Memetic Algorithm for Flexible Job Shop Scheduling with Preemption

B. Yousefi Yegane*, N. Khanlarzade & A. Rahimi Fard

B. Yousefi Yegane, Department of Industrial Engineering, Malayer Branch, Islamic Azad University, Malayer, Iran.
N. Khanlarzade, Msc student of Industrial Engineering- Tarbiat Modares University
A. Rahimi Fard, Department of Industrial Engineering, Malayer Branch, Islamic Azad University, Malayer, Iran

Keywords
Memetic algorithm,
Flexible job shop scheduling,
Overlapping,
Preemption

ABSTRACT
Flexible job shop scheduling problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. FJSP is NP-hard and mainly presents two difficulties. The first one is to assign each operation to a machine out of a set of capable machines, and the second one deals with sequencing the assigned operations on the machines. However, it is quite difficult to achieve an optimal solution to this problem in medium and large size problems with traditional optimization approaches. In this paper a memetic algorithm (MA) or flexible job shop scheduling with overlapping in operation is proposed that solves the FJSP to minimize makespan time and obtain the optimum solution for small problem and best solution for medium and large scale problems. In this paper we also used preemption to improve the results of memetic algorithm and reduce the makespan.

© 2012 IUST Publication, IJIEPM. Vol. 22, No. 4, All Rights Reserved

*Corresponding author. B. Yousefi Yegane
Email: bys.yegane@gmail.com
الگوریتم ممکن برای حل مسئله زمانبندی کار کارگاهی منعفبا امکان ایجاد وقعه در انجام فعالیت‌ها

باکب یوسفی یگانه، ترکس خانلرزاده و علی رحمی فرد

گفتگوهای یافته و توضیحات

1. مقدمه

زمانبندی کار کارگاهی یعنی جمله مسئله‌ای است که در میان مجموعه‌های زمانبندی پیش از همه مورد توجه قرار گرفته است. هدف بسیاری دیگر مسئله و NP-hard به‌شکل نسبی مسئله و چندین روش با استفاده از روش‌های سنتی و یا روش‌های تحقیق و کاربرد در عملیات با استفاده از مسیرهای بهبودیافته پایدار این مسئله تأکید دارد. مدل کار کارگاهی منعفبا در واقع به زمانبندی از مهندسی منعفبا که هر کار شما کاری کدهای یک بعدی عملیات است و هر عملیات میان روی مجموعه‌های مسئله‌ای کارگاهی بکار گرفته است.

کوچک شهرک زمان تکمیل، فضای ایجاد وقوع انجام کارها را نیز در نظر گرفت.

چکیده:

مسالمه زمانبندی کار کارگاهی منعفبا (Flexible Job Shop) است که در آن هر عملیات می‌تواند از طبقه‌بندی بیش از یک بخش از میان مجموعه‌های موجود کار (Job Shop) می‌باشد. این مسئله در زمینه‌های متعددی از جمله قطعات و بکارگیری فعالیت‌های ماشین به‌خاطر متغیر و سرسختی منعفبا که قادر به پردازش فعالیت‌ها هستند و بوسیله منعفبا از طبقه‌بندی می‌شود که قادر به پردازش فعالیت‌ها هستند و سپس تولید فعالیت‌های منعفبا شده به پایک‌پندهای پاسخ‌هایی هستند. حتی در ابعاد کوچک، شکار، و صنایع زیاد است در این مسئله یک گروه مشترک که جهت کنترل حداکثر زمان تکمیل و قدس از آن دو گروه به‌پندهای منعفبا که چندین جابه‌جایی می‌شود. اگر این مسئله و همچنین به منظور بهبود دست‌کاری های حاصل از الگوریتم منعفبا و کاهش حداکثر زمان تکمیل فرض ایجاد وقوع در انجام کارها را نیز در نظر گرفت.

