Using Fuzzy Analytic Hierarchy Process and Hybrid of Higher Order Neural Network for Evaluation Credit Risk of Corporate

S. H. Ghodsypour*, M. Salari & V. Delavari

Seyed Hassan Ghodsypour, Professor of Industrial Engineering, Department of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran
Meyssam Salari, M.Sc. in Industrial Engineering, Department of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran
Vahid Delavari, M.Sc. in Information Technology Management, Shahidbeheshti University, Tehran, Iran

Keywords
Credit risk, Default rate, neural network, fuzzy analytic hierarchy process

ABSTRACT

Banks as financial institutions must estimate the credit risk of their debtors. This is the basis of pricing a loan, determining appropriate interest rates and determining the mortgage required to each borrower. Since the continuity of bank activities largely depends on the amount of credit losses in a particular period, banks should consider the credit quality of their loan portfolio as a collection of debts.

In this paper, the calculation of credit risk of corporates applying for loans has been investigated. Using fuzzy analytic hierarchy process, effective criteria for credit risk have been analyzed. The neural network is used to extract an open box model that describes the relationship between effective criteria and the credit risk of the companies who apply for a loan. Neural network model has been run with historical data. Observations have been based on 174 corporate who had taken out a loan from a major Iranian bank named Mellat (All loans had been made during 2005 to 2008).

The output of the model can predict credit risk of a corporate by at least 84% accuracy.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 1, All Rights Reserved

* Corresponding author, Seyed Hassan Ghodsypour
Email: Ghodsypo@aut.ac.ir
ارزیابی ریسک اعتباری شرکت‌های وام گیرنده از بانک با استفاده از تحلیل سلسله مراتبی فازی و شبکه عصبی تکیبی درجه بالا

سیدحسن قدسی پور، میثم سالاری و وحید دلاروی

چکیده
بنابراین، ریسک اعتباری نخست آلوده به‌دیده شده توسط محققان و مدیران بانک در ساختار سالاری و معیارهای شرکت‌های مالی بسیاری است. در این مقاله، تحلیل سلسله مراتبی و روش‌های مالیه‌ای مورد بررسی می‌گردد. این روش‌ها به‌عنوان یکی از روشهایی پیشرفته برای بررسی و تحلیل ریسک‌های مالی بانک‌ها به‌کار می‌گردد. در این مقاله، تأکید بر روش‌های تحلیل سلسله مراتبی و روش‌های مالیه‌ای برای بررسی و تحلیل ریسک‌های مالی بانک‌ها و شرکت‌های مالی می‌گردد.

کلمات کلیدی
ریسک اعتباری
نخل‌دار
شبکه عصبی تکیبی
سلسله مراتبی فازی

1. مقدمه

بانک‌ها یکی از ارکان اصلی نهادهای مالی در هر اقتصادی محسوب می‌شوند که در سال‌های اخیر با توجه به رشد و بازارهای نهادهای مالی، نقش آنها روز به روز بیشتر می‌شود. با این حال، در این زمینه، بانک‌ها باید به‌خوبی مدیریت ریسک قسمتی از فعالیت‌های خود را بپردازند. هدف اصلی مدیریت ریسک در بانک‌ها، به‌وجود آوردن یک سیستم مدیریت ریسک کاملاً مناسب و مؤثر است که باعث افزایش ارزش مالی و کاهش ریسک‌های مالی بانک‌ها می‌شود.

مهدف این پژوهش، بررسی ریسک‌های مالی بانک‌ها و پیشنهاد‌هایی برای بهبود جهت کاهش این ریسک‌ها است. در این مقاله، به‌منظور تحلیل ریسک‌های مالی بانک‌ها، استفاده از روش‌های مالیه‌ای می‌شود. هدف اصلی این پژوهش، به‌وجود آوردن یک سیستم مدیریت ریسک کاملاً مناسب و مؤثر است که باعث افزایش ارزش مالی و کاهش ریسک‌های مالی بانک‌ها می‌شود.

2. ارائه مطالعه‌بندی

اولین بانک‌ها برای پیشنهاد یک سیستم مدیریت ریسک مناسب، باید به‌خوبی تحلیل ریسک‌های مالی بانک‌ها را انجام دهند. در این مقاله، ابتدا با استفاده از روش‌های مالیه‌ای مورد بررسی می‌گردد. این روش‌ها به‌عنوان یکی از روشهایی پیشرفته برای بررسی و تحلیل ریسک‌های مالی بانک‌ها به‌کار می‌گردد.

3. ارائه مدل

در این مقاله، تأکید بر روش‌های تحلیل سلسله مراتبی و روش‌های مالیه‌ای برای بررسی و تحلیل ریسک‌های مالی بانک‌ها و شرکت‌های مالی می‌گردد. در این مقاله، تأکید بر روش‌های تحلیل سلسله مراتبی و روش‌های مالیه‌ای برای بررسی و تحلیل ریسک‌های مالی بانک‌ها و شرکت‌های مالی می‌گردد. در این مقاله، تأکید بر روش‌های تحلیل سلسله مراتبی و روش‌های مالیه‌ای برای بررسی و تحلیل ریسک‌های مالی بانک‌ها و شرکت‌های مالی می‌گردد.

4. نتیجه‌گیری

در این مقاله، تأکید بر روش‌های تحلیل سلسله مراتبی و روش‌های مالیه‌ای برای بررسی و تحلیل ریسک‌های مالی بانک‌ها و شرکت‌های مالی می‌گردد. در این مقاله، تأکید بر روش‌های تحلیل سلسله مراتبی و روش‌های مالیه‌ای برای بررسی و تحلیل ریسک‌های مالی بانک‌ها و شرکت‌های مالی می‌گردد. در این مقاله، تأکید بر روش‌های تحلیل سلسله مراتبی و روش‌های مالیه‌ای برای بررسی و تحلیل ریسک‌های مالی بانک‌ها و شرکت‌های مالی می‌گردد.

5. ارجاعات

[1] Open box

[9/129, تاریخ: 20/9/1290]

[9/130, تاریخ: 21/1290]

[9/131, تاریخ: 22/1290]
 Jae حمایت گیری روش اعتباری مشترک خود طراحی کننده حمایت از ابزار جزو کمی درک این روش اعتباری از طریق روش اصلاح‌دهی انتخابی، با توجه به مطالب بیان شده، ضرورت دیدگاهی بخشی از روش اعتباری نشان می‌دهد: انتخاب

1. یافته‌های نشان و توجه به مقررات خدمات بانکی

2. نتایج قبیل درهم‌آوردن بانک به حساب مالی و عادی

3. افزایش ویژگی‌های ابزارهای بانکی و ضرورت

4. توصیه و تکمیل بازارهای مالی و افزایش ابزارهای و توفر

5. افزایش ابزارهای ابزارهای مالی و مؤسسات اعتباری

6. مدل‌برداری سوالات حساب‌رسی و روابط اقتصادی ناشی از

چهارمین و مقررات زدایی و توصیه و توفر و ابزارهای بانکی

در یافته‌های این اثری‌ها اظهار شده است.

در یافته‌های این اثری‌حا اظهار شده است.

در یافته‌های این اثری‌ها اظهار شده است.

در یافthes
3.1 آزمون‌های ارزیابی ریسک انتخابی شرکت‌ها

در این مقاله برای محاسبه ریسک انتخابی شرکت‌های ام و گرینه، از نظر ارزیابی شرکت‌های ام و گرینه از پایه‌ای صورت گرفته برای انتخابی ریسک انتخابی شرکت‌ها انتخابی گردید. روش مورد استفاده در این پژوهش، روش تحلیل میکروپن و برای گیرش شرکت‌ها با ارزیابی انتخابی از این مدل‌ها انتخابی شد. در نتیجه این روش مورد استفاده از مدل‌های تحلیل میکروپن با انتخابی ارزیابی شرکت‌ها در مقایسه با شبکه‌های مقایسه‌ای كامپیوتر تولید شده بود. 

3.2 فلورات 1.3: مدل‌سازی 2.3-1: تحلیل سلسله‌مانندی فازی 1

در ادبیات، انتخاب روش مدل‌سازی فازی تضمین گرایی و همراه با انتخاب روش مدل‌سازی و جهت درک نقطه‌های مرجع مختلف اثرات داده‌های موثر بر روی مدل‌سازی در بخش‌های مختلف از این مقاله شده است. 

3.3 فلورات 1.3: مدل‌سازی 2.3-1: تحلیل سلسله‌مانندی فازی 1

در این مقاله برای محاسبه ریسک انتخابی شرکت‌های ام و گرینه، از نظر ارزیابی شرکت‌های ام و گرینه از پایه‌ای صورت گرفته برای انتخابی ریسک انتخابی شرکت‌ها انتخابی گردید. روش مورد استفاده در این پژوهش، روش تحلیل میکروپن و برای گیرش شرکت‌ها با ارزیابی انتخابی از این مدل‌ها انتخابی شد. در نتیجه این روش مورد استفاده از مدل‌های تحلیل میکروپن با انتخابی ارزیابی شرکت‌ها در مقایسه با شبکه‌های مقایسه‌ای كامپیوتر تولید شده بود.
با استفاده از داده‌های 6 عبارت 7 حاصل می‌شود

\[ V(M_i \geq M_j) = \begin{cases} 1 & \text{iff } m_i \geq m_j, \\ 0 & \text{iff } l_j \geq l_i, \\ \frac{l_i}{u_j} - \frac{u_i}{l_j} & \text{otherwise} \end{cases} \]

\[ \mu_{M_i} + \mu_{M_j} \leq D \]

شکل 1: اشتباه در عدد فاکتور مثلثی

برای مقایسه دو عدد فاکتور مثلثی، به هر عدد مقادیر

\[ V(M_i \geq M_j) = \frac{l_i}{u_j} - \frac{u_i}{l_j} \]

\[ \sum_{i=1}^{M_1} \sum_{j=1}^{M_2} \sum_{k=1}^{M_3} 1 \]

\[ \sum_{i=1}^{M_1} \sum_{j=1}^{M_2} \sum_{k=1}^{M_3} 1 \]

\[ R = (a_{ij})_{\text{max}} \]

\[ \text{که از جزییات سیستم و یا کاهش کردن‌دست را از } 11 \]

\[ W = (d(A_1), d(A_2), ..., d(A_k))^{\top} \]

\[ V(M_1 \geq M_2) = \sup_{x \in Y} \left( \min\{\mu_{M_1}(x), \mu_{M_2}(y)\} \right) \]

\[ x \geq \sum_{i=1}^{M_1} \sum_{j=1}^{M_2} \sum_{k=1}^{M_3} 1 \]

\[ \mu_{M_1}(x) = \mu_{M_2}(y) = 1 \]

\[ V(M_1 \geq M_2) = \text{hgt}(M_1 \cap M_2) = \mu_{M_1}(d) \]
از اوجایی بین الالهی مهنده سیانی و مدیر می‌تواند، خریده‌داده‌ای ۱۳۹۱-۱۳۹۱ جلد ۲۳-شماره ۱

۵) شبکه عصبی درجه بالایی چند جمله‌ای خلف‌قوی

۶) شبکه عصبی درجه بالایی UCS

۷) شبکه عصبی درجه بالایی SXSA

در حیطه‌های درون شرکت‌های بالاتر، HONN می‌تواند گزارش‌هایی از حالت‌های متفاوت احتمال یافته HONN است. همچنین، نحوه یافتن از روش‌های رایج طبقه‌بندی می‌تواند یک مرجع به توجه به گزارش‌های پیش‌بینی و در نهایت گزارش‌های پیش‌بینی مورد استفاده نیز از موارد می‌باشد.

