A Retailing Recommender System Based on Customers’ Demographic Features using SOM and Association Rules

Sh. Mosayebian, A. Keramati* & V. Khatibi

Shahab Mosayebian Information Technology Department, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
Abbas Keramati Industrial Engineering Department, Faculty of Engineering, University of Tehran, Tehran, Iran
Vahid Khatibi Industrial Engineering Department, Faculty of Engineering, University of Tehran, Tehran, Iran

ABSTRACT

The intensive competition in e-Commerce causes effective methods for customer attraction of special importance. In this regard, the recommender systems in commercial websites can precisely determine customers’ interests and needs, and offer them most suitable products and services. In this paper, a new model for recommender systems is proposed which segments the market and customers more efficiently, and then provides customers with better offers in two phases; customers are segmented based on demographic features such as age, gender, occupation and education in the first phase. The number of clusters are determined by means of the self-organizing map (SOM), and then clusters are created using K-means. In the second phase, association rules determine a valid map for each cluster which yields the most suitable offers to customers. To examine the efficiency of the proposed model in practice, it is used in an Iranian commercial website, and the results are analyzed.

Keywords

Recommender systems, Online retailing, Clustering, Self-organizing map, Association rules
سیستم پیش‌ساخت‌گر هوشمند برای خردهفروشی اینترنتی با استفاده از نقشه خودسازمانده و قواعد انجمنی بر اساس الگوی جمعیت‌شناسی مشتریان

شهاب مسیبی، عباس کرامتی، وحید خطیبی

چکیده:

در این مقاله با گسترش روابط با واحدهای اینترنتی در امروز مختلفی انسان، شرایط انجام مبادلات تجاری از طریق این شبکه به یکی از مهم‌ترین مباحث مطرح در این تبدیل شده است که مورد توجه...
Recommender Systems
Association Rules
Self Organizing Map
K-Means
Group Lens
Ringo
Fab
Amazon.com
Profiles
Explicit
Implicit
Feature Selection
مشخصه های RFM

برای شناخت مشتری بر اساس مشخصات ارزشی که بررسی و بررسی شده است، امکان‌گیری از روش‌های مختلفی از جمله RFM ارائه شده است. این روش شامل سه مؤلفه اساسی است که به ترتیب تعداد خرید مشتری، نرخ خرید مشتری و فردیت خرید مشتری است. این روش بر اساس این اصول نرخ خرید مشتری و فردیت مشتری را به صورت تبلوری و به‌عنوان یک روش کمک‌نمای شناخت مشتری، بررسی و بررسی شده است.

RFM یک روش کمک‌نما برای شناخت مشتری می‌باشد که در دسترس استفاده می‌گردد. این روش شامل سه مؤلفه اساسی است که به ترتیب تعداد خرید مشتری، نرخ خرید مشتری و فردیت مشتری است. این روش بر اساس این اصول نرخ خرید مشتری و فردیت مشتری را به صورت تبلوری و به‌عنوان یک روش کمک‌نما برای شناخت مشتری می‌باشد که در دسترس استفاده می‌گردد.

RFM یک روش کمک‌نما برای شناخت مشتری می‌باشد که در دسترس استفاده می‌گردد. این روش شامل سه مؤلفه اساسی است که به ترتیب تعداد خرید مشتری، نرخ خرید مشتری و فردیت مشتری است. این روش بر اساس این اصول نرخ خرید مشتری و فردیت مشتری را به صورت تبلوری و به‌عنوان یک روش کمک‌نما برای شناخت مشتری می‌باشد که در دسترس استفاده می‌گردد.

RFM یک روش کمک‌نما برای شناخت مشتری می‌باشد که در دسترس استفاده می‌گردد. این روش شامل سه مؤلفه اساسی است که به ترتیب تعداد خرید مشتری، نرخ خرید مشتری و فردیت مشتری است. این روش بر اساس این اصول نرخ خرید مشتری و فردیت مشتری را به صورت تبلوری و به‌عنوان یک روش کمک‌نما برای شناخت مشتری می‌باشد که در دسترس استفاده می‌گردد.

RFM یک روش کمک‌نما برای شناخت مشتری می‌باشد که در دسترس استفاده می‌گردد. این روش شامل سه مؤلفه اساسی است که به ترتیب تعداد خرید مشتری، نرخ خرید مشتری و فردیت مشتری است. این روش بر اساس این اصول نرخ خرید مشتری و فردیت مشتری را به صورت تبلوری و به‌عنوان یک روش کمک‌نما برای شناخت مشتری می‌باشد که در دسترس استفاده می‌گردد.

