Design of a Robust EWMA t Chart with Variable Sampling Intervals for Monitoring Changes in the Process Mean

R. Baradaran Kazemzadeh*, M. Karbasian & M.A. Babakhani

Reza Baradaran Kazemzadeh, Associate professor, Tarbiat Modares University, Tehran, Iran
Mahdi Karbasian, Assistant Professor, Maleke-Ashtar University of Technology, Esfahan, Iran
Mohammad Ali Babakhani, Ms Student of IE, Payame-noor University of Tehran, Tehran, Iran

Keywords
Exponentially Weighted Moving Average (EWMA) control chart, Average Time to Signal (ATS), Variable Sampling Intervals (VSI), Markov Chain.

ABSTRACT
The performance of an X-bar chart is usually studied under the assumption that the process standard deviation is well estimated and does not change. This is, of course, not always the case in practice and X-bar charts are not robust against errors in estimating the process standard deviation or changing standard deviation. In this paper, the use of an exponentially weighted moving average (EWMA) t chart with variable sampling intervals to monitor the process mean is discussed. We have determined the optimal control limits for the VSI EWMA t chart so that the chart has the desired robustness property against errors in estimating the process standard deviation or changing standard deviation. Performance of the proposed chart is compared with similar charts using the Markov chain approach and simulation studies.

© 2012 IUST Publication, IJIEPM. Vol. 23, No. 1, All Rights Reserved

*Corresponding author. Reza Baradaran Kazemzadeh
Email: rkazem@modares.ac.ir
طراحی یک نمودار کنترل منابع متحرک موزون نمایی پایدار با

به همراه نمونه‌گیری مبتنی برای کنترل تغییرات در منابع فرآیند

رضایت برادران کاظم زاده، مهندس کرباسیان و محمد علی یابانی

چکیده:

عملاکرک یک نمودار X-bar معمل در یک افزایش از تغییرات معیار فرآیند به خوبی تخمین زده شده X-bar و تغییر نمی‌کند، بنابراین در صورت افزایش در عمل معمول درست نیست و نمودارهای

در برخی اشتباهات تخمین افزایش معیار فرآیند و در این تغییرات در منابع فرآیند باید به تغییرات معیار فرآیند برداخته می‌شود. حدود کنترل به عضویت نشده که نمودار در

برای اشتباهات تخمین افزایش معیار با تغییرات آن پایداری غیر ممکن می‌باشد. برای مقایسه ممکن

ان با یک سایپر منابع معمولی ممکن استفاده می‌شود و این استفاده از شبیه‌سازی نتایج به

دقت اکثر بررسی داده است. علت استفاده از می‌باشد به همراه نمونه‌گیری مبتنی، واکنش سریع تر

نمودار به تغییرات منابع است.

کلمات کلیدی:

نمودار کنترل منابع متحرک

موزون نمایی

متوسط زمان هشدار

بازه های نمونه گیری مبتنی

زنجیره مارکوف

1. مقدمه

در مفاهیم کنترل افزایش از تغییرات خاصی

است. از جمله ویژگی‌های این نمودار، سادگی و ارزانی

به تغییرات نسبتاً زیاد در منابع فرآیند

است. عملکرد نمودار X-bar تحت فرضیات زیر بررسی می‌شود:

الف- مستقل بودن: مشاهده داخل و بین زیر گروه‌ها مستقل

ب- نرمال بودن: متغیر مورد بررسی داده توزیع نرمال است.

نتایج وصول: 8/94/18

تاریخ تصویب: 2/3/19

* مقدمه، تایید مقاله رضا برادران کاظم زاده، دانشگاه دانشگاهی و

مهدی کرباسیان، استاد دانشگاه مهندسی صنایع، دانشگاه صنعتی مالک

mabakhani@gmail.com

تو پرداخت نیازهای مالی و مدیریت

نتیجه بین المللی مهندسی صنایع و مدیریت تولید

نشریه بین المللی مهندسی صنایع و مدیریت تولید

شماره 1391-جلد 32-شماره 1

http://ijiepm.iust.ac.ir/
In the absence of specific context or question, I will translate the visible mathematical content of the image into natural text. The content appears to be from a document discussing statistical control charts, specifically the EWMA (Exponentially Weighted Moving Average) chart.