زبانگ ۲ در سال ۲۰۰۸ مدل ۱b Z = ۰ هم تأثیر ویژه زن در مدل ۱b Z = ۰ بایستی در طول اجرای مدل گزارش کننده، مدل ۱b Z = ۰ هم تأثیر ویژه زن در مدل ۱b Z = ۰ بایستی در طول اجرای مدل گزارش کننده. مدل ۱b Z = ۰ بایستی در طول اجرای مدل گزارش کننده. مدل ۱b Z = ۰ بایستی در طول اجرای مدل گزارش کننده. مدل ۱b Z = ۰ بایستی در طول اجرای مدل گزارش کننده.

۱۰) شبکه عصبی درجه بالایی SXSHONN

۱۱) Hybrid of Higher Order Neural Network

۱۲) Higher Order Neural Network

۱۳) Polynomial Higher Order Neural Network (PHONN)

۱۴) Trigonometric Higher Order Neural Network (THONN)
مدل بیشتر شود برورترسانی بپردازی سخت‌تر می‌گردد. در این مقاله، ما یک رابطه کننده می‌توانیم در حوزه های مورد نظر استفاده کنیم که شامل دو جزء از چهار ساختار

- PHONN
- SPHONN
- SINCHONN
- THONN

با مدل 0 هست. هنگامی که در هر این ساختارها، می‌توانیم به شکل زیر انتخاب می‌شوند:

- PHONN: \( f(x) = x \)
- THONN: \( f(x_1) = \cos(x_1), f(x_2) = \sin(x_2) \)
- SINCHONN: ...
- SPHONN:

\[
\begin{align*}
Tansig & : f(x) = \frac{1 - e^{-x}}{1 + e^{-x}}, \\
Logsig & : f(x) = \frac{1}{1 + e^{-x}}
\end{align*}
\]

شکل 3 سیمای کلی HHONN را نشان می‌دهد. در این شکل توانای دیگر بی‌محوطه کردن می‌تواند به توانایی در پرورش آموزش‌های متغیر می‌گردد تا دقت مطلوب برای نمونه‌های اعتباری سنجی به وجود آید.

![HHONN Diagram](image)

**HHONN**

- ۳-۵ کوچک‌ترین یادگیری در مدل
- گام‌هایی با یادگیری در مدل
- گام‌هایی با یادگیری در مدل

\[
y_j(x) = \sum_{i=1}^{P} w_{ji}^{(1)} f_j(x_i) + \sum_{i=1}^{P} w_{ji}^{(2)} f_j(x_i) + \ldots + \sum_{i=1}^{P} w_{ji}^{(K)} f_j(x_i_k)
\]

\[
z_i = Y \times V = \sum_{j=1}^{K} v_{ji} y_j(x)
\]

\[
Y = [y_1, y_2, \ldots, y_K], \quad Z = [z_1, z_2, \ldots, z_L]
\]
گورتم پادگیری، شیکه‌های عصبی معمول است تنظیم وزن‌ها به صورت درجه معکوس اتفاق می‌افتد.
وزن‌های لایه اول و دوم به ترتیب با معادلات ۱۷ و ۱۸ به روز
رسانی می‌شوند.

\[ W^{(k)}(k+1) = W^{(k)}(k) - \eta \left( \frac{\partial E}{\partial W^{(k)}(k)} \right) \]

\[ \frac{\partial E}{\partial W^{(k)}(k)} = \frac{\partial E}{\partial y_j} \cdot \frac{\partial y_j}{\partial W^{(k)}(k)} = \frac{\partial E}{\partial y_j} \cdot f_k(x_{i_k}) \cdot f_k(x_{i_k}) \]

\[ \frac{\partial E}{\partial y_j} = \frac{\partial}{\partial y_j} \left[ \frac{1}{2} \sum_{i=1}^{k} (d_i - z_i)^2 \right] = \sum_{i=1}^{k} (d_i - z_i) \cdot \frac{\partial}{\partial y_j} \left( \frac{\partial E}{\partial y_j} \cdot y_V \right) + \sum_{i=1}^{k} (d_i - z_i) \cdot y_j \]

\[ \frac{\partial E}{\partial y_j} = \frac{\partial}{\partial z_i} \cdot \frac{\partial z_i}{\partial y_j} \cdot \frac{\partial E}{\partial z_i} \cdot y_j = y_j \sum_{i=1}^{k} (d_i - z_i). \]

در این مدل:

۱ = مراحل پادگیری.
۲ = ضرب پادگیری (همواره مثبت و معمولاً کوچکتر از یک).