کلمات کلیدی:

الگوریتم منعفبا، زمانبندی کار کارگاهی منعفبا، اشکالا برای زمان فعالیت‌ها، وقوع

6. Flexible Job shop Scheduling
5. Job Shop Scheduling
4. Routing Sub-Problem
3. Scheduling Sub-Problem
2. Overlapping
1. Overlapping

6. Flexible Job shop Scheduling
4. Routing Sub-Problem
3. Scheduling Sub-Problem
2. Overlapping

6. Flexible Job shop Scheduling
4. Routing Sub-Problem
3. Scheduling Sub-Problem
2. Overlapping

6. Flexible Job shop Scheduling
4. Routing Sub-Problem
3. Scheduling Sub-Problem
2. Overlapping
پایه‌ی نظام‌کردن کارگاه‌های منطقه‌ای با دو کار ارائه کردن
سوئدی و فنلاندی [6] نمایندگی برای سلسله‌‌های ارائه داده‌ها در آن فرض ویژگی‌های زمان‌های به‌اندازه‌ای به توانایی عملیات در محدود. محدودیت خود را در سیستم‌های تولیدی می‌تواند منجر به ارائه می‌شود که یک کار کارگاهی اجرا نمایندگی فرصت منجر به پیش‌بینی کار وایسته شده.

7. Preemptive Resume
8 Preemptive Repeat
9. Hierarchical Approach
10 Integrated Approach
11. Dispatching Rules

پیش‌بینی آنها روش‌های مختلف برای اجرا جمعیت اولیه و استراتژی‌های تدوین جمعیت جدید از تمرکز برای حالت ماله منطقه‌ای کارگاهی منطقه (چه طی سلسله‌ای اجرای برای حالت ماله منطقه‌ای کارگاهی منطقه) در دو حالت مجزای بودن و فاقد و عدم بروز به دو صورت خود، انتخاب ویژگی‌های مختلف جستجوی دیده‌شده با استفاده از الگوریتم‌های متعدد و اکثر این مسأله ماله منطقه کارگاهی را توزیع می‌شود. با استفاده از پیش‌بینی کار اجرا شده است. با توجه به اینکه منطقه زبان منطقه‌ای کارگاهی منطقه برای حالت ماله منطقه کارگاهی منطقه. این پیگیری موفقیت کاهش فاقد خواهد شد، مظمع جوان‌هاست. با استفاده از مدل‌های جوان‌های زمان‌های به‌اندازه‌ای به توانایی عملیات در محدود. محدودیت خود را.

والنست [18] با حذف بیک از عملیات کی مانشی و شناسایی حالت‌های نتیجه بگیران در مدل میانگین و سبیل انداز همگی میانگین برای سلسله‌های زمان‌های کارگاهی منطقه ارائه نمونه‌های کار وایسته شده. و این جواب با توجه به اینکه منطقه زبان منطقه‌ای کارگاهی منطقه برای حالت ماله منطقه کارگاهی منطقه. این پیگیری موفقیت کاهش فاقد خواهد شد.
نمی‌توان به اتمام عملیات قبلی نیست بکه پس از انجام هر یک از عملیات قبلی امکان شروع عملیات بعدی وجود دارد. برای لحاظ این فقط در مدل به‌صورت ضریب بین صفر و یک برای عملیات بعدی، می‌توان از \(p_{ij} \) و \(ov_{ij} \) برای درک شرایط سایر سطوح کاربردی استفاده کرد. اگر عملیات بعدی، می‌تواند از عملیات قبلی سایر سطوح کاربردی برای درک شرایط سایر سطوح کاربردی استفاده کرد. اگر عملیات بعدی، می‌تواند از عملیات قبلی سایر سطوح کاربردی استفاده کرد.

\[
\begin{align*}
M = \{ M_j, M_{j+1}, \ldots, M_{j+k} \} \\
C_{max} = \min_{i,j} \left\{ t_{ij} + ps_{ij} \right\} \\
\text{s.t.} \quad C_{max} \geq t_{ij} + ps_{ij} \\
\sum_{j=1}^{n} y_{ijk} = 1, \quad i=1, \ldots, n \\
\sum_{k=1}^{k} x_{ijk} = 1, \quad i=1, \ldots, n \\
\sum_{i=1}^{i} y_{ijk} = 1, \quad j=1, \ldots, n \\
\sum_{j=1}^{j} y_{ijk} = 1, \quad k=1, \ldots, k \\
\sum_{i=1}^{i} x_{ijk} = 1, \quad j=1, \ldots, n \\
\sum_{k=1}^{k} x_{ijk} = 1, \quad i=1, \ldots, n \\
\sum_{j=1}^{j} y_{ijk} = 1, \quad k=1, \ldots, k \\
\end{align*}
\]

به روشی مشابه در نگاهی دیگر، می‌تواند از عملیات بعدی، می‌تواند از عملیات قبلی سایر سطوح کاربردی استفاده کرد.
الگوریتم منتیک برای حل مسئله زمان‌بندی کار کارگاهی منعطه

باکی‌بیوی قیان‌گر، نیکس خانلرزاده و علی رحمی‌فرد

تعداد هفده در مدل فوق حداقل نمودن حداکثر زمان اتمام کارها

است. مجموعه محدودیت‌های شماره ۱ () عرف زمان اتمام کارها

است. در مجموعه محدودیت‌های شماره ۲ () زمان نیاز برای انجام

عملیات م روی اکثریت منشیات تعیین می‌کند. مجموعه

محدودیت‌های ۳ () انجام محیط توانایی عملیات و همچنین

فرض اشتراک زمانی مقطع‌ها را تعیین می‌نماید. محدودیت

شماره ۴ () موجب می‌شود تا هر منشی به درجه اطمینان نشته

مشکوک انجام کار باشد.

مجموعه محدودیت‌های ۵ () تضمین می‌کند که هر فعالیت

پس از اکثریت منشیان تخصیص داده شده به آن بی‌کار شود و ۶ () همچنین پس از اکثریت عملیات قبلی آن، ۷ () به آن عملیات

باشد میان‌رده شروع شود. مجموعه محدودیت‌های ۸ () عرف منشیان

مختص می‌کند برای انجام یک عملیات است. در مجموعه

محدودیت‌های ۹ () مقطع‌هایی که از مشابیت داده شده

و تولید اجرا یا نه تعیین می‌نماید. مجموعه محدودیت‌های ۱۰ و

۱۱ () تضمین می‌نماید که هر یک از متعلق به عملیات واحدی

و صرفه در یک اولویت خاص انجام شود. در ادامه فرآیند حالت این

مطالعه با استفاده از الگوریتم منتیک تشریح خواهد شد.

۳. الگوریتم منتیک بزه‌پیشنهادی

در محیط زمان‌بندی‌های فعالیت‌پذیر برای حل مسئله به‌هم‌بستگی شاید

یک الگوریتم منتیک به‌کار برده شود. الگوریتم منتیک تکپوشی از یکی از روش‌های فعالیت‌پذیر برینس برای

جمعیت (نمونه‌بندی) و یک روش به‌هم‌بسته مهی‌است. در

این تحقیق الگوریتم بزه‌پیشنهادی برای جایگزینی

مقابل الگوریتم بزه‌پیشنهادی کار کارگاهی منعطه

می‌باشد که برای حل مسئله زمان‌بندی کار کارگاهی منعطه

فرض اشتراک زمانی مقطع‌ها را تعیین می‌نماید. مجموعه

مقطع‌هایی که از مشابیت داده شده و تولید اجرا یا نه تعیین

می‌نماید. مجموعه محدودیت‌های ۱۰ و یکپارچه است این عملیات متعلق به منشیان و

زمان‌بندی آنها بر روی هر یک از منشیها بطور انجام می‌شود.

۲-۱ الگوریتم بزه‌پیشنهادی

در الگوریتم بزه‌پیشنهادی از تعریف ساختمان زمان‌بندی و تولید

جدیت و محاسبه تابع ارزش‌های مجموعه‌های از بهترین ژن‌ها

انجام سپس و مبتنی بر این سطح از ارزش‌ها و حالت‌های مسئله

پیشنهادی که برای حل مسئله زمان‌بندی کار کارگاهی منعطه

می‌باشد. مرسوم می‌شود در الگوریتم منتیک، قبل از تولید نسل
2.2.2

SF JS

4:5.3.6

MFJS

Celeron 2GHz

POX

شق 2 ایجاد نسل جدید (فقط) با بک گیری عملکرد

طقس عملکرد چه جلوگیری از قرارگرفتن در نقاط بهره‌مند می‌شود. همچنین استفاده از عملکرهای جهش منفی سبب افتاد می‌شود که مقدار حاصل جهش مقدار بیشتری چاپ شود. درنتیجه این مقدار حاصل جهش مقدار بیشتری چاپ شود.

تفنیجی و هبکاران

فناحی و هبکاران به مظور کاهش حداکثر زمان تکمیل می‌باشد. باید دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش داشته باشد. در این حضور می‌باشد که بر جهش دو محاسبه‌ای که به جهش داشته باشد و حداکثر زمان تکمیل را قابل حضور مانند یک کشش D:	ext{POX}

2

1: 2.2.2

SF JS

4:5.3.6

MFJS

Celeron 2GHz

Downloaded from ijiepm.iust.ac.ir at 22:15 IRDT on Sunday March 29th 2020
جدول 1: نتایج حل مسائل کوکک، متغیر و یک گروه

<table>
<thead>
<tr>
<th>درصد بهبود نسبت به حالات بدون آشکار زمانی</th>
<th>درصد بهبود نسبت به حالات بدون اشکار زمانی</th>
<th>Cmax به وقوع آشکار زمانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

MFJS:1:2.2.2
MFJS:2:2.2.2
MFJS:3:2.2.2
MFJS:4:3.2.2
MFJS:5:3.2.2
MFJS:6:3.3.3
MFJS:7:3.3.5
MFJS:8:3.3.6
MFJS:9:3.3.7
MFJS:10:3.3.8
MFJS:10:3.3.9
MFJS:12:4.2.8
MFJS:13:4.2.9
MFJS:14:4.2.10
MFJS:15:4.2.11

جدول 2: اطلاعات اولیه برای مدل MFJS

<table>
<thead>
<tr>
<th>J1</th>
<th>J2</th>
<th>J3</th>
<th>J4</th>
<th>J5</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>m1</td>
<td>m2</td>
<td>m3</td>
<td>m4</td>
</tr>
<tr>
<td>02</td>
<td>m6</td>
<td>m7</td>
<td>m8</td>
<td>m9</td>
</tr>
<tr>
<td>03</td>
<td>m11</td>
<td>m12</td>
<td>m13</td>
<td>m14</td>
</tr>
</tbody>
</table>

نرخه بهینه مهندسی منابع و مدیریت تولید. زمستان 1390-جلد 22-شماره 4
شکل 3 نمودار گانت ارائه شده برای مثال ۷: ۵.۳.۶ در [۱۳]

شکل ۴ نمودار گانت ارائه شده توسط الگوریتم مناسب بدون فرض وقته

شکل ۵ نمودار گانت حاصل از الگوریتم مناسب با مجاز بودن وقته

لزمه به ذکر است که در شکل 5 هر دو کار متوالی، دو پیچ
مجزای یک کار را نشان می دهد. به‌نوان مثال کار 1 در قاب
دو کار مجزا با عناصر، و ر. ور، این داده شده است. شکل 5
نشان می‌دهد به‌طور قابل توجهی هر کار به دویخت
5 درصدی می‌باشد.

در این تحقیق روشن کننده جدید برای حل مسائل زمان‌بندی کار
کارگاهی منطقه‌ای بر فرض مشابه مراحل ساعت‌ها و با استفاده
از الگوریتم ممیتیک با دو نگاه منفی‌افزایی و رشد، در ورود
یکپاره، مسائل بر فرض مجزای نیودن، قبل و بعد، مورد بررسی قرار
گرفت و سپس در روش‌ها دو مجزای نیودن و قره در ادامه کارها
نیز به پردازش محل اختلاف شد.

جنابگرامی که از این الگوریتم ممیتیک برای حین روزگار با
نتایج آن‌ها شده در [7] مقاله‌ی شده است. این مقاله‌ی نشان می
دهد که در صورت مجزای نیودن و قره الگوریتم ممیتیک برای ادامه
کار به‌طور دقیق به‌است و در مورد مثال‌های
متنوعه و بزرگ جواب‌های تابع به‌همن‌اصل و بهتر از نتایج [8]
را به‌دست آورده است. در حالی مجزای نیودن و قره نیز جواب‌های
بدست آمده نشان می‌دهد به‌طور قابل توجهی در جواب‌های ایجاد
شد هستند.

مراجع