Let's denote the following symbols and their meanings:
- \(X_i \): The observations
- \(\bar{X} \): The sample mean
- \(\mu_0 \): The in-control mean
- \(\sigma_0 \): The in-control standard deviation
- \(a \) and \(b \): Parameters for the EWMA chart
- \(\lambda \): The smoothing parameter
- \(Y_t \): The EWMA statistic at time \(t \)
- \(UCL_t \): The upper control limit
- \(LCL_t \): The lower control limit

The key points and formulas from the text are:

1. **In-control Average Run Length (ARL)**

 \[\text{ARL}_0 = 1 - e^{-2\lambda} \]

2. **Fixed Sampling Interval (FSI)**

3. **Variable Sampling Intervals (VSI)**

4. **Poor Quality**

5. **In-control Average Run Length (ARL)**

6. **Short Sampling Interval (h_s)**

7. **Long Sampling Interval (h_l)**

8. **Fixed Sampling Interval (FSI)**

9. **Variable Sampling Intervals (VSI)**

10. **Poor Quality**

The EWMA chart is used to monitor the process mean over time, with the EWMA statistic calculated as:

\[Y_t = \lambda X_t + (1-\lambda) Y_{t-1} \]

where \(Y_0 = 0 \) and \(\lambda \) is a smoothing parameter typically chosen between 0 and 1. The control limits are determined based on the in-control variance and the chosen smoothing parameter.

The text also mentions:

- **Short Sampling Interval (h_s)**
- **Long Sampling Interval (h_l)**
- **Fixed Sampling Interval (FSI)**
- **Variable Sampling Intervals (VSI)**
- **Poor Quality**

These intervals affect the sensitivity of the control chart to process shifts. A shorter sampling interval leads to a more sensitive chart but also more frequent false alarms, while a longer sampling interval reduces the sensitivity but also increases the delay in detecting process shifts.

The EWMA chart is particularly useful in detecting small to moderate shifts in the process mean, as it gives more weight to recent data points compared to the Shewhart chart, which gives equal weight to all data points.

The text also discusses the concept of the in-control Average Run Length (ARL), which is the expected number of samples taken before a signal is given, assuming the process is in control.

Finally, the text mentions the importance of choosing an appropriate smoothing parameter \(\lambda \) to balance sensitivity and false alarm rates. Typically, values of \(\lambda \) around 0.1 to 0.2 are used for most applications.

This detailed translation aims to capture the essence of the document's content, providing a comprehensive understanding for further analysis or discussion.
\[Ti \rightarrow Ti+1 \rightarrow (Y_i) \]\n\[RL = [LWL, UWL] \]
\[(Y_{i+1}) \]
\[RS = [LCL, LWL) \rightarrow (UWL, UCL] \]

Lucas Saccucci

\[h_S = 0.2 \]

- Average Run Length (ARL)
- Average Time to Signal (ATS)

\[ATS = h_x \times ARL_0 \]
\[E(h) = h_S \times p_S + h_L \times p_L \]

\[ATS_0 = E_0(h) = 1 \text{ time unit} \]

\[E(h) = h_x \times p_S + h_L \times p_L \]
\[E_0(h) = 1 \text{ time unit} \]

\[FSI = h_F \times ARL_0 \]
\[VSI = E(h) \times ARL_0 \]

Downloaded from ijiepm.iust.ac.ir at 1:01 IRDT on Friday August 2nd 2019
\[\lambda^* = 0.116; UCL^* = 1.029; ATS^* = 6.76. \]

Table 1:

