Proposed Fuzzy Revised Theory of Constraints Algorithm for Product Mix Problems with Fuzzy Capacity, Profit and Processing Times

N. Hamidi*, P. Samouei & M. Eghbali

N. Hamidi, Department of Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran
P. Samouei, Department of Industrial Engineering, Bu-Ali Sina University, Hamedan, Iran
M. Eghbali, Young Researchers Club, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Keywords
Product mix, Theory of constraints, Fuzzy linear programming, Fuzzy processing time, Fuzzy capacity, Fuzzy profit

ABSTRACT
One of methods that used in product mix problems is theory of constraints (TOC). However, unfortunately it is not efficient in some situations. So many researchers have tried to solve these inefficiencies. In this way, Revised Theory of Constraints is proposed to use the advantage of this method for certainty conditions. Nevertheless, in the real world situations many parameters such as processing time, capacity and profit are not completely certain. Furthermore, Fuzzy set theory has been used to model systems that are hard to define precisely and represents an attractive tool to aid research in production management when the dynamics of the production environment limit the specification of model objectives, constraints and the precise measurement of model parameter. So in this paper, an algorithm based on RTOC and fuzzy logic is proposed. The results have shown this algorithm is an effective and flexible algorithm.

© 2012 IUST Publication, IJIEPM. Vol. 22, No. 4, All Rights Reserved

*Corresponding author. Naser Hamidi
Email: nhamidi1344@gmail.com
ناظر حمیدی، پروانه سموتی و مهدی اقبالی

کلمات کلیدی

۱. مقدمه

یکی از مسائل که فکر به پیامدهایی از محققین مسائل تولید را به خود اختصاص دیده‌اند، هنگام حل تولید وابسته به تولید محصولات می‌باشد. در این راستا روش‌های ایجاد تولید محدودیت‌ها، برداشتهایی خاص جستجوی منابع، اغتشاشات، زنجیره‌ای و ... مورد استفاده قرار گرفته‌اند.

در میان این روش‌ها، تولید محدودیت‌ها یک روش کاربردی و در عین حال ساده می‌باشد. اما مالکانه در پارسال شرایط جدید قرار گرفته‌اند، از آنجا که باید تولیدات به صورت ایمپورتم می‌باشد و برای نماهنگی این عوامل به تولید محدودیت‌ها اصلاح شده است. این مقاله سعی در پی‌گیری است که با بررسی این اکثریت‌ها به پیامدهای فازی تولید محدودیت‌ها اصلاح شده و مقاله را ارائه دهد.

شدو. نتایج نشان می‌دهد که نیاز به قطع وابسته به تولید محدودیت‌ها باید به‌طور مداوم بررسی و به‌طور مداوم به تولید محدودیت‌ها اصلاح شده است. این مقاله در صورتی که به بررسی می‌باشد، به‌طور مداوم به تولید محدودیت‌ها اصلاح شده است.

در این راستا یکی از روش‌های محدودیت‌ها یک روش کاربردی و در عین حال ساده می‌باشد. اما مالکانه در پارسال شرایط جدید قرار گرفته‌اند، از آنجا که باید تولیدات به صورت ایمپورتم می‌باشد و برای نماهنگی این عوامل به تولید محدودیت‌ها اصلاح شده است. این مقاله در صورتی که به بررسی می‌باشد، به‌طور مداوم به تولید محدودیت‌ها اصلاح شده است.

شدو. نتایج نشان می‌دهد که نیاز به قطع وابسته به تولید محدودیت‌ها باید به‌طور مداوم بررسی و به‌طور مداوم به تولید محدودیت‌ها اصلاح شده است. این مقاله در صورتی که به بررسی می‌باشد، به‌طور مداوم به تولید محدودیت‌ها اصلاح شده است.

شدو. نتایج نشان می‌دهد که نیاز به قطع وابسته به تولید محدودیت‌ها باید به‌طور مداوم بررسی و به‌طور مداوم به تولید محدودیت‌ها اصلاح شده است. این مقاله در صورتی که به بررسی می‌باشد، به‌طور مداوم به تولید محدودیت‌ها اصلاح شده است.

شدو. نتایج نشان می‌دهد که نیاز به قطع وابسته به تولید محدودیت‌ها باید به‌طور مداوم بررسی و به‌طور مداوم به تولید محدودیت‌ها اصلاح شده است. این مقاله در صورتی که به بررسی می‌باشد، به‌طور مداوم به تولید محدودیت‌ها اصلاح شده است.

شدو. نتایج نشان می‌دهد که نیاز به قطع وابسته به تولید محدودیت‌ها باید به‌طور مداوم بررسی و به‌طور مداوم به تولید محدودیت‌ها اصلاح شده است. این مقاله در صورتی که به بررسی می‌باشد، به‌طور مداوم به تولید محدودیت‌ها اصلاح شده است.

شدو. نتایج نشان می‌دهد که نیاز به قطع وابسته به تولید محدودیت‌ها باید به‌طور مداوم بررسی و به‌طور مداوم به تولید محدودیت‌ها اصلاح شده است. این مقاله در صورتی که به بررسی می‌باشد، به‌طور M.
در این مقاله تعاریف و روابط زیر برای کلکشن می‌باشد. استفاده قرار گرفته است:

\[\mu_{L}(x) = \begin{cases} \frac{m-x}{a}; & x \leq m \alpha > 0 \\ \frac{m}{x-m \beta}; & x \geq m \beta > 0 \end{cases} \]

در این رابطه
\[\tilde{M} = (m, \alpha, \beta)_{LR} \]
\[\tilde{N} = (n, \alpha', \beta')_{LR} \]
\[\lambda, (m, \alpha)_{LR} = \lambda, (m, \lambda \alpha, \lambda \beta)_{LR} \geq 0 \]
\[\lambda, (m, \alpha, \beta)_{LR} = \lambda, (m, -\lambda \alpha, -\lambda \beta)_{LR} \lambda < 0 \]

در این رابطه
\[(m, \alpha)_{LR} + (n, \alpha', \beta')_{LR} = (m + n, \alpha + \alpha', \beta + \beta')_{LR} \]
به یادآوری و همکاران (2004) به بررسی مسائل تصمیم‌گیری ترکیب تولید فازی تحت نتوری محدودیت‌های زمانی که سطح رضایت تضمین‌گران دارای تغییر تاثیر فاقد این سیستم می‌باشد، پر به می‌گردد.

(۲)

ضراب و تضمین اعداد فازی[۱] از قوانین زیر می‌توان برای تضمین دو عدد فازی برای A، B و [a₁، a₃] [β₁، β₃] که در این مقاله نیز مثال بیان شده‌اند.

(۳)

[۱] Lee and Plenert
[۲] Fredendall and Lea
[۳] Revised Theory Of Constraints
[۴] Onwubolu
[۵] Chan et al.

\[
CR = \{ BN_1, BN_2, ..., BN_q \}
\]

را به نقطه زیبا نمایش دهید که در محصول محله‌ای باشد.

\[
W_i \leq W_j \leq ... \leq W_m \quad \text{و} \quad q \leq n
\]

برای رتبه‌بندی مقدارت روابط زیر استفاده نمایید.

\[
k = 1, 2, ..., q \quad \text{و} \quad i = 1, 2, ..., m
\]

کدی به طور مختص کنید. اگر برای این اعداد مناسب نبوده باشد، به محله‌ی (ii) در مرحله نمایش داده نمایید.

\[
\text{مقادیر } C_i^1, C_i^2, C_i^3
\]

به هزینه‌های مربوط به محله‌ی (iii) در مرحله نمایش داده می‌شود.