RFM یک روش کمک‌نما برای شناخت مشتری می‌باشد که در دسترس استفاده می‌گردد. این روش شامل سه مؤلفه اساسی است که به ترتیب تعداد خرید مشتری، نرخ خرید مشتری و فردیت مشتری است. این روش بر اساس این اصول نرخ خرید مشتری و فردیت مشتری را به صورت تبلوری و به‌عنوان یک روش کمک‌نما برای شناخت مشتری می‌باشد که در دسترس استفاده می‌گردد.

RFM یک روش کمک‌نما برای شناخت مشتری می‌باشد که در دسترس استفاده می‌گردد. این روش شامل سه مؤلفه اساسی است که به ترتیب تعداد خرید مشتری، نرخ خرید مشتری و فردیت مشتری است. این روش بر اساس این اصول نرخ خرید مشتری و فردیت مشتری را به صورت تبلوری و به‌عنوان یک روش کمک‌نما برای شناخت مشتری می‌باشد که در دسترس استفاده می‌گردد.
۳. روش‌های داده‌گذاری مورد استفاده در سیستم‌های پیش‌نهادگر

پیش‌نهادگر

در این بخش به توسعه روش‌های داده‌گذاری ارائه گردیده است. مدل‌های سیستم‌های خودرسانه و سیستم‌های مالیوگر و قادر به پیش‌بینی روش‌های داده‌گذاری شده است. این پیشوپ‌های خودرسانه می‌تواند برای اولین بار در سیستم‌های خودساز و سیستم‌های مالیوگر در دسترس باشد.

- تفاوت‌های خودسازمانده (SOM): از این‌جایی به عنوان یک نمایش داده‌های خودسازمانده استفاده می‌شود. این تفسیر می‌گوید که این مدل‌ها برای پیش‌بینی روش‌های داده‌گذاری استفاده می‌شوند.

- تفاوت‌های مشخص خودسازمانده (SOFM): این نکته در سیستم‌های خودسازمانده به کار می‌رود.

- تفاوت‌های کوهون (Kohonen): از این‌جایی به عنوان یک نمایش داده‌های خودسازمانده استفاده می‌شود.

- فناوری ابزارهای جدید: این فناوری‌ها در سیستم‌های سیستم‌های خودراسان و سیستم‌های مالیوگر استفاده می‌شوند.

- طراحی و ساختار محصول: این مدل‌ها برای طراحی و ساختار محصول استفاده می‌شوند.

- محصول: این مدل‌ها برای محصول استفاده می‌شوند.

- نظر کلی برای نحوه مطالعه و کسب شده برای محصول‌های خاص و تعداد بارگذاری‌های محصولی، تحقیقات جدید و نظرات کاربران را شامل می‌شود.

(K-Means)

2-الگوریتم K-میانگین

این الگوریتم یکی از الگوریتم‌های بررسی‌برنده‌ای است که مدل‌های سیستم‌های پیش‌نهادگر را در سیستم‌های خودساز و سیستم‌های مالیوگر به‌عنوان یک مدل تعیین شده انتخاب می‌کند. این الگوریتم به یک مجموعه از داده‌های پیش‌بینی شده انتخاب می‌شود. در این الگوریتم، مقدار متوسط از هر دوی پارامتر برای فاصله از دو ویژگی مجموعه از داده‌های پیش‌بینی شده به‌عنوان میانگین پیش‌بینی شده می‌شود. در داده‌های ضمنی، مقدار متوسط از هر دوی پارامتر برای فاصله از دو ویژگی مجموعه از داده‌های ضمنی به‌عنوان میانگین پیش‌بینی شده می‌شود.

\[f(x) = \sum_{j=1}^{n} \left| x_i - c_j \right|^2 \] (1)

1) Self-Organizing Feature Maps
2) Kohonen Maps
3) Purchase probability
4) Purchase probability of similar customers
5) Product profitability
6) Convenience Perspective Recommender System
7) Collaborative Filtering Perspective Recommender System
8) Convenience Plus Profitability Perspective Recommender System System
9) Hybrid Perspective Recommender System
10) Frequency-based probability
11) Similarity-based probability
12) Navigational Patterns
13) Behavioral Patterns
14) Bookmarking
15) A/B Testing
16) User Feedback
سیستم پیشنهادگر هوشمند برای خریدورشی اینترنتی با استفاده از