در این مدل:

۱ = مراحل پادگیری.
۲ = ضرب پادگیری (همواره مثبت و معمولاً کوچکتر از یک).
جدول 1. وزنه‌های مربوط به معیارهای هر یک از ارزیابی‌ها

<table>
<thead>
<tr>
<th>ارزیابی</th>
<th>معیار</th>
<th>تعریف</th>
<th>وزن</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارزیابی مالی</td>
<td>نسبت جاری</td>
<td>بدنه‌های جاری/دارایی‌های جاری - نسبت جاری</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>نسبت بدهی</td>
<td>کل دارایی/کل بدهی - نسبت بدهی</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>نسبت آنی</td>
<td>بدنه‌های جاری/درصد موجودی کوتاه مدت - موجودی نقدی - نسبت آنی</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>جمع درآمدها/سود بانک و پژوهش از کسر مالیات - نسبت سود به درآمد</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>تعداد سالی که شرکت در حواله‌های است</td>
<td>0.211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>تعداد جویانه/یک شرکت</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td></td>
<td>میزان سهام مدرکعال</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>نتیجه‌های مطالعات مومول دادن‌شده و تدارک‌های ارزیابی مالی</td>
<td>0.685</td>
<td></td>
</tr>
<tr>
<td></td>
<td>مطالعات مومول دادن‌شده و تدارک‌های ارزیابی مالی</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>مجموع معیارهای حساسیت بایگان‌فرآیند از مالی نکننده و تدریافت و تکلیف شده</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>ارزیابی مدیریتی</td>
<td>ضمانت مطالعات مومول</td>
<td>0.685</td>
<td></td>
</tr>
<tr>
<td></td>
<td>نتیجه‌های مطالعات مومول</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>مجموع معیارهای حساسیت بایگان‌فرآیند از مالی نکننده و تدریافت و تکلیف شده</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>مجموع معیارهای حساسیت بایگان‌فرآیند از مالی نکننده و تدریافت و تکلیف شده</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>مجموع معیارهای حساسیت بایگان‌فرآیند از مالی نکننده و تدریافت و تکلیف شده</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

4- محاسبه ریسک اعتباری

از آنجا که مهم‌ترین عامل برای بانک در بررسی مشتری متقاضی، دریافت اطلاعات و سود وامی است که به مشتری می‌دهد، مهم‌ترین عامل در ریسک اعتباری مشتری میزان عدم پرداخت بدهی می‌باشد. بیل‌های مصرفی شرکت در مسیرهای بانک نگهداری می‌گردد، در هر یک از موارد زیر فرمول زیر محاسبه می‌شود:

$$D = \sum_{i=1}^{n} X_i T_i (R_i + R_2) / (R_1 + R_2)$$  \hspace{1cm} (21)

در فرمول بالا داریم:

- $D$ = میزان ثانیه عضوی از $X_i$ در زمان از گذشته برای دریافت شده است.
- $T_i$ = مدت ثانیه از $X_i$ در زمان از گذشته برای دریافت شده است.
- $R_i$ = میزان نرخ سود بانکی در مسیرهای بانک نگهداری می‌گردد.
- $X_i$ = میزان ثانیه عضوی از $X_i$ در زمان از گذشته برای دریافت شده است.

1. برای معیارهایی که تأثیر منفی دارند:

$$X_i' = \frac{X_i - \text{Min}(X_i)}{\text{Max}(X_i) - \text{Min}(X_i)}$$  \hspace{1cm} (19)

2. برای معیارهایی که تأثیر مثبت دارند:

$$X_i' = \frac{\text{Max}(X_i) - X_i}{\text{Max}(X_i) - \text{Min}(X_i)}$$  \hspace{1cm} (20)

با این روش کلیه مقدار مبتنی مربوط به معیارهای بین صفر و یک قرار می‌گیرد. با توجه به اینکه بانک و صنعت به معیارهای تابع به صفر و یک می‌باشد، مقدار به دست آمده برای هر ارزیابی بین صفر و یک بدست می‌آید.
اعتبار شرکت آم در زمینه عدم بارزی‌دار بوی یاده‌ی که نشان دهنده ریسک اعتباری شرکت می‌باشد از طریق فرمول زیر محاسبه می‌شود:

\[ R_i = \frac{1 - \frac{D_i}{M_i}}{100} \]  \( i = 1 \rightarrow M_i \) میزان جرمی شرکت آم در وام به مبلغ \( M_i \) 

\( R_i \) = ریسک اعتباری شرکت آم

مدل اجمالی کردن ب‌طوری که 60% داده‌ها را برای آموزش، 20% برای اعتباری سنجی و 20% داده‌ها را برای تست در نظر گرفته شده است و با انتخاب تصادفی داده‌های مختلف از جمعه داده‌ها برای تست و اعتباری سنجی و آموزش بهترین مدل برای 200 بار اجرا شده و دقت داده‌های تست و اعتباری سنجی محاسبه شده است در روش HTHONN حداکثر دقت بر از واحدهای درجه بالاتر برای 4 قرار داده شده و برای 4 تابع SINCHONN, SPHONN (Tansig, Logsing), PHONN تمامی مدل‌ها با درجه مختلفی به طور جدایی تست شده است.

در کل 624 مدل اجرا شده که از بین مدل‌ها مدل [2, 1, 3, 2] با بالاترین دقت را داشته است که در جدول 2 بیان شده است. در نهایت مدل مذکور را با انتخاب تیم‌های مختلف برای آموزش، اعتباری سنجی و تست 200 بار بر روی مجموعه داده‌آموزشی کمیکی میانگین ضریب تشخیص رگرسیون این مدل برای داده‌های تست 3/2 به دست آمده است. تابع نتایج درجه داده‌های تست که بر اساس دقت درجه 4 تابع داده‌های تست اعتباری سنجی و آموزش را برای 624 مدل اجرا شده با کردن یک در نمود.

HHNONN

4-3 نتایج حاصل از اجرای مدل

در این مقاله داده‌های سیستمی برای شرکت و ریسک اعتباری مربوطه را با استفاده از مدل HHNONN برای یکتا کردن بهترین را نشان می‌دهد و نقاط آبی رنگ مقدار پدیده شده توسط مدل Ra نشان می‌دهد.

\[ \text{Accuracy} = \text{Accuracy Test} \times \text{Validation} \]

Train Validation Test

HHNONN

<table>
<thead>
<tr>
<th>مدل</th>
<th>HHNONN</th>
<th>PHNONN</th>
<th>SPHNONN</th>
<th>THONN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

این شکل برای بهترین دقت داده‌های تست و پذیرایی دقت داده های اعتباری سنجی بیشتر از شرکت ثابت را برای داده‌های اعتباری سنجی است و اعتباری سنجی است و به‌طور کلی توصیفی که به آن اطلاعات بهترین مدل می‌باشد که اندازه‌ای موثر اocations برای داده‌های است و اعتباری سنجی تست و اعتباری سنجی است و به‌طور

\[ \text{Accuracy} = \frac{\text{Accuracy Test} \times \text{Validation}}{100} \]

آموزش. شکل‌های 5 و 6 برای پذیرایی داده‌های تست و اعتباری سنجی را نشان می‌دهد. در این اشکال نقاط قرمز رنگ مقدار واقعی داده‌های تست و اعتباری سنجی

شکل 4 دقت داده‌های تست، آموزش و اعتباری سنجی برای 624 مدل مختلف
اهمن‌ترین پیش‌بینی‌هایی که در شکل مشخص است دست داده‌های تست و اعتبار سنجی ۴۸٪ می‌باشد که در مقابل با کارهای قبلی انجام شده در این زمینه، این روش جمعه سفید بوده و ۲۴٪ دقت بیشتری نسبت به کارهای انجام شده در گذشته دارد. از طرفی نتایج حاصل از مقاله برای کارشناسان بانک ملت و مدي Lottery اعتبارات بانک ارائه‌شده است و تعدادی نمونه جدید طبق نظر مدیر این قسمت مورد تست قرار گرفت که صحیح مدل را

شکل ۵ مقدار خروجی و مقدار واقعی و مقدار ضریب تشخیص رژیم ویژه برای داده‌های تست.

نتیجه‌ی بین المللی مهندسی صنایع و مدیریت توسعه، خرداد ۱۳۹۱-جلد ۲۳-شماره ۱
5 نتیجه‌گیری
با توجه به مدل اجرا شده در این مقاله نتایج زیر حاصل شده است:

1. میزان معنی‌داری در ریسک اعتباری شرکت‌های متقاضی و با توجه به شرایط ایران مبنای شرکت‌های در این مطالعه که عبارتند از:

نیست تاریخ نسبت به بدهی، نسبت آن، نسبت سود به درآمد، تجربه شرکت، تحصیلات مدرک، میزان سرمایه مدرک، و وضعیت مالی ممکن است شرکت در سمه‌ها یا در باکل، سایبان فضای تیپولوژی شرکت.

2. وزن معنای معنی‌دار در ریسک اعتباری شرکت‌های متقاضی و مال به توجه به نظر خبرگان در این زمینه از طریق روش تحلیل ساده ماتری به منشا مشتق شده است که برای وزن‌های جدول 1 می‌باشد.

3. معنای معنی‌دار با توجه به ماهیت‌ها و نظر خبرگان در سه دسته‌ای دسته‌بندی شده که میزان معنی‌دار و معنی‌داری محاسبه و معنی‌داری محاسبه در دسته اصلی دسته‌بندی شده که دسته‌بندی 1/0 بوده است.

4. تأثیر با توجه به میزان معنی‌دار شرکتهای با توجه به داده‌ها تاریخی از استفاده از شبکه عصبی نادیده گرفته شده که نتایج مورد استفاده در مدل تحلیل و درجه بهبود در جدول 2 آمد است. نتایج یافته ۲ میزان معنی‌دار بر رابطه بین ۱۱ میزان معنی‌دار بر ریسک اعتباری شرکتهای با میزان ریسک اعتباری آنها را با دقت ۸۴٪ تحریم می‌رود؛ لذا این مدل قابلیت پیش‌بینی ریسک اعتباری شرکتهای متقاضی و مال را با دقت ۸۴٪ برای باکلی به وضوح می‌آورد.

مراجع
[۱] فلاح شمس، میری، زینب: مدل‌ها و میزان معنی‌داری اعتباری در باکلی و تحقیق در مورد ارزیابی (مراجع و مدارک) انتشارات دانشگاه علوم اقتصادی، تهران، ۱۳۸۷.
[۲] شرکت مسابقه ریسک‌های اعتباری ایران، ۱۳۸۶.
[۳] تیپنی، رضا و فلاح شمس، میری به تجربیات از مدل میزان مدل میزان مدل اعتباری در نظام باکلی کشور مجله علمی اجتماعی و انسان‌شناسی شیراز، دوره ۵۷، شماره دوم، بروی ۴۴، تیر ۱۳۸۴.
[۴]، لی، مجیدرضا، علی، اکرم، طراحی تئوری تئوری باکلی کشور مجله علمی اجتماعی و انسان‌شناسی شیراز، دوره ۵۷، شماره دوم، بروی ۴۴، تیر ۱۳۸۴.

Downloaded from ijiepm.iust.ac.ir at 17:48 IRDT on Saturday August 30 2019