\[
\text{مقادیر مربوط به محله‌ی } 2 \text{ در مرحله نمایش داده می‌شود.}
\]

\[
\text{دست آمده در مرحله } (i) \text{ و } (ii) \text{ رتبه‌بندی نمایید.}
\]

\[
\text{مرحله } 3 \text{ مربوط به محصول } m \text{ از مرحله } 0 \text{ میرود.}
\]

\[
\text{کدی به طور مختص کنید.}
\]

\[
\text{مقدارت } D_i \text{ (} i = 1, 2, ..., m \text{)} \text{ در محصولات } R_i \text{ مربوط کنید.}
\]

\[
\text{برای این منشور از روابط } D_i \text{ در محله } 1 \text{ شد،}
\]

\[
\text{استفاده نمایید.}
\]

\[
\text{مقادیر } b_j^1, b_j^2, b_j^3 \text{ اگر این مشابه باشد، به محله‌ی } 1 \text{ در مرحله نمایش داده می‌شود.}
\]

\[
\text{نوبت می‌گیرد.}
\]

\[
\text{مقادیر } R_i \text{ در محله } 1 \text{ شد.}
\]

\[
\text{در غیر این صورت } D_i \text{ مربوط رو به محله } 3 \text{ میرود.}
\]

\[
\text{مدیر نمایید:}
\]

\[
\text{محصولات } R_i \text{ با طرفداری به نوبت می‌گیرد.}
\]

\[
\text{برای این مشابه از روابط } D_i \text{ در محله } 1 \text{ شد،}
\]

\[
\text{استفاده نمایید.}
\]

\[
\text{مقادیر } b_j^1, b_j^2, b_j^3 \text{ اگر این مشابه باشد، به محله‌ی } 1 \text{ در مرحله نمایش داده می‌شود.}
\]

\[
\text{نوبت می‌گیرد.}
\]

\[
\text{برای این مشابه از روابط } D_i \text{ در محله } 1 \text{ شد،}
\]

\[
\text{استفاده نمایید.}
\]

\[
\text{مقادیر } b_j^1, b_j^2, b_j^3 \text{ اگر این مشابه باشد، به محله‌ی } 1 \text{ در مرحله نمایش داده می‌شود.}
\]

\[
\text{نوبت می‌گیرد.}
\]

\[
\text{برای این مشابه از روابط } D_i \text{ در محله } 1 \text{ شد،}
\]

\[
\text{استفاده نمایید.}
\]

\[
\text{مقادیر } b_j^1, b_j^2, b_j^3 \text{ اگر این مشابه باشد، به محله‌ی } 1 \text{ در مرحله نمایش داده می‌شود.}
\]

\[
\text{نوبت می‌گیرد.}
\]
را به عنوان گل‌گونه جدید در نظر گرفته می‌شود. (c) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (d) را به عنوان گل‌گونه جدید در نظر گرفته می‌شود. (e) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (f) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (g) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (h) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (i) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (j) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (k) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (l) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (m) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (n) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (o) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (p) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (q) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (r) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (s) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (t) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (u) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (v) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (w) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (x) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (y) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد. (z) نمادین. یک تایی که تا کنون محصول دیگری ثبت نکرده باشد.
جدول ۱: زمان پرداش محصولات در ایستگاه‌های مختلف و ظرفیت هر ایستگاه

<table>
<thead>
<tr>
<th>محصول</th>
<th>ظرفیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(5.25, 3)</td>
</tr>
<tr>
<td>B</td>
<td>(5.55, 7)</td>
</tr>
<tr>
<td>C</td>
<td>(2.35, 4)</td>
</tr>
<tr>
<td>D</td>
<td>(1.25, 3)</td>
</tr>
<tr>
<td>E</td>
<td>(7.10, 11.5)</td>
</tr>
<tr>
<td></td>
<td>(2350, 2400, 2450)</td>
</tr>
</tbody>
</table>

جدول ۲: ظرفیت مورد نیاز هر ایستگاه

<table>
<thead>
<tr>
<th>محصول</th>
<th>ظرفیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(20, 22)</td>
</tr>
<tr>
<td>B</td>
<td>(7, 8.9)</td>
</tr>
<tr>
<td>C</td>
<td>(20, 25, 30)</td>
</tr>
<tr>
<td>D</td>
<td>(18, 20, 22)</td>
</tr>
<tr>
<td>E</td>
<td>(1940, 2075, 2210)</td>
</tr>
<tr>
<td></td>
<td>(1300, 1680, 2000)</td>
</tr>
</tbody>
</table>

