی اول می‌تواند به صورتی که انجام بازاری 1 هزینه تعبر کامل، در صورتی که موفقیتی اول از تعداد خرابی موفقیتی اول برای مدت زمانی سیری شده از وقوع خرابی آن تا شناسایی آن در زمان بازاری تعبر، هزینه تعبر C^1_1 و هزینه تعبر C^1_2 که موفقیتی اول و کل زمانی سیری شده از وقوع خرابی موفقیتی اول تا شناسایی آن در زمان بازاری تعبر، لذا متوسط هزینه کل موفقیتی اول در بازاری بازاری k در سیکل T برای این است:

$$E\left[c_1^{(k-1),r,T}\right] = C^1_1 + C^1_2 P\left(\text{component 1 fails in } \{(k-1)r,kr\}\right)$$

$$+ C^1_2 E\left[\text{downtime of component 1 in } \{(k-1)r,kr\}\right],$$

که در آن $k=1,2,...,n$

برای محاسبه متوسط نرخ خرابی موفقیتی اول در زمان x, به دستور داشته که تعریف‌های موفقیتی دوم نشان‌دهنده کنندازی در حالت بازاری موفقیتی اول دارد. تعریف هر موفقیتی دوم $N_i(x)$، $i=1,2,\ldots,\infty$ باشد و با توجه به عبارت (1) و (2) متوسط نرخ خرابی موفقیتی اول در زمان x برای این است:

$$\lambda(x) = \frac{\lambda_0(x) e^{-\lambda x}}{j!}, \quad j = 0,1,2,\ldots$$

برای محاسبه متوسط نرخ خرابی موفقیتی اول در زمان x, به دستور داشته که تعریف‌های موفقیتی دوم نشان‌دهنده کنندازی در حالت بازاری موفقیتی اول دارد. تعریف هر موفقیتی دوم $N_i(x)$، $i=1,2,\ldots,\infty$ باشد و با توجه به عبارت (1) و (2) متوسط نرخ خرابی موفقیتی اول در زمان x برای این است:

$$\lambda(x) = \sum_{j=0}^{\infty} \lambda_j(x) N_j(x) = \sum_{j=0}^{\infty} \lambda_j(x) e^{-\lambda x} \frac{j!}{j!} = \lambda(x) e^{-\lambda x} \frac{j!}{j!}$$
بنابراین، معادلهٔ پارکشی برای محاسبهٔ $P_i(t)$ بدین صورت است:

$$P_i(t) = \begin{cases} e^{-\lambda_i t} & , k = 1 \\ e^{-\lambda_i t} (1 - P_k(t)) + P_k(t) e^{-\lambda_i t} & , k = 2, \ldots, n \end{cases}$$

در اینجا $P_k(t)$ به مجموعهٔ اولین محاسبه کامل شده و در اینصورت محاسبه اولین محاسبه کامل شده در زمان اولین محاسبه $P_i(t)$ خواهد بود.

بنابراین، فاکتورهای بایگانی این مطلب است که مولفهٔ اول به احتمال $1 - P_i(t)$ اولین بارزرسی در i خرابی می‌شود، بنابراین در زمان اولین محاسبه $P_i(t)$ اولین بارزرسی تعیین شده و در اینصورت محاسبه اولین محاسبه $P_i(t)$ خواهد بود.

راهی بیشتر در اینجا یک مطلب است که مولفهٔ اول به احتمال $1 - P_i(t)$ اولین بارزرسی در i خرابی می‌شود، بنابراین در زمان اولین محاسبه $P_i(t)$ اولین بارزرسی تعیین شده و در اینصورت محاسبه اولین محاسبه $P_i(t)$ خواهد بود.

$$P_i(t) = P(0) (1 - P_i(t)) + P_i(t) e^{-\lambda_i t}$$

در اینجا $P_i(t)$ به مجموعهٔ اولین محاسبه کامل شده و در اینصورت محاسبه اولین محاسبه $P_i(t)$ خواهد بود.

$$P_i(t) = \begin{cases} e^{-\lambda_i t} & , k = 1 \\ e^{-\lambda_i t} (1 - P_k(t)) + P_k(t) e^{-\lambda_i t} & , k = 2, \ldots, n \end{cases}$$