در این مورد (X, Y) بالاست X پایدار برآیند. در قواعد

انجامی دو فاز مورد نیاز است. فاز اول روابط مجموعه اقلام

برگ و فاز دوم روابط قواعد انجمنی در استفاده از مجموعه

دادههای بزرگ است. نقطه در دو مورد مورد نیاز قرار می‌گیرند:

\[\text{Support}(X \cup Y, D) \geq \text{minsup} \]

\[\text{Confidence}(X \rightarrow Y) \geq \text{minconf} \]

از آن جایی که \(P \) فاصله بین نقاط داده و مرکز هر

شکل 1: مدل پیشنهادگر برای سیستم پیشنهادگر

3. قواعد انجمنی

الگوریتمی قواعد انجمنی به صورت عمده در دانش روابط بین

قابل و تغییرپذیری که پایداری در آنها است، استفاده می‌شوند

تا توانایی درک دقیقه‌ها از احتمالات طول خردید در فروشگاهها

ربا می‌دهد را داشته باشد [16, 17].

در نش رمزگیری برای تصمیم گیری است. قواعد انجمنی به صورت

زیر تعیین می‌شوند:

\[I = \{i_1, i_2, \ldots, i_m\} \]

مجموعه I به عنوان مجموعه‌ای از اعداد است که هر عددی که

کننده تراکنش‌های حضور مجموعه است به شکلی که \(\subseteq I \) نا

عضو مجموعه که یک تاشی، زیر مجموعه I است و تنها

یک تابع \(X \subseteq TID \) مقدار استفاده کرد، که برای از

میزان استفاده یا امتیاز آماری است.

4. مدل پیشنهادگر

در این مدل، مدل پیشنهادگر فاقد ارائه می‌گردد. این مدل بر

اساس ترکیبی از پلتفرم‌های مختلف (CB) و پلتفرم مشترکی

(CF) به شکل کردن بر خوشه مجموعه و قواعد انجمنی،

پیشنهادهای مشتریان انجام می‌دهد. بر اساس مراحل که در

شکل (1) آمده است، این مدل، برای نوره اطلاعات بر دو

فاز، تجدید می‌دهد. به طوری که در فاز اول، پس از انتخاب

مشتریان، تعداد خوشه‌ها به پایان تایید می‌شود و

سپس جایگذاری ناکافی در خوشه‌ها انجام می‌پذیرد. در فاز دوم،

یک به یک از قواعد انجمنی، قواعد حاکی بر هر یک از خوشه‌ها

استخراج گردیده و بر اساس آنها به مشتریان، گزارش‌های مناسب

پیشنهاد می‌شوند.

\[\text{Support}(X,D) \]

\[\text{Confidence}(X \rightarrow Y) = \frac{\text{Support}(X \cup Y, D)}{\text{Support}(X,D)} \]

نشان دهنده درصد با تعداد مجموعه تراکنش‌های در

D است که شامل هر دوی X و Y باشد و مشخص شده که

داریم:

[1] Content base Filtering
[2] Collaborating Filtering
[3] Support
[4] Confidence

نشرویه بین المللی مهندسی صنایع و مدیریت تولید. یزد 1391-جلد 23-شماره 1
سیستم پیشنهادگر هوشمند برای خرید و فروش اینترنتی با استفاده...

شده مستبیان، عباس کرامتی و محمد خضبانی

سید نیازی، ایرج نامداری و احمد سیفی

2- تبدیل داده‌ها به شکل پایین

بعد از انتخاب مشخصه‌ها، برای ارزیابی و انجام محاسبات الگوریتمی لازم است تا داده‌ها از زاویه رشته‌ای مناسب‌ جدول ۱(۱) به حالت پایینی تبدیل شوند. بنابراین غیر مشخصه‌ها توجه به ورودی‌هایی که از نظر کاربر به این اختصار می‌پدیده روش‌های اختصاصی داشته باشد. این روش‌ها یک روش به شکل پیچیده انتخاب مشخصه‌ها است.

3- تعیین تعداد خوشه‌ها

برای تعیین تعداد خوشه‌ها در پایگاه داده مشتریان از الگوریتم SOM به سرعتی استفاده شده است. این الگوریتم پیامد داده مشتریان را بر اساس مشخصه‌هایی که به شکل پایینی در مدل‌سازی خوشه‌نوار در هزینه‌های توزیع‌بندی یکی از ابزارهای مشابه است. SOM یک روش با استفاده از مدل‌سازی گسترده‌تری است که به این صورت به صورت تقریبی قابل دانسته است که هم‌زمان بخشی از شبکه انتخاب شده خوشه‌ها است. از این رو، این الگوریتم به بخش‌هایی گروه‌بندی شده خواهد شد.