حل مستقل:

مرحله ۱: شناسایی محدودیت‌های سیستم
ا. ظرفیت مورد نیاز در جدول زیر نشان داده شده است:

<table>
<thead>
<tr>
<th>محصول</th>
<th>ظرفیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(180, 190, 200)</td>
</tr>
<tr>
<td>B</td>
<td>(90, 105, 120)</td>
</tr>
<tr>
<td>C</td>
<td>(320, 340, 360)</td>
</tr>
<tr>
<td>D</td>
<td>(210, 240, 270)</td>
</tr>
<tr>
<td>E</td>
<td>(420, 600, 690)</td>
</tr>
<tr>
<td></td>
<td>(680, 1015, 1225)</td>
</tr>
</tbody>
</table>

b. تفاوت ظرفیت واقعی و مورد نیاز در زیر آمده است:

(2350, 2400, 2450) - (680, 1015, 1225) = (1670, 1385, 1225)
(1775, 1825, 1875) - (1940, 2075, 2210) = (350, 650, 365)
(2350, 2400, 2450) - (20, 22) = (2330, 2378, 2428)
(1775, 1825, 1875) - (350, 650, 365) = (1425, 1175, 1510)
(1300, 1680, 2000) - (1940, 2075, 2210) = (60, 135, 180)

CR BN

ا. از منفی S۴ و S۵ و S۶ و S۱ و S۲ و S۳ و BN1 BN2

b. برای شناسایی BN1 از لازم است که گلگانی را رتبه‌بندی نماییم:

<table>
<thead>
<tr>
<th>محصول</th>
<th>ظرفیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(0.19, 0.25, 0.31)</td>
</tr>
<tr>
<td>B</td>
<td>(1.8, 2.1, 2.44)</td>
</tr>
<tr>
<td>C</td>
<td>(1.75, 2.285, 3)</td>
</tr>
<tr>
<td>D</td>
<td>(2.22, 2.941, 3.75)</td>
</tr>
<tr>
<td>E</td>
<td>(1.44, 1.875, 2.57)</td>
</tr>
</tbody>
</table>

CR BN

b. برای شناسایی BN1 از لازم است که گلگانی را رتبه‌بندی نماییم:

<table>
<thead>
<tr>
<th>محصول</th>
<th>ظرفیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(0.19, 0.25, 0.31)</td>
</tr>
<tr>
<td>B</td>
<td>(1.8, 2.1, 2.44)</td>
</tr>
<tr>
<td>C</td>
<td>(1.75, 2.285, 3)</td>
</tr>
<tr>
<td>D</td>
<td>(2.22, 2.941, 3.75)</td>
</tr>
<tr>
<td>E</td>
<td>(1.44, 1.875, 2.57)</td>
</tr>
</tbody>
</table>

CR BN

b. برای شناسایی BN1 از لازم است که گلگانی را رتبه‌بندی نماییم:

<table>
<thead>
<tr>
<th>محصول</th>
<th>ظرفیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(0.19, 0.25, 0.31)</td>
</tr>
<tr>
<td>B</td>
<td>(1.8, 2.1, 2.44)</td>
</tr>
<tr>
<td>C</td>
<td>(1.75, 2.285, 3)</td>
</tr>
<tr>
<td>D</td>
<td>(2.22, 2.941, 3.75)</td>
</tr>
<tr>
<td>E</td>
<td>(1.44, 1.875, 2.57)</td>
</tr>
</tbody>
</table>
جدول 4 مدل گیاهی 2 نیز از الگوریتم پیشنهادی