یک مطلب است که مولفهٔ اول به احتمال $1 - P_i(t)$ اولین بارزرسی در i خرابی می‌شود، بنابراین در زمان اولین محاسبه $P_i(t)$ اولین بارزرسی تعیین شده و در اینصورت محاسبه اولین محاسبه $P_i(t)$ خواهد بود.

$$P_i(t) = P(0) (1 - P_i(t)) + P_i(t) e^{-\lambda_i t}$$

در اینجا $P_i(t)$ به مجموعهٔ اولین محاسبه کامل شده و در اینصورت محاسبه اولین محاسبه $P_i(t)$ خواهد بود.

$$P_i(t) = \begin{cases} e^{-\lambda_i t} & , k = 1 \\ e^{-\lambda_i t} (1 - P_k(t)) + P_k(t) e^{-\lambda_i t} & , k = 2, \ldots, n \end{cases}$$

یک مطلب است که مولفهٔ اول به احتمال $1 - P_i(t)$ اولین بارزرسی در i خرابی می‌شود، بنابراین در زمان اولین محاسبه $P_i(t)$ اولین بارزرسی تعیین شده و در اینصورت محاسبه اولین محاسبه $P_i(t)$ خواهد بود.

$$P_i(t) = P(0) (1 - P_i(t)) + P_i(t) e^{-\lambda_i t}$$

در اینجا $P_i(t)$ به مجموعهٔ اولین محاسبه کامل شده و در اینصورت محاسبه اولین محاسبه $P_i(t)$ خواهد بود.

$$P_i(t) = \begin{cases} e^{-\lambda_i t} & , k = 1 \\ e^{-\lambda_i t} (1 - P_k(t)) + P_k(t) e^{-\lambda_i t} & , k = 2, \ldots, n \end{cases}$$

یک مطلب است که مولفهٔ اول به احتمال $1 - P_i(t)$ اولین بارزرسی در i خرابی می‌شود، بنابراین در زمان اولین محاسبه $P_i(t)$ اولین بارزرسی تعیین شده و در اینصورت محاسبه اولین محاسبه $P_i(t)$ خواهد بود.

$$P_i(t) = P(0) (1 - P_i(t)) + P_i(t) e^{-\lambda_i t}$$
رامطهی فوک بیانگر این مطلب است که مولفه‌ی اول به احتمال
برای ظرفیتی پیش‌درآمده داده می‌شود. این مدل برای
تغییر شده و در این‌صورت $e_i(t)$ خواهد بود.

به امتداد (11) در ادامه، همانند آنچه در خصوص
$P(t)$ مطرح گردید و به طور مشابه با (11)، یک مدل متعادلی با برگشتی برای محاسبه $e(t)$ با
استفاده از زمان اولین خرابی X_0، بدست خواهیم اورده.

ویژگی است که $e_i(t)$ در برای $k=1$ به امتداد (14)

$$e_i(t) = E\left[X_1 | X_0 = t \right]$$

(15)
مقداری متفاوت موضعی که متوسط هزینه تغییر در زمان، متوسط قابلیت در هر زمان‌یک گروه مورد بررسی قرار گرفت که با وجود تغییر در میزان هزینه به دست آمد. در این مقاله، تغییرات در متوسط هزینه با توجه به تغییرات در زمان به صورت تغییرات در میزان هزینه در زمان، میزان هزینه در زمان و میزان هزینه در زمان هزینه در زمان و میزان هزینه در زمان و میزان هزینه در زمان
جدول 2: هزینه‌های ناشی از بانک خانی در سیکل T به‌ازا مقدار متفاوت تعداد بارزرسی