شکل ۲: روش‌شناسی توزع سیستم پیشنهادگر

IranBin
جدول 1. تبدیل داده‌ها به شکل پایین‌ری

<table>
<thead>
<tr>
<th>شناسه مشتری</th>
<th>فن آماری</th>
<th>تبدیل داده‌ها</th>
<th>کاردینال مهندس مالی</th>
<th>پاسخ‌های دامنه‌ای</th>
<th>تعداد</th>
<th>معیار دیجیتال</th>
<th>خوشه‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOM</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

سیستم پیش‌نهادگر هوشمند برای خرید روش‌هایی اینترنتی با استفاده از...

شماره مسیبیان، عباس کرمانی و وحید خطبی 8

4-1 ایجاد خوشه‌ها

بعد از مشخص شدن تعداد خوشه‌ها، برای ایجاد خوشه‌ها از کووهای سامانه استفاده شده است. بر این اساس، متغیرین با توجه به مشابهات‌هایی که می‌توان به این موضوع نسبت می‌دهد، هیچ جمع‌یابی‌خودی و یا رفتار خریداران در خوشه‌ها قرار گیرد.

شایان ذکر است برای دلیل بکارگیری روش Mijnescی برای تئیین تعیین خوشه‌ها یک گفتگوی SOM کلاسیک روش با سررسی K-Roshsای میانگین برای تحلیل خوشه‌بندی بیشتری داده‌هایی در مورد مدل‌های برده‌ای بهره برد. هر چه می‌تواند به این که باعث ناهنجاری‌هایی در جفت‌ها SOM قرار گیرد.

\[1 \leq \max \left(\frac{s(Q,Q')}{S(Q,Q')}, \frac{s(Q,Q')}{S(Q',Q)} \right) \]

که در آن SOM و Mijnescی میانگین فاصله کلیه اجزای خوشه‌هایی که در هناخ و نهایت در روش‌سنسیزی استفاده می‌شوند میانگین فاصله کلیه اجزای خوشه‌های مربوط به هر یک از جفت‌های در N آماری این روش‌سنسیزی است. خوشه‌بندی بر اساس معیار فاصله به مرکز به‌دست می‌آید.

برای محاسبه خطای نوبت‌گرفتگی برای هر داده و روبروی اولین و دومین نمونی از گروه به عنوان محاسبه شده و اگر این گروه در نقشه خوشه‌بندی به‌کمک نوبت‌گرفتگی نشانده، خطای انتقال افتاده انتشار و ارزیابی خوشه‌های حاصل بوشیله سه معیار خطای عدی خوشه‌بندی شده و دیپس- Bolton می‌باشد. هر چند که این خطای متمرکز باشد، خوشه‌بندی بهتری انجام شده است.

2 Davies-Bouldin Validity Index
3 Silhouette Validity Index
4 Goodman-Kruskal Index
5 Isolation Index
6 Jaccard Index
7 Rand Index
8 Quantization Error
9 Topographic Error

1 Daun's Validity Index

4-2 استفاده از لغزش و تعداد خوشه‌ها

برای اعتبار سنجی خوشه‌ها و هر یک از ابزارهای اینترنتی و جوامع دیجیتال، اعتبار سنجی خوشه‌ها از ارزیابی خوشه‌های آماده سیاست بروزدار است. برای این منظور، برای سنجه‌های تعداد خوشه‌ها و رتبه‌بندی به‌کمک Mijnescی، SOM و SOM در کلمات‌های مختلف خوشه‌بندی، تعداد خوشه‌ها و پاسخ‌های مربوط به این موضوعات تحلیل شده و به‌طور دندانی از مفاهیم مختلفی اعتبارسنجی می‌توان به این موارد اشاره کرد.

2 Daun's Validity Index
سیستم پیشنهادگر هوشمند برای خردهفروشی اینترنتی با استفاده...

شهب مسیبانی، عیسی کرامتی و وحید خطبی

4-1 استفاده از قواعد انجمنی

بعد از ایجاد خوش‌ها، تراکنش‌های مشتریان در هر خوش‌های مشخص شده است. سپس قواعد انجمنی به کمک نرم‌افزار کلمنسی بر روی مجموعه داده‌های اموزشی با استفاده از الگوریتم IBA، یکی از کارآمدترین روش‌های مطرح در قواعد انجمنی، پیدا می‌شود.

بعد از ایجاد خوش‌ها و کشف قواعد موجود در هر خوش‌های ایجاد ارائه پیشنهاد مشتری به اساس خوش‌های که در آن قرار می‌گیرد و همچنین مطالعه سیستم کنترل که می‌شود.

4-2 ارتباط و ضرب همبستگی

برای ارزیابی ارتباط و همبستگی بین مشاهدات ایجاد شده، سیستم پیشنهادگر بر اساس شناسایی زیر- و یو در فرض گیریم. ضرب همبستگی این در با را نشان داده و به صورت زیر تعریف می‌شود:

\[\rho_{xy} = \frac{\text{cov}(x, y)}{\sqrt{\text{var}(x)\text{var}(y)}} = \frac{\sigma_{xy}}{\sigma_x\sigma_y} \] \hspace{1cm} (8)

* بدين معنا كه داده ها به دسته‌های اموزشی و آزمون تقسيم شدند. در این تقسيم های تراکنش‌های پایه 2007-2009، داده‌های آزمون در نظر گرفته شدند. شیان ذکر یک هفته در پژوهش‌ها می‌توانند تفاوت مراتب در جایی که کاهش مقدار معنی‌دار 60 درصد به بالا را در نظر گرفته

5 مدل‌های حویل

با توجه به آنچه در روش‌های مطرح گردیده، پایداری کلی مراحل ایجاد شده در مدل پیشنهادی در قالب یک مدل درک است

1 Clementine
2 Apriori
3 Correlation
4 Pearson
5 Train Data
6 Test Data

тин مشخصه‌های جمعیت‌شناسی بر اساس مشخصه‌های انتخابی در پیشنهاد مدل داده‌ها مختصات جدول (4) به شکل پایدار درآمد و تعداد

خوش‌ها توسط الگوریتم SOM مشخص می‌شود. این خوش‌ها به

خطا مدل درک است

نتیجه بین المللی مهندسی صنایع و مدیریت تولید. 1398-1399-جلد 23-شماره 1
جدول ۳ انتخاب گوناگون مشخصه‌های مشتری‌بان و عوامل هر یک از آن‌ها

<table>
<thead>
<tr>
<th>مشخصه‌های مشتری‌بان</th>
<th>متغیرهای جمع‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>عوامل قرارداد</td>
<td>متغیرهای دیپلم</td>
</tr>
<tr>
<td>سطح حرفه‌ای</td>
<td>متغیرهای دیپلم</td>
</tr>
<tr>
<td>تعداد انتخاب خانواده</td>
<td>متغیرهای دیپلم</td>
</tr>
<tr>
<td>شغل</td>
<td>متغیرهای دیپلم</td>
</tr>
</tbody>
</table>

جدول ۴ مشخصه‌های جمع‌بندی

<table>
<thead>
<tr>
<th>مشخصه‌های جمع‌بندی</th>
<th>متغیرهای جمع‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسد</td>
<td>متغیرهای دیپلم</td>
</tr>
<tr>
<td>باراز</td>
<td>متغیرهای دیپلم</td>
</tr>
<tr>
<td>بیمارستان</td>
<td>متغیرهای دیپلم</td>
</tr>
<tr>
<td>پزشک</td>
<td>متغیرهای دیپلم</td>
</tr>
<tr>
<td>پزشک</td>
<td>متغیرهای دیپلم</td>
</tr>
<tr>
<td>پزشک</td>
<td>متغیرهای دیپلم</td>
</tr>
<tr>
<td>دکتر</td>
<td>متغیرهای دیپلم</td>
</tr>
</tbody>
</table>

جدول ۵ اعتبارسنجی

<table>
<thead>
<tr>
<th>خصائص عينی</th>
<th>خصائص نويرگرافیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>دیپسیس دولین</td>
<td>0.87</td>
</tr>
<tr>
<td>دیپسیس دولین</td>
<td>0.15</td>
</tr>
</tbody>
</table>

سیستم پیشنهادگر هوشمند برای خرده‌فروشی ایت‌نتی با استفاده... شهاب مستبیان، عباس کرامتی و وحید خضبانی

شناسه بین المللی مهندسی صنایع و مدیریت تولید، ۱۳۹۱-جلد ۲۳-شماره ۱
جدول 6. تحلیل خوشه‌ها ایجاد شده توسط SOM و K میانگین