<table>
<thead>
<tr>
<th>shift (a)</th>
<th>(n = 3)</th>
<th>(\lambda^*)</th>
<th>(UCL^*)</th>
<th>(ATS^*)</th>
<th>(n = 5)</th>
<th>(\lambda^*)</th>
<th>(UCL^*)</th>
<th>(ATS^*)</th>
<th>(n = 7)</th>
<th>(\lambda^*)</th>
<th>(UCL^*)</th>
<th>(ATS^*)</th>
<th>(n = 9)</th>
<th>(\lambda^*)</th>
<th>(UCL^*)</th>
<th>(ATS^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.010</td>
<td>0.343</td>
<td>132.09</td>
<td>0.013</td>
<td>0.228</td>
<td>64.75</td>
<td>0.017</td>
<td>0.241</td>
<td>47.25</td>
<td>0.022</td>
<td>0.272</td>
<td>38.14</td>
<td>0.024</td>
<td>0.291</td>
<td>33.51</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.014</td>
<td>0.440</td>
<td>53.14</td>
<td>0.034</td>
<td>0.044</td>
<td>23.99</td>
<td>0.055</td>
<td>0.532</td>
<td>17.02</td>
<td>0.067</td>
<td>0.568</td>
<td>13.58</td>
<td>0.072</td>
<td>0.598</td>
<td>11.81</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.023</td>
<td>0.631</td>
<td>30.31</td>
<td>0.061</td>
<td>0.662</td>
<td>13.37</td>
<td>0.094</td>
<td>0.756</td>
<td>9.47</td>
<td>0.124</td>
<td>0.845</td>
<td>7.60</td>
<td>0.143</td>
<td>0.916</td>
<td>6.43</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.032</td>
<td>0.802</td>
<td>20.48</td>
<td>0.092</td>
<td>0.876</td>
<td>9.01</td>
<td>0.136</td>
<td>0.966</td>
<td>6.43</td>
<td>0.177</td>
<td>1.068</td>
<td>5.23</td>
<td>0.214</td>
<td>1.149</td>
<td>5.06</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.042</td>
<td>0.979</td>
<td>15.28</td>
<td>0.116</td>
<td>1.029</td>
<td>6.76</td>
<td>0.176</td>
<td>1.151</td>
<td>4.90</td>
<td>0.228</td>
<td>1.267</td>
<td>4.07</td>
<td>0.276</td>
<td>1.421</td>
<td>3.92</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.049</td>
<td>1.097</td>
<td>12.14</td>
<td>0.143</td>
<td>1.194</td>
<td>5.44</td>
<td>0.214</td>
<td>1.319</td>
<td>4.02</td>
<td>0.265</td>
<td>1.406</td>
<td>3.41</td>
<td>0.320</td>
<td>1.575</td>
<td>3.12</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.057</td>
<td>1.228</td>
<td>10.07</td>
<td>0.170</td>
<td>1.353</td>
<td>4.58</td>
<td>0.248</td>
<td>1.465</td>
<td>3.47</td>
<td>0.311</td>
<td>1.575</td>
<td>3.02</td>
<td>0.367</td>
<td>1.673</td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.070</td>
<td>1.434</td>
<td>8.63</td>
<td>0.192</td>
<td>1.480</td>
<td>3.99</td>
<td>0.274</td>
<td>1.575</td>
<td>3.12</td>
<td>0.338</td>
<td>1.673</td>
<td>2.77</td>
<td>0.406</td>
<td>1.917</td>
<td>2.51</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.077</td>
<td>1.542</td>
<td>7.56</td>
<td>0.209</td>
<td>1.577</td>
<td>3.59</td>
<td>0.295</td>
<td>1.663</td>
<td>2.88</td>
<td>0.375</td>
<td>1.806</td>
<td>2.62</td>
<td>0.429</td>
<td>2.047</td>
<td>2.44</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.087</td>
<td>1.694</td>
<td>6.76</td>
<td>0.226</td>
<td>1.673</td>
<td>3.28</td>
<td>0.320</td>
<td>1.767</td>
<td>2.71</td>
<td>0.406</td>
<td>1.917</td>
<td>2.51</td>
<td>0.467</td>
<td>2.267</td>
<td>2.39</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>0.098</td>
<td>1.857</td>
<td>6.12</td>
<td>0.244</td>
<td>1.774</td>
<td>3.06</td>
<td>0.341</td>
<td>1.854</td>
<td>2.60</td>
<td>0.448</td>
<td>2.067</td>
<td>2.44</td>
<td>0.504</td>
<td>2.267</td>
<td>2.39</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>0.104</td>
<td>1.945</td>
<td>5.62</td>
<td>0.258</td>
<td>1.852</td>
<td>2.89</td>
<td>0.365</td>
<td>1.953</td>
<td>2.52</td>
<td>0.504</td>
<td>2.267</td>
<td>2.39</td>
<td>0.548</td>
<td>2.468</td>
<td>2.35</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>0.114</td>
<td>2.090</td>
<td>5.20</td>
<td>0.269</td>
<td>1.913</td>
<td>2.77</td>
<td>0.392</td>
<td>2.064</td>
<td>2.46</td>
<td>0.560</td>
<td>2.468</td>
<td>2.35</td>
<td>0.625</td>
<td>2.703</td>
<td>2.32</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>0.123</td>
<td>2.219</td>
<td>4.86</td>
<td>0.280</td>
<td>1.974</td>
<td>2.67</td>
<td>0.420</td>
<td>2.220</td>
<td>2.42</td>
<td>0.625</td>
<td>2.703</td>
<td>2.32</td>
<td>0.693</td>
<td>2.952</td>
<td>2.29</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.135</td>
<td>2.389</td>
<td>4.56</td>
<td>0.290</td>
<td>2.029</td>
<td>2.60</td>
<td>0.469</td>
<td>2.380</td>
<td>2.38</td>
<td>0.693</td>
<td>2.952</td>
<td>2.29</td>
<td>0.789</td>
<td>3.311</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>0.142</td>
<td>2.488</td>
<td>4.31</td>
<td>0.290</td>
<td>2.029</td>
<td>2.54</td>
<td>0.515</td>
<td>2.569</td>
<td>2.35</td>
<td>0.738</td>
<td>3.119</td>
<td>2.27</td>
<td>0.873</td>
<td>3.634</td>
<td>2.23</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>0.149</td>
<td>2.585</td>
<td>4.10</td>
<td>0.310</td>
<td>2.139</td>
<td>2.50</td>
<td>0.556</td>
<td>2.738</td>
<td>2.33</td>
<td>0.789</td>
<td>3.311</td>
<td>2.27</td>
<td>0.901</td>
<td>3.744</td>
<td>2.22</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>0.157</td>
<td>2.696</td>
<td>3.91</td>
<td>0.333</td>
<td>2.265</td>
<td>2.46</td>
<td>0.612</td>
<td>2.970</td>
<td>2.31</td>
<td>0.833</td>
<td>3.479</td>
<td>2.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>0.170</td>
<td>2.875</td>
<td>3.74</td>
<td>0.346</td>
<td>2.336</td>
<td>2.43</td>
<td>0.653</td>
<td>3.141</td>
<td>2.29</td>
<td>0.873</td>
<td>3.634</td>
<td>2.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.177</td>
<td>2.971</td>
<td>3.59</td>
<td>0.368</td>
<td>2.456</td>
<td>2.41</td>
<td>0.702</td>
<td>3.347</td>
<td>2.27</td>
<td>0.901</td>
<td>3.744</td>
<td>2.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول ۲: مقادیر بهینه برای نمودار VSI EWMA

<table>
<thead>
<tr>
<th>شifting (a)</th>
<th>λ^*</th>
<th>w</th>
<th>ATS*</th>
<th>λ^*</th>
<th>w</th>
<th>ATS*</th>
<th>λ^*</th>
<th>w</th>
<th>ATS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.010</td>
<td>0.186</td>
<td>66.20</td>
<td>0.012</td>
<td>0.213</td>
<td>65.54</td>
<td>0.013</td>
<td>0.228</td>
<td>64.75</td>
</tr>
<tr>
<td>0.2</td>
<td>0.032</td>
<td>0.424</td>
<td>24.35</td>
<td>0.033</td>
<td>0.434</td>
<td>24.18</td>
<td>0.034</td>
<td>0.446</td>
<td>23.99</td>
</tr>
<tr>
<td>0.3</td>
<td>0.056</td>
<td>0.620</td>
<td>13.41</td>
<td>0.059</td>
<td>0.643</td>
<td>13.35</td>
<td>0.061</td>
<td>0.662</td>
<td>13.37</td>
</tr>
<tr>
<td>0.4</td>
<td>0.083</td>
<td>0.811</td>
<td>8.91</td>
<td>0.087</td>
<td>0.838</td>
<td>8.91</td>
<td>0.092</td>
<td>0.876</td>
<td>9.01</td>
</tr>
<tr>
<td>0.5</td>
<td>0.111</td>
<td>0.993</td>
<td>6.62</td>
<td>0.113</td>
<td>1.005</td>
<td>6.62</td>
<td>0.116</td>
<td>1.029</td>
<td>6.76</td>
</tr>
<tr>
<td>0.6</td>
<td>0.135</td>
<td>1.141</td>
<td>5.21</td>
<td>0.142</td>
<td>1.182</td>
<td>5.27</td>
<td>0.143</td>
<td>1.194</td>
<td>5.44</td>
</tr>
<tr>
<td>0.7</td>
<td>0.167</td>
<td>1.332</td>
<td>4.32</td>
<td>0.171</td>
<td>1.353</td>
<td>4.40</td>
<td>0.170</td>
<td>1.353</td>
<td>4.58</td>
</tr>
<tr>
<td>0.8</td>
<td>0.191</td>
<td>1.472</td>
<td>3.71</td>
<td>0.193</td>
<td>1.480</td>
<td>3.80</td>
<td>0.192</td>
<td>1.480</td>
<td>3.99</td>
</tr>
<tr>
<td>0.9</td>
<td>0.219</td>
<td>1.633</td>
<td>3.26</td>
<td>0.219</td>
<td>1.628</td>
<td>3.36</td>
<td>0.209</td>
<td>1.577</td>
<td>3.59</td>
</tr>
<tr>
<td>1.0</td>
<td>0.239</td>
<td>1.747</td>
<td>2.92</td>
<td>0.235</td>
<td>1.718</td>
<td>3.03</td>
<td>0.226</td>
<td>1.673</td>
<td>3.28</td>
</tr>
<tr>
<td>1.1</td>
<td>0.268</td>
<td>1.911</td>
<td>2.66</td>
<td>0.260</td>
<td>1.858</td>
<td>2.78</td>
<td>0.244</td>
<td>1.774</td>
<td>3.06</td>
</tr>
<tr>
<td>1.2</td>
<td>0.287</td>
<td>2.018</td>
<td>2.45</td>
<td>0.276</td>
<td>1.947</td>
<td>2.59</td>
<td>0.258</td>
<td>1.852</td>
<td>2.89</td>
</tr>
<tr>
<td>1.3</td>
<td>0.303</td>
<td>2.108</td>
<td>2.28</td>
<td>0.287</td>
<td>2.008</td>
<td>2.44</td>
<td>0.269</td>
<td>1.913</td>
<td>2.77</td>
</tr>
<tr>
<td>1.4</td>
<td>0.321</td>
<td>2.209</td>
<td>2.15</td>
<td>0.302</td>
<td>2.091</td>
<td>2.33</td>
<td>0.280</td>
<td>1.974</td>
<td>2.67</td>
</tr>
<tr>
<td>1.5</td>
<td>0.331</td>
<td>2.265</td>
<td>2.05</td>
<td>0.315</td>
<td>2.163</td>
<td>2.24</td>
<td>0.290</td>
<td>2.029</td>
<td>2.60</td>
</tr>
<tr>
<td>1.6</td>
<td>0.341</td>
<td>2.321</td>
<td>1.96</td>
<td>0.323</td>
<td>2.207</td>
<td>2.17</td>
<td>0.290</td>
<td>2.029</td>
<td>2.54</td>
</tr>
<tr>
<td>1.7</td>
<td>0.351</td>
<td>2.377</td>
<td>1.89</td>
<td>0.331</td>
<td>2.251</td>
<td>2.12</td>
<td>0.310</td>
<td>2.139</td>
<td>2.50</td>
</tr>
<tr>
<td>1.8</td>
<td>0.361</td>
<td>2.433</td>
<td>1.84</td>
<td>0.342</td>
<td>2.312</td>
<td>2.08</td>
<td>0.333</td>
<td>2.265</td>
<td>2.46</td>
</tr>
<tr>
<td>1.9</td>
<td>0.371</td>
<td>2.489</td>
<td>1.80</td>
<td>0.363</td>
<td>2.427</td>
<td>2.04</td>
<td>0.346</td>
<td>2.336</td>
<td>2.43</td>
</tr>
<tr>
<td>2.0</td>
<td>0.378</td>
<td>2.528</td>
<td>1.76</td>
<td>0.367</td>
<td>2.449</td>
<td>2.01</td>
<td>0.368</td>
<td>2.456</td>
<td>2.41</td>
</tr>
</tbody>
</table>

در این قسمت عملکرد نمودار پیشنهادی (VSI EWMA t) با مقایسه X-bar نمودارهای FSI EWMA و VSI EWMA t شد. نمودار t حالت خاصی از نمودار FSI EWMA است که:

$$h_s = h_l = h_F = 1 \text{ time unit}.$$

AMA: کنترلی (Z) برای نمودار FSI EWMA X-bar به صورت زیر تعیین می‌شود:

$$h_s = h_l = h_F = 1 \text{ time unit}.$$

\[Z_i = \frac{X_i}{\sigma \sqrt{\frac{1 + \lambda}{n(2 - \lambda)}}} \]

\[X_i = \bar{X} + (1 - \lambda)Z_{i-1} \]

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

\[\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2} \]

\[\lambda = \frac{n}{n + 1} \]

\[\lambda_0 = \frac{n_0}{n_0 + 1} \]

\[\sigma_0 = \sqrt{\frac{1}{n_0 - 1} \sum_{i=1}^{n_0} (X_i - \bar{X}_0)^2} \]

\[n = 9 \]

\[n = 7 \]

\[n = 5 \]

\[n = 3 \]

\[\lambda_i \]

\[LCL_{X-bar} = \mu_0 - L \sigma_0 \]

\[UCL_{X-bar} = \mu_0 + L \sigma_0 \]

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

\[\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2} \]

\[\lambda = \frac{n}{n + 1} \]

\[\lambda_0 = \frac{n_0}{n_0 + 1} \]

\[\sigma_0 = \sqrt{\frac{1}{n_0 - 1} \sum_{i=1}^{n_0} (X_i - \bar{X}_0)^2} \]

\[n = 9 \]

\[n = 7 \]

\[n = 5 \]

\[n = 3 \]

\[\lambda_i \]

\[LCL_{X-bar} = \mu_0 - L \sigma_0 \]

\[UCL_{X-bar} = \mu_0 + L \sigma_0 \]

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

\[\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2} \]

\[\lambda = \frac{n}{n + 1} \]

\[\lambda_0 = \frac{n_0}{n_0 + 1} \]

\[\sigma_0 = \sqrt{\frac{1}{n_0 - 1} \sum_{i=1}^{n_0} (X_i - \bar{X}_0)^2} \]

\[n = 9 \]

\[n = 7 \]

\[n = 5 \]

\[n = 3 \]

\[\lambda_i \]

\[LCL_{X-bar} = \mu_0 - L \sigma_0 \]

\[UCL_{X-bar} = \mu_0 + L \sigma_0 \]

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

\[\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2} \]

\[\lambda = \frac{n}{n + 1} \]

\[\lambda_0 = \frac{n_0}{n_0 + 1} \]

\[\sigma_0 = \sqrt{\frac{1}{n_0 - 1} \sum_{i=1}^{n_0} (X_i - \bar{X}_0)^2} \]

\[n = 9 \]

\[n = 7 \]

\[n = 5 \]

\[n = 3 \]

\[\lambda_i \]

\[LCL_{X-bar} = \mu_0 - L \sigma_0 \]

\[UCL_{X-bar} = \mu_0 + L \sigma_0 \]

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

\[\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2} \]

\[\lambda = \frac{n}{n + 1} \]

\[\lambda_0 = \frac{n_0}{n_0 + 1} \]

\[\sigma_0 = \sqrt{\frac{1}{n_0 - 1} \sum_{i=1}^{n_0} (X_i - \bar{X}_0)^2} \]

\[n = 9 \]

\[n = 7 \]

\[n = 5 \]

\[n = 3 \]

\[\lambda_i \]

\[LCL_{X-bar} = \mu_0 - L \sigma_0 \]

\[UCL_{X-bar} = \mu_0 + L \sigma_0 \]

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

\[\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2} \]

\[\lambda = \frac{n}{n + 1} \]

\[\lambda_0 = \frac{n_0}{n_0 + 1} \]

\[\sigma_0 = \sqrt{\frac{1}{n_0 - 1} \sum_{i=1}^{n_0} (X_i - \bar{X}_0)^2} \]
FSI EWMA t و FSI EWMA X بهبستر نسبت به نمودارهایی به دارد.

FSI EWMA X-bar FSI EWMA t

FSI EWMA t

FSI EWMA X-bar

FSI EWMA t
FSI EWMA X-bar

شکل ۴- بررسی پایداری نمودار متوسط منحنی های ATS برای جفت های \((\lambda^*, \ UCL_v^*)\) مربوط به تغییر کوچک \((a = 0.2)\).

FSI EWMA X-bar

شکل ۴- بررسی پایداری نمودار متوسط منحنی های ATS برای جفت های \((\lambda^*, \ UCL_v^*)\) مربوط به تغییر متوسط \((a = 0.7)\).

FSI EWMA X-bar

شکل ۴- بررسی پایداری نمودار متوسط منحنی های ATS برای جفت های \((\lambda^*, \ UCL_v^*)\) مربوط به تغییر بزرگ \((a = 1.5)\).
جدول 5 مقایسه مقدار ATS حاصل از اجرای الگوریتم و شبیه سازی زمانی که pS = 0.6 و hS = 0.2 به اشتراک گذاشته شده است.

<table>
<thead>
<tr>
<th>a (shift)</th>
<th>0.2</th>
<th>0.7</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 3</td>
<td>ATS (algorithm) 53.1429 10.0739 4.5623</td>
<td>ATS (simulation) 53.2383 10.0766 4.5785</td>
<td></td>
</tr>
<tr>
<td>n = 5</td>
<td>ATS (algorithm) 23.9934 4.5812 2.5968</td>
<td>ATS (simulation) 23.7747 4.5752 2.6032</td>
<td></td>
</tr>
<tr>
<td>n = 7</td>
<td>ATS (algorithm) 17.0240 3.4739 2.3820</td>
<td>ATS (simulation) 16.9799 3.4873 2.3822</td>
<td></td>
</tr>
<tr>
<td>n = 9</td>
<td>ATS (algorithm) 13.5759 3.0198 2.2916</td>
<td>ATS (simulation) 13.6728 3.0214 2.2922</td>
<td></td>
</tr>
</tbody>
</table>

در مقاله حاضر به بررسی طراحی و اجرای الگوریتم ATS برای کنترل تغییرات در مدل آماری برای اولین بار این مدل در چگونگی تعیین حالت ناهنجاری مدل بر اساس باشگاه شده و تأثیر در برگرفته شده در عملکرد الگوریتم ATS بررسی شده است. همچنین پایداری ATS برای یکی از اجزای حساس تشخیص دهنده یک همبستگی میان داده‌ها، ATS به عنوان یکی از الگوریتم‌های فوجی‌کومو می‌باشد.

نمودار 4- مقایسه مقدار متوسط ATS حاصل از الگوریتم ATS (شیب قرمز) با مدل آماری ATS (نوار سبز) برای n = 3, 5, 7, 9.

نمودار 5- مقایسه مقدار متوسط ATS حاصل از الگوریتم ATS با مدل آماری ATS (شیب قرمز) برای n = 3, 5, 7, 9.

نمودار 6- مقایسه مقدار متوسط ATS حاصل از الگوریتم ATS (شیب قرمز) با مدل آماری ATS (نوار سبز) برای n = 3, 5, 7, 9.

برای ارزیابی مقادیر ATS محاسبه شده توسط الگوریتم (اعداد جدول‌های 1, 3, 4) از تکنیک شبیه‌سازی استفاده می‌گردد. برای این منظور، برای انتخاد زیر گروه‌های مختلف (n = 3, 5, 7, 9) و با ب."

References:

1. Runs Rules
2. Variable Sample Size (VSS)

پیوست
برای محاسبه مقدار ATS و حدود کنترل بهبود یافته برای نمودارهای کنترل از روش‌های مارکوف ارائه شده توسط که انعطاف پذیرتر و ساده‌تر از روش‌های دیگر (مانند Evans معادلات انتگرال) است استفاده می‌کنیم. در این روش، نمودار برای پیش‌بینی حدود کنترل بالایی و پایینی (LCL, UCL) حاصل می‌شود. $p = 2m + 1$ که m تعداد مراحل است. هر چه p بزرگتر باشد، مقدار ATS می‌تواند بهبود یابد.

ATS مقدار ATS و حدود کنترل برای نمودارهای کنترل دقیق ATS تخمین زده می‌شود (در نظر گرفته می‌شود).

نمودار 1-1: پایه‌ای نمودارهای بالایی و پایینی ATS به $p = 2m + 1$ (LCL, UCL) به همراه 28 تفسیم می‌شود.

$ATS = q^T \times P \times G$.

ATS مقدار ATS $P = (I - Q)$ ماتریس Q برای احتمالات اولیه، q ماتریس اولیه احتمالات Q بردار پایه‌ای q مقدار ATS در نظر گرفته می‌شود.

ATS مقدار ATS $P = (I - Q)$ ماتریس Q برای احتمالات اولیه، q ماتریس اولیه احتمالات Q بردار پایه‌ای q مقدار ATS در نظر گرفته می‌شود.

ATS مقدار ATS $P = (I - Q)$ ماتریس Q برای احتمالات اولیه، q ماتریس اولیه احتمالات Q بردار پایه‌ای q مقدار ATS در نظر گرفته می‌شود.

ATS مقدار ATS $P = (I - Q)$ ماتریس Q برای احتمالات اولیه، q ماتریس اولیه احتمالات Q بردار پایه‌ای q مقدار ATS در نظر گرفته می‌شود.

ATS مقدار ATS $P = (I - Q)$ ماتریس Q برای احتمالات اولیه، q ماتریس اولیه احتمالات Q بردار پایه‌ای q مقدار ATS در نظر گرفته می‌شود.

ATS مقدار ATS $P = (I - Q)$ ماتریس Q برای احتمالات اولیه، q ماتریس اولیه احتمالات Q بردار پایه‌ای q مقدار ATS در نظر گرفته می‌شود.