<table>
<thead>
<tr>
<th>هزینه</th>
<th>تعداد</th>
<th>هزینه تعیین گریمی</th>
<th>تعداد</th>
<th>هزینه کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>60.0653</td>
<td>509.1540</td>
<td>589.2194</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>68.3711</td>
<td>298.7797</td>
<td>367.1509</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>71.1365</td>
<td>212.4608</td>
<td>283.5973</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>72.8890</td>
<td>165.7759</td>
<td>238.6649</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>74.0805</td>
<td>136.1166</td>
<td>210.1971</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>74.9406</td>
<td>115.5262</td>
<td>190.4668</td>
</tr>
<tr>
<td>7</td>
<td>140</td>
<td>75.5901</td>
<td>100.5788</td>
<td>176.1689</td>
</tr>
<tr>
<td>8</td>
<td>160</td>
<td>76.0976</td>
<td>88.7465</td>
<td>165.8440</td>
</tr>
<tr>
<td>9</td>
<td>180</td>
<td>76.5049</td>
<td>79.8587</td>
<td>159.3636</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>76.8391</td>
<td>72.0662</td>
<td>154.9052</td>
</tr>
<tr>
<td>11</td>
<td>220</td>
<td>77.1181</td>
<td>66.9660</td>
<td>151.0841</td>
</tr>
<tr>
<td>12</td>
<td>240</td>
<td>77.3545</td>
<td>60.6694</td>
<td>146.0240</td>
</tr>
</tbody>
</table>

جدول 3: نمود موتوسط هزینه‌ی کل بانک خانی در سیکل T به‌ازا مقدار متفاوت تعداد بارزرسی

و این است که هزینه‌ی انجام هر بارزرسی موفق اول و همچنین هزینه‌ی جرمیهی تأخیر در شناسایی خرایی آن نقص تبیین کنندگانی را در تعیین تعداد بارزرسی بهینه خواهند داشت. در ادامه برای بارزرسی این موضوع، در مورد مثال فوق الذکر، مقدار مذکور را تعیین می‌کنیم. هزینه‌ی کل بانک خانی در جواب به این سوال و هزینه‌ی هر بارزرسی بانک خانی را مقداری صحیح بین 60 تا 90، به‌ازا هر مقدار، شناسایی خرایی به‌ازا مقدار داشته باشد (با توجه به اینکه در این مثال فرض شد تا کمترین قیمت بین دو بارزرسی متوازی ماه اسکست) تعادل بهبود بارزرسی‌ها در سال مدار می‌باشد (می‌توانیم مقدار بارزرسی

سیکل T به‌ازا مقدار متفاوت تعداد بارزرسی

شکل 2: فاصله بهینه بین بارزرسی‌ها متواطی بانک خانی با به‌ازا مقدار متفاوت هزینه‌ی بارزرسی

همچنین برای بررسی تأثیر مقادیر هزینه‌ی جرمیهی تأخیر در شناسایی خرایی به‌ازا مقدار به‌مناسبت شناسایی تا شناسایی آن در زمان بارزرسی در جواب به این سوال، این پرونده‌تی مشابه می‌باشد.
5 تطبيقات و بيشنويد تحقيقات آتي

در نگهداری و تعمیرات سیستم‌های مدیریت، هدف این است که با تغییر نویستگی مدل‌ها و تعمیرات برای سیستم‌های نگهداری و تعمیرات، از تغییرات وارد می‌گردد و این تغییرات در این سیستم‌ها به‌صورت صورتی و تکنیکی قرار گرفته. تعداد تغییرات در سیستم‌های نگهداری و تعمیرات شامل تغییرات در موقعیت و تغییرات در سیستم‌های نگهداری و تعمیرات از آنجایی که در این مقاله، از مدل‌های نگهداری و تعمیرات برای سیستم‌های نگهداری و تعمیرات و تغییرات در این سیستم‌ها استفاده می‌گردد.

به‌طور کلی، سیستم‌های نگهداری و تعمیرات در این مقاله، از این مدل‌ها برای سیستم‌های نگهداری و تعمیرات برای سیستم‌های نگهداری و تعمیرات و تغییرات در این سیستم‌ها استفاده می‌گردد. در این مقاله، از مدل‌های نگهداری و تعمیرات برای سیستم‌های نگهداری و تعمیرات و تغییرات در این سیستم‌ها استفاده می‌گردد.

جدول 4: فاصله‌های بین بازرگانی متوالی‌های یک

<table>
<thead>
<tr>
<th>هزینه بهره‌وری (C)</th>
<th>بازرگانی در سیستم</th>
<th>C'd</th>
<th>n'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