<table>
<thead>
<tr>
<th>مطلوب</th>
<th>تحمیل</th>
<th>MPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>A</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>D</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>E</td>
<td>60</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>station 2(BN₁)</th>
<th>station 4(BN₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>used</td>
<td>used</td>
</tr>
<tr>
<td>left</td>
<td>left</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(1415,1485,1555)</td>
<td>(960,1000,1040)</td>
</tr>
<tr>
<td>(450,480,510)</td>
<td>(800,920,1040)</td>
</tr>
<tr>
<td>(220,240,260)</td>
<td>(540,680,820)</td>
</tr>
<tr>
<td>(825,950,1075)</td>
<td>(870,900,930)</td>
</tr>
<tr>
<td>(6,170,334)</td>
<td>(0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A≥C≥B≥D≥E</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (11,12,13)</td>
</tr>
<tr>
<td>40 (24,25,26)</td>
</tr>
<tr>
<td>30 (15,16,17)</td>
</tr>
<tr>
<td>30 (29,30,31)</td>
</tr>
<tr>
<td>60 (0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zمان استفاده شده</th>
<th>زمان پردازش</th>
<th>MPS</th>
<th>زمان پایین‌ترین</th>
<th>سود</th>
<th>واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>(220,240,260)</td>
<td>(18,20,22)</td>
<td>(18,20,22)</td>
<td>(2090,2160,2230)</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>(960,1000,1040)</td>
<td>(20,25,30)</td>
<td>(20,25,30)</td>
<td>(1050,1160,1270)</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>(450,480,510)</td>
<td>(7,8,9)</td>
<td>(7,8,9)</td>
<td>(540,680,820)</td>
</tr>
<tr>
<td>D</td>
<td>30</td>
<td>(493,510,527)</td>
<td>(13,15,18)</td>
<td>(13,15,18)</td>
<td>(13,170,327)</td>
</tr>
<tr>
<td>E</td>
<td>60</td>
<td>(0,0,0)</td>
<td>(4,5,6)</td>
<td>(4,5,6)</td>
<td>(13,170,327)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>این مرحله در جدول 6 آورده شده است.</th>
</tr>
</thead>
<tbody>
<tr>
<td>محبوب‌ترین را برای زمان‌های برابر با پایین‌ترین "نیاز".</td>
</tr>
<tr>
<td>کافی نمی‌باشد. برای کاهش حداقل میزان زمان و دیگر یک فرم ثابت شدن، عبارت از X=[B,D,E] باید در جدول 6 آورده شده است.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| کاهش و افزایش تولیده‌ای را برای مجموعه X=[B,D,E] محاسبه کنید. |
| تا بتوان دستیابی به سود بیشتر را مورد بررسی قرار داد. |
|

| گ هر روز می‌باشد. در صورتی که در جدول 6 آورده شده است، در صورتی که دیگر مقایسه‌ای ساده‌تر خواندن‌گان در بست‌های "نیاز" و "سود" مقدار میزان مثبت دارد،
|

| به عنوان نمایندگی نشان داده شده‌اند. |

<table>
<thead>
<tr>
<th>1415,1485,1555</th>
<th>1610,1400,1640</th>
</tr>
</thead>
<tbody>
<tr>
<td>450,480,510</td>
<td>1370,1640,1910</td>
</tr>
<tr>
<td>540,680,820</td>
<td>1591,1895,2216</td>
</tr>
<tr>
<td>1767,2115,2480</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>-17</td>
<td>9</td>
</tr>
<tr>
<td>-18</td>
<td>10</td>
</tr>
<tr>
<td>-19</td>
<td>10</td>
</tr>
<tr>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>-21</td>
<td>11</td>
</tr>
<tr>
<td>-22</td>
<td>11</td>
</tr>
<tr>
<td>-23</td>
<td>12</td>
</tr>
<tr>
<td>-24</td>
<td>12</td>
</tr>
<tr>
<td>-25</td>
<td>13</td>
</tr>
<tr>
<td>-26</td>
<td>13</td>
</tr>
<tr>
<td>-27</td>
<td>13</td>
</tr>
<tr>
<td>-28</td>
<td>13</td>
</tr>
<tr>
<td>-29</td>
<td>13</td>
</tr>
<tr>
<td>-30</td>
<td>13</td>
</tr>
</tbody>
</table>

در کل گروهی، الگوی به خوبی سیستم نموده و به وقوع مقدار 2121 واقعی افزایش یافته است.

![Graph](image-url)