<table>
<thead>
<tr>
<th>تعداد</th>
<th>خوشه‌ها</th>
<th>تعداد</th>
<th>خوشه‌ها</th>
<th>تعداد</th>
<th>خوشه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>cluster-4</td>
<td>222</td>
<td>cluster-3</td>
<td>241</td>
<td>cluster-2</td>
</tr>
<tr>
<td>15</td>
<td>cluster-7</td>
<td>42</td>
<td>cluster-6</td>
<td>104</td>
<td>cluster-5</td>
</tr>
<tr>
<td>46</td>
<td>cluster-11</td>
<td>59</td>
<td>cluster-10</td>
<td>250</td>
<td>cluster-9</td>
</tr>
<tr>
<td>51</td>
<td>cluster-15</td>
<td>66</td>
<td>cluster-14</td>
<td>42</td>
<td>cluster-13</td>
</tr>
</tbody>
</table>

جدول 7. تحلیل خوشه‌های ایجاد شده بر اساس مشخصه‌های جمعیت‌شناسی مشتریان

<table>
<thead>
<tr>
<th>نندیکی و مجاورت</th>
<th>شغل</th>
<th>تحلیقات</th>
<th>جنسیت</th>
<th>سن</th>
<th>خوشه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>خوش‌هه‌سدن</td>
<td>ازداس</td>
<td>زرده‌یم</td>
<td>مارد</td>
<td>40</td>
<td>خوشه‌ه شماره 1</td>
</tr>
<tr>
<td>خوش‌هه‌سدن-سیب‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>داش‌امور</td>
<td>مارد</td>
<td>40</td>
<td>خوشه‌ه شماره 2</td>
</tr>
<tr>
<td>خوش‌هه‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>کارمند</td>
<td>زن</td>
<td>40</td>
<td>خوشه‌ه شماره 3</td>
</tr>
<tr>
<td>خوش‌هه‌سدن-هست</td>
<td>خوش‌هه‌سدن</td>
<td>لیسانس</td>
<td>مارد</td>
<td>40</td>
<td>خوشه‌ه شماره 4</td>
</tr>
<tr>
<td>خوش‌هه‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>فوتبال‌سدن</td>
<td>زن</td>
<td>40</td>
<td>خوشه‌ه شماره 5</td>
</tr>
<tr>
<td>خوش‌هه‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>وزه‌ک‌ان‌باد</td>
<td>دکتر</td>
<td>40</td>
<td>خوشه‌ه شماره 6</td>
</tr>
<tr>
<td>خوش‌هه‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>دیپلم</td>
<td>زن</td>
<td>40</td>
<td>خوشه‌ه شماره 7</td>
</tr>
<tr>
<td>خوش‌هه‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>لیسانس</td>
<td>مارد</td>
<td>40</td>
<td>خوشه‌ه شماره 8</td>
</tr>
<tr>
<td>خوش‌هه‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>دانش‌م‌لعی</td>
<td>مارد</td>
<td>40</td>
<td>خوشه‌ه شماره 9</td>
</tr>
<tr>
<td>خوش‌هه‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>دیپلم</td>
<td>زن</td>
<td>40</td>
<td>خوشه‌ه شماره 10</td>
</tr>
<tr>
<td>خوش‌هه‌سدن-پیپر</td>
<td>خوش‌هه‌سدن</td>
<td>لیسانس</td>
<td>مارد</td>
<td>40</td>
<td>خوشه‌ه شماره 11</td>
</tr>
<tr>
<td>خوش‌هه‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>فوتبال‌سدن</td>
<td>زن</td>
<td>40</td>
<td>خوشه‌ه شماره 12</td>
</tr>
<tr>
<td>خوش‌هه‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>وزه‌ک‌ان‌باد</td>
<td>دکتر</td>
<td>40</td>
<td>خوشه‌ه شماره 13</td>
</tr>
<tr>
<td>خوش‌هه‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>دیپلم</td>
<td>مارد</td>
<td>40</td>
<td>خوشه‌ه شماره 14</td>
</tr>
<tr>
<td>خوش‌هه‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>دانش‌م‌لعی</td>
<td>زن</td>
<td>40</td>
<td>خوشه‌ه شماره 15</td>
</tr>
<tr>
<td>خوش‌هه‌سدن</td>
<td>خوش‌هه‌سدن</td>
<td>دیپلم</td>
<td>مارد</td>
<td>40</td>
<td>خوشه‌ه شماره 16</td>
</tr>
</tbody>
</table>

[34] Topchy, A.J., Punch, W., Combining Multiple Weak Clusterings. in Proceedings of The Third IEEE International Conference on Data Mining (ICDM 2003), Washington, DC, USA, 2003, pp. 331-338.