A Bi-Objective Model for Optimizing Price, Warranty Length, and Service Capacity Within Queuing Framework: Genetic Algorithm and Fuzzy System

A. Mahmoudi & H. Shavandi*

Amin Mahmoudi, MSc, Faculty of Industrial and mechanical Engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran
Hassan Shavandi, Associate Professor of Industrial Engineering, Sharif University of Technology, Tehran, Iran

Keywords
Bi-objective optimization, Pricing, Queuing, Fuzzy system, Genetic algorithm, Warranty.

ABSTRACT
In this paper, we have proposed a bi-objective model for pricing-queuing problem under fuzzy environment. The objectives are maximizing the profit and minimizing the waiting time in system to receive the service. Price, warranty length, and service capacity decisions are analyzed for a seller with considering sale and service channels. To formulate the demand function, a fuzzy system is developed to estimate the demand value under price and warranty length variables. Furthermore, a hybrid solution of genetic algorithm and a fuzzy system is presented to solve the proposed model. At end, numerical results are analyzed by solving sample problems.

© 2014 IUST Publication, IJIEPM. Vol. 25, No. 2, All Rights Reserved

* Corresponding author. Hassan Shavandi
Email: Shavandi@sharif.edu
ارائه یک مدل دوهدفه جهت بهینه سازی یک سیستم دهم، طول دوره گارانتی و
ظرفیت خدماتی در چارچوب یک سیستم صنعتی توپولوژی ژنتیک و
سیستم فازی

امین محمودی و حسن شوندی

چکیده:
در این مقاله یک مدل دو هدفه از مسائل تلفیقی قیمت گذاری و صرف در یک محیط عدم
قطعی برای تاکید رازه شده است. دو هدف مدل رازه شده و مبتنی بر روش‌های زمان
ظرفیت خدماتