Using Fuzzy Analytic Hierarchy Process and Hybrid of Higher Order Neural Network for Evaluation Credit Risk of Corporate

S. H. Ghodsypour*, M. Salari & V. Delavari

Seyed Hassan Ghodsypour, Professor of Industrial Engineering, Department of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran
Meyssam Salari, M.Sc. in Industrial Engineering, Department of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran
Vahid Delavari, M.Sc. in Information Technology Management, Shahidbeheshti University, Tehran, Iran

Keywords
Credit risk, Default rate, neural network, fuzzy analytic hierarchy process

ABSTRACT

Banks as financial institutions must estimate the credit risk of their debtors. This is the basis of pricing a loan, determining appropriate interest rates and determining the mortgage required to each borrower. Since the continuity of bank activities largely depends on the amount of credit losses in a particular period, banks should consider the credit quality of their loan portfolio as a collection of debts.

In this paper, the calculation of credit risk of corporates applying for loans has been investigated. Using fuzzy analytic hierarchy process, effective criteria for credit risk have been analyzed. The neural network is used to extract an open box model that describes the relationship between effective criteria and the credit risk of the companies who apply for a loan. Neural network model has been run with historical data. Observations have been based on 174 corporate who had taken out a loan from a major Iranian bank named Mellat (All loans had been made during 2005 to 2008). The output of the model can predict credit risk of a corporate by at least 84% accuracy.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 1, All Rights Reserved

* Corresponding author, Seyed Hassan Ghodsypour
Email: Ghodsypo@aou.ac.ir
ارزیابی رئیس اعتباری شرکت‌های وام گیرندگان از بانک با استفاده از تحلیل سلسله مراتبی فازی و شبکه عصبی ترکیبی درجه بالا

سیدحسن قدسی یور، مهدی سالاری و وحید دلاوری

چکیده:
بنابر بهانه‌ی یک نهاد مالی به‌منظور تعیین رئیس‌های انتخابی، از روش تحلیل سلسله مراتبی فازی معرفی می‌گردد. این روش برای انتخاب رئیس‌های شرکت‌های مالی و رئیس‌های شرکت‌های مالی و شبکه‌های انتخابی مورد استفاده قرار می‌گیرد. شبکه‌های انتخابی بر اساس رده‌بندی‌های مختلف در یک سهولت در قالب یک شبکه قرار می‌گیرند. در این مقاله نحوه محاسبه سلسله مراتبی از طریق ارزیابی شبکه عصبی ترکیبی مطرح می‌گردد. از این رو، این روش بهترین راه حل برای تشخیص مناسب‌ترین رئیس‌های شرکت‌های مالی و رئیس‌های شرکت‌های مالی و شبکه‌های انتخابی به‌پایه طبقه‌بندی شده است.

کلمات کلیدی:
رئیس اعتباری، رنگ جزئی زیربخشی، شبکه عصبی ترکیبی

1. مقدمه
بانک‌ها یک از ارکان اصلی نهادهای مالی در اقتصاد محسوب می‌شوند که در سال‌های اخیر با توجه به رشد چشمگیر بانک‌ها و نهادهای مالی، نقش آنها روز به روز بیشتر می‌شود. با گزارش داتا واقعیتی بانک‌ها در کشورها مختلف تنش میزان و کارشناسان تنها مشاور و آنها علی جدید و کنار یکدیگر بیشتر مشخص می‌شود. از طرف ارائه تحلیل‌های مالی یکی از این‌ها می‌باشد.

2. روش‌ها
مهم‌ترین اینکه برای حقایق از سیستم انتخابی بانک‌ها و سایر ارکان‌های مالی، باید به‌منظور انتخاب رئیس‌های بانک به‌منظور ارزیابی رئیس‌های انتخابی، از روش تحلیل سلسله مراتبی فازی مطرح می‌گردد. این روش برای انتخاب رئیس‌های شرکت‌های مالی و رئیس‌های شرکت‌های مالی و شبکه‌های انتخابی مورد استفاده قرار می‌گیرد. شبکه‌های انتخابی بر اساس رده‌بندی‌های مختلف در یک سهولت در قالب یک شبکه قرار می‌گیرند. در این مقاله نحوه محاسبه سلسله مراتبی از طریق ارزیابی شبکه عصبی ترکیبی مطرح می‌گردد. از این رو، این روش بهترین راه حل برای تشخیص مناسب‌ترین رئیس‌های شرکت‌های مالی و رئیس‌های شرکت‌های مالی و شبکه‌های انتخابی به‌پایه طبقه‌بندی شده است.

3. نتایج و بیان
بنابراین، امکان‌پذیری شبکهی شبکه‌های انتخابی بانک‌ها و رئیس‌های انتخابی در نظر گرفته شده‌است. برای این که با در نظر گرفتن رئیس‌های انتخابی، این سیستم انتخابی می‌پذیرد. این باتشک و مورد استفاده قرار می‌گیرد. شبکه‌های انتخابی بر اساس رده‌بندی‌های مختلف در یک سهولت در قالب یک شبکه قرار می‌گیرند. در این مقاله نحوه محاسبه سلسله مراتبی از طریق ارزیابی شبکه عصبی ترکیبی مطرح می‌گردد. از این رو، این روش بهترین راه حل برای تشخیص مناسب‌ترین رئیس‌های شرکت‌های مالی و رئیس‌های شرکت‌های مالی و شبکه‌های انتخابی به‌پایه طبقه‌بندی شده است.

4. نتیجه‌گیری
بنابراین، امکان‌پذیری شبکهی شبکه‌های انتخابی بانک‌ها و رئیس‌های انتخابی در نظر گرفته شده‌است. برای این که با در نظر گرفتن رئیس‌های انتخابی، این سیستم انتخابی می‌پذیرد. این باتشک و مورد استفاده قرار می‌گیرد. شبکه‌های انتخابی بر اساس رده‌بندی‌های مختلف در یک سهولت در قالب یک شبکه قرار می‌گیرند. در این مقاله نحوه محاسبه سلسله مراتبی از طریق ارزیابی شبکه عصبی ترکیبی مطرح می‌گردد. از این رو، این روش بهترین راه حل برای تشخیص مناسب‌ترین رئیس‌های شرکت‌های مالی و رئیس‌های شرکت‌های مالی و شبکه‌های انتخابی به‌پایه طبقه‌بندی شده است.

نتیجه‌گیری: نتایج و بیان
تنها در بالا
ژیت اندوانه‌گر ریسک اعتباری ایجادیت تکراری خود طراحی کننده همان ایزی ابزار و کمی کردن ریسک اعتباری از طرف روشن‌سازی اعتباری نیست. با توجه به مطلوبیت بانک های مصرفی، دقت‌سنجی سیستم ریسک در بانک‌های ایران منجر به نتایج مثبت این سیستم می‌باشد.

1. گزارش گیری اعتباری ایجادیت گرایش

در یک‌سوم هزار و یکصد هزار کالری، شکایت عصبی، استادینال برای پایه حافظه و روش تکنیکی روي فاصله، طرح بنا به شکایت عصبی، استادینال برای پایه حافظه و روش تکنیکی روي فاصله، طرح بنا به شکایت عصبی، استادینال برای پایه حافظه و روش تکنیکی روي فاصله، طرح بنا به شکایت عصبی، استادینال برای پایه حافظه و روش تکنیکی روي فاصله، طرح بنا به شکایت عصبی، استادینال برای پایه حافظه و روش تکنیکی روي فاصله، طرح بنا به شکایت عصبی، استادینال برای پایه حافظه و روش تکنیکی روي فاصله، طرح بنا به شکایت عصبی، استادینال برای پایه حافظه و روش تکنیکی روي فاصله، طرح بنا به شکایت عصبی، استادینال برای پایه حافظه و روش تکنیکی روي فاصله، طرح بنا به شکایت عصبی، استادینال برای پایه حافظه و روش تکنیکی روي فاصله، طرح بنا به شکایت عصبی، استادینال برای پایه حافظه و روش تکنیکی روي فاصله، طرح بنا به شکایت عصبی، استادینال برای پایه حافظه و رو
در ادامه هر یک از دو روش تحلیل سلسله مراتب فازی و شبکه عصبی درجه بالاتری به همراه کاربرد و نحوه کارگیری آنها توضیح داده شده است. فلوجه‌ی 1 گوگردم را در دو روش تحلیل سلسله مراتب فازی و شبکه عصبی درجه بالاتری به همراه کاربرد و نحوه کارگیری آنها توضیح داده شده است. فلوجه‌ی 1 گوگردم را در دو روش تحلیل سلسله مراتب فازی و شبکه عصبی درجه بالاتری به همراه کاربرد و نحوه کارگیری آنها توضیح داده شده است.

فلوجه‌ی 1 گوگردم را در دو روش تحلیل سلسله مراتب فازی و شبکه عصبی درجه بالاتری به همراه کاربرد و نحوه کارگیری آنها توضیح داده شده است.

فلوجه‌ی 1 گوگردم را در دو روش تحلیل سلسله مراتب فازی و شبکه عصبی درجه بالاتری به همراه کاربرد و نحوه کارگیری آنها توضیح داده شده است.

فلوجه‌ی 1 گوگردم را در دو روش تحلیل سلسله مراتب فازی و شبکه عصبی درجه بالاتری به همراه کاربرد و نحوه کارگیری آنها توضیح داده شده است.

فلوجه‌ی 1 گوگردم را در دو روش تحلیل سلسله مراتب فازی و شبکه عصبی درجه بالاتری به همراه کاربرد و نحوه کارگیری آنها توضیح داده شده است.
در اینجا بررسی شکل ۱ اشتراک دو عدد فاصله مثلثی \(M_1 \) و \(M_2 \) نشان می‌دهد.

\[
\begin{align*}
M_2 \text{ و } M_1 & \text{ واکنش اکثریت دو عدد فاصله مثلثی است.} \\
 V(M_1 \geq M_2) & = \min \{ M \geq M_1 \text{ and } M \geq M_2 \text{ and } \ldots \text{ and } M \geq M_k \} \\
 & = \min \{ V(M) \geq M_i \}, \quad i = 1, 2, \ldots, k.
\end{align*}
\]

\[
\begin{align*}
d'(A_i) & = \min V(S_i \geq S_2) \quad \text{جک می‌تواند مقایسه‌ای از بالا به پایین باشد.} \\
M_i & \text{ در آن } k \text{ عدد ارزش منفی اکثریت بزرگتر از } k-1 \text{ عدد می‌باشد و } M_i \geq M_j \text{ برای } i, j = 1, 2, \ldots, k.
\end{align*}
\]

\[
\begin{align*}
W' & = (d'(A_1), d'(A_2), \ldots, d'(A_k))^T \\
& \text{که برابر درصد اکثریت است.}
\end{align*}
\]

\[
\begin{align*}
V(M_1 \geq M_2) & = \sup_x \{ \min \{ \mu_{M_1}(x), \mu_{M_2}(y) \} \} \\
& = \min \{ x \geq y \}, \quad (x, y) \text{ عدد مثبت باشد.}
\end{align*}
\]
3-2. Model 1b has been selected as the most suitable model for the case at hand. The rationale behind this selection is based on several factors, including the accuracy of the predictions and the simplicity of the model. The results obtained from the analysis indicate that Model 1b provides a good fit to the data, with a lower residual mean square error (RMSE) compared to other models.

To further support the choice of Model 1b, we have also compared it to other models, such as Model 0 and Model 2. The comparison results show that Model 1b outperforms the other models in terms of goodness of fit and predictive accuracy. This is evidenced by the lower values of the root mean square error (RMSE) and the higher values of the coefficient of determination (R²).

In conclusion, the selection of Model 1b as the most suitable model for the case study is justified based on the observed performance and the simplicity of the model.

References:

1. Higher Order Neural Network
2. Zhang
3. Polynomial Higher Order Neural Network (PHONN)
4. Trigonometric Higher Order Neural Network (THONN)
5. SINC Higher Order Neural Network (SINCHONN)
6. Sigmoid Polynomial Higher Order Neural Network (SPHONN)
7. UCS Higher Order Neural Network (UCSHONN)
8. SXS Higher Order Neural Network (SXSCHONN)
9. Hybrid of Higher Order Neural Network (HHONN)
مدل بیشتر شود بررسی پارامترها سخن‌گویی می‌گردد در نتیجه،
در این مقاله، ما اکنون باید
دو لایهای
می‌کنیم که شامل درجه‌بندی است. نتایج
می‌باشد که
با مدل

\[\text{PHONN, SPHONN, SINCHONN, THONN} \]

در لایه دوم ترکیب حالت این ساختارها انتخاب می‌شود.
ساختارهای مختلف درجه بالاتر در لایه اول به صورت زیر

\[|\text{میشود}| \]

\[PHONN: f(x) = x \]

\[THONN: f(x_1) = \cos(x_1), f(x_2) = \sin(x_2). \]

\[SINCHONN: \sin(x) \]

\[SPHONN: \]

\[Tansig: f(x) = \frac{1-e^{-x}}{1+e^{-x}}, \quad \text{Logsig: } f(x) = \frac{1}{1+e^{-x}}. \]

\[\text{شکل ۳: دیاگرام ترکیبی} \]

\[\text{HHONN} \]

تعداد
\[\text{خروجی‌های} \]
را به صورت تابع ریاضی
از یک‌گزایی ورودی نشان می‌دهد.

\[\text{کمیتی} \]

\[y_j(x) = \]

\[w_{j0} + \sum_{i=1}^{P} w_{ij} y_i(x_i) + \sum_{i=1}^{P} \sum_{k=1}^{K} w_{ijk} f_{K}(x_i) f_{K}(x_{i_k}) + \sum_{i=1}^{P} \sum_{k=1}^{K} w_{ijk} f_{K}(x_i) f_{K}(x_{i_k}) + \]

\[+\]

\[+ \]

\[w_{jK} + \sum_{i=1}^{P} w_{jK} f_{K}(x_i) + \sum_{i=1}^{P} \sum_{k=1}^{K} w_{jK} f_{K}(x_i) f_{K}(x_{i_k}) + \sum_{i=1}^{P} \sum_{k=1}^{K} w_{jK} f_{K}(x_i) f_{K}(x_{i_k}) + \]

\[\text{معنی‌دار} \]

\[z_j = Y \times V = \sum_{j=1}^{L} y_j(x) \]

\[Y = \{y_1, y_2, \ldots, y_K\}, \quad Z = \{z_1, z_2, \ldots, z_2\}. \]

\[\text{کالم} \]

\[= L \]

\[= P \]

\[= K \]

\[\text{مقدار حداکثر درجه در نظر گرفته شده برای} \]

\[\text{N1, N2,} \ldots, N\text{K} \]

\[\text{با تابع} \]

\[\text{که در اکثر} \]

\[\text{شکل ۴: مدل ۵-گزایی‌پذیری} \]

\[\text{HHONN} \]

\[\text{کلماتی سوالاتی و مدیریت تولید. خریدداد ۱۳۹۱-جلد ۲۳-شماره ۱۱۷۱۹۱۰۱۱۴۹
در این مدل:

\[\text{ضریب پادگیری (همواره مثبت و ممکن که کوتیکل از یک)} = \eta \]

\[\text{خطا} = E \]

\[\text{ماتریس وزن لایه مخفی اول} = W \]

\[\text{ماتریس وزن لایه مخفی دوم} = V \]

\[\text{تعداد خروجی‌ها} = L \]

\[\text{تعداد نمونه‌های رودی} = P \]

\[K \]

\[N1, N2, \ldots, NK \]

\[K \text{کدام از واحد‌های درجه بالاتر} \]

\[1, 2, \ldots, k \]

به‌طور خلاصه، الگوریتم پادگیری \(\text{HHONN} \) به صورت زیر می‌باشد:

\[W^{(k)} (t + 1) = W^{(k)} (t) - \eta \left(\nabla E \right) \]

\[\frac{\Delta E}{\Delta W^{(k)} (t)} = \frac{\partial E}{\partial W^{(k)} (t)} = \frac{\partial E}{\partial \theta_j} f_j (x_{i_j}) \]

\[= \frac{1}{2} \left(\sum_{i} (d_i - z_i)^2 \right) \]

\[v_{j} (t + 1) = v_{j} (t) - \eta \left(\frac{\partial E}{\partial v_{jj}} \right) \]

\[= y_j \sum_{i} (d_i - z_i) \]

در مثال زیر، الگوریتم پادگیری \(\text{HHONN} \) به صورت زیر به‌طور خلاصه، الگوریتم پادگیری \(\text{HHONN} \) به صورت زیر می‌باشد:

\[\text{در این مدل:} \]

\[= \eta \]

\[\text{خطا} = E \]

\[\text{ماتریس وزن لایه مخفی اول} = W \]

\[\text{ماتریس وزن لایه مخفی دوم} = V \]

\[\text{تعداد خروجی‌ها} = L \]

\[\text{تعداد نمونه‌های رودی} = P \]

\[K \]

\[N1, N2, \ldots, NK \]

\[K \text{کدام از واحد‌های درجه بالاتر} \]

\[1, 2, \ldots, k \]

به‌طور خلاصه، الگوریتم پادگیری \(\text{HHONN} \) به صورت زیر می‌باشد:

\[W^{(k)} (t + 1) = W^{(k)} (t) - \eta \left(\nabla E \right) \]

\[\frac{\Delta E}{\Delta W^{(k)} (t)} = \frac{\partial E}{\partial W^{(k)} (t)} = \frac{\partial E}{\partial \theta_j} f_j (x_{i_j}) \]

\[= \frac{1}{2} \left(\sum_{i} (d_i - z_i)^2 \right) \]

\[v_{j} (t + 1) = v_{j} (t) - \eta \left(\frac{\partial E}{\partial v_{jj}} \right) \]

\[= y_j \sum_{i} (d_i - z_i) \]

در این مدل:

\[= \eta \]

\[\text{خطا} = E \]

\[\text{ماتریس وزن لایه مخفی اول} = W \]

\[\text{ماتریس وزن لایه مخفی دوم} = V \]

\[\text{تعداد خروجی‌ها} = L \]

\[\text{تعداد نمونه‌های رودی} = P \]

\[K \]

\[N1, N2, \ldots, NK \]

\[K \text{کدام از واحد‌های درجه بالاتر} \]

\[1, 2, \ldots, k \]

به‌طور خلاصه، الگوریتم پادگیری \(\text{HHONN} \) به صورت زیر می‌باشد:

\[W^{(k)} (t + 1) = W^{(k)} (t) - \eta \left(\nabla E \right) \]

\[\frac{\Delta E}{\Delta W^{(k)} (t)} = \frac{\partial E}{\partial W^{(k)} (t)} = \frac{\partial E}{\partial \theta_j} f_j (x_{i_j}) \]

\[= \frac{1}{2} \left(\sum_{i} (d_i - z_i)^2 \right) \]

\[v_{j} (t + 1) = v_{j} (t) - \eta \left(\frac{\partial E}{\partial v_{jj}} \right) \]

\[= y_j \sum_{i} (d_i - z_i) \]
جدول ۱. وزنه‌های مربوط به معیارهای هر یک از ارزیابی‌های

<table>
<thead>
<tr>
<th>ارزیابی</th>
<th>معیار</th>
<th>تعریف</th>
<th>وزن</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارزیابی مالی</td>
<td>نسبت جدایی</td>
<td>بدنه‌های جایی / نسبت های جاری - نسبت جاری</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>نسبت بدهی</td>
<td>کل دارایی / کل بدهی = نسبت بدهی</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>نسبت آنی</td>
<td>بدنه‌های جاری / سود شرایط گزاره کوتاه مدت - موجودی نقد</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>جمع درآمدها / سود</td>
<td>سود بر اساس بهره از سرمایه مالیات - سود به سرمایه</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>تعداد سالی</td>
<td>کمک در حفظ علایم است</td>
<td>0.211</td>
</tr>
<tr>
<td></td>
<td>نتایج مبهم</td>
<td>شرایط پیشنهادها، نتایج و نتایج تولید</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>نتایج سهام مدیریت</td>
<td>درصد سهام مدیریت</td>
<td>0.04</td>
</tr>
<tr>
<td>ارزیابی مدیریتی</td>
<td>وضعیت مطالبات مربوط</td>
<td>مطالبات مربوط به تأمین و زیست در سرمایه، مطالبات مربوط به تأمین و زیست در سرمایه</td>
<td>0.685</td>
</tr>
<tr>
<td></td>
<td>تعداد مطالبات مربوط</td>
<td>مطالبات مربوط به تأمین و زیست در سرمایه، مطالبات مربوط به تأمین و زیست در سرمایه</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>مجموع معیار</td>
<td>مجموع معیار هر میزان در انتهای انتظار</td>
<td>0.7</td>
</tr>
<tr>
<td>ارزیابی بازگشت</td>
<td>میزان معیار</td>
<td>میزان معیار هر میزان در انتهای انتظار</td>
<td>0.685</td>
</tr>
<tr>
<td></td>
<td>تعداد سالی</td>
<td>کمک در حفظ علایم است</td>
<td>0.3</td>
</tr>
</tbody>
</table>

محاسبه ریسک اقتصادی:

از آنجا که می‌توانید عامل برای بانک در بررسی مشتری متفاوت و ارزیابی مالی، در نتیجه اصل و سود وامی است که به مشتری می‌دهد مهم ترین عامل در ریسک مشتری می‌باشد. مالیات بهبدهی می‌باشد مبلغ جریمه برای هر مشتری با توجه به مبلغ و نوع وام دریافتی از طریق فرمول زیر محاسبه می‌شود:

\[
D = \frac{\sum_{i=1}^{n} X_i \times T_i \times (R_i + R_2)}{365} \quad (1)
\]

در فرمول بالا داریم:

- \(D \) = میزان از وام که \(T_i \) = زود دریافت، زمینه‌ای در زمان پرداخت شده است.
- \(X_i \) = میزان از وام که \(T_i \) = میزان از وام که تا زمان پرداخت شده است.

در فرمول بالا داریم:

\[
X_i' = \frac{X_i - \text{Min}(X_i)}{\text{Max}(X_i) - \text{Min}(X_i)} \quad (19)
\]

\[
X_i'' = \frac{\text{Max}(X_i) - X_i}{\text{Max}(X_i) - \text{Min}(X_i)} \quad (20)
\]

با این روش کلیه مقادیر مربوط به معیارها بین صفر و یک قرار می‌گیرند. بنابراین به اینکه وزنه‌های هر یک از معیارها بین صفر و یک پایدار می‌باشد مقدارهای دست دیده از این معیارها بین صفر و یک بدست می‌آید.
اعتبار سرعت شرکت‌های وام گیاهندگی از نظر با فرمول زیر محاسبه می‌شود:

\[R_i = \left(1 - \frac{D_i}{M_i} \right) \times 100 \]

(22)

- ریسک اعتباری شرکت آم.
- میزان جریمه شرکت آم در هر بیلگ می‌باشد.
- میزان وام دریافت شده نوسیز شرکت آم.

لازم به ذکر است که اگر مبلغ جریمه وام بیشتر از اصل وام دریافت شده باشد، اعتبار شرکت برای صفر در نظر گرفته شده است.

این میزان اعتبار (R_i) 174 شرکت مذکور که از بانک ملت جمهوری اسلامی ایران وام دریافت نموده‌اند محاسبه شده و برای تولید نتایج اخیر اعمال شرکت‌های متفاوت وام از بانک با استفاده از مدل HHONN مورد استفاده قرار گرفته است.

4-3 نتایج حاصل از اجرای مدل

در این مقاله ذکر داده‌های سازمان پایان‌پذیری برای شرکت و سپس اعتبار، مربوط به این شرکت به‌عنوان HHONN برای یک دوره بهترین را نشان می‌دهد.

![نمودار نتایج اجرای مدل‌ها](http://example.com/image.png)

شکل 4 دقت داده‌های تست آموزش و اعتبارسنجی برای 64 مدل مختلف

این شکل براساس پیش‌بینی دقت داده‌های تست مرتب شده است. همانطور که در شکل مشخص است این افزایش دقت داده‌های اعتبارسنجی بسیار مشاهده شده است. روند افزایش برای داده‌های اعتبارسنجی می‌باشد که اندازه واقعی این مشاهده بین افزایش دقت داده‌های تست و اعتبارسنجی است و به‌طوری جداگانه تصدیق نموده شده که جهت پایدار کردن بهترین مدل می‌باشد. شکل‌های 5 و 6 برای مقایسه توسط مدل برای نمونه‌های تست و اعتبارسنجی را نشان می‌دهد. در این اشکال نقاط قرمز مقدار واقعی داده‌های تست و اعتبارسنجی را نشان می‌دهد.
تأیید می‌نماید همچنین کارشناسان بانک (خبره) بر ریسک اعتباری محاسبه شده برای مشتریان صحه گذاشته و میزان ریسک آن ها را با توجه به عملکردشان تایید کرده‌اند. در ادبیات موجود در این زمینه با استفاده از الگوریتم‌های ریسک اعتباری تخمین زده شده است که دقت 80% بست آمده است [18]. همچنین منصوبی و عادل آدر با استفاده از شبکه عصبی دقت 76.3 را برای محاسبه ریسک اعتباری بست ارائه اند [19].

همانطور که در شکل مشخص است دقت بست آمده برای داده‌های تست و اعتبار سنجی 48% می‌باشد که در مقایسه با کارهای قبلی انجام شده در این حوزه، این روش جهت سفید بوده و 40% دقت بیشتری نسبت به کارهایی انجام شده در گذشته دارد.

از طرفی نتایج حاصل از مقاله برای کارشناسان بانک ملت و مدیر یکی از اعتبارات بانک ارائه نشده است و تعادلی نیز نمی‌باشد طبق نظر مدیر این قسمت مورد نیز قرار گرفت که صحیح مدل را

شکل 5 مقدار خروجی و مقدار واقعی و مقدار ضریب تشخیص رگرسیونی برای داده‌های تست.

شکل 6 مقدار خروجی و مقدار واقعی و مقدار ضریب تشخیص رگرسیونی برای داده‌های اعتبار سنجی

نشریه بین الیلی مهندسی صنایع و مدیریت توسعه، شماره 1، جلد 1391-1392-جلد 32-شماره 3

Mراجع

[1] فلاح شمس, میروسی, نسمی, مهدی, مدیریت ریسک اعتباری در بانک‌ها و مؤسسات مالی و اعتباری (مهاری و مدل‌های) انتشارات دانشگاه علوم اقتصادی, شیراز. 1387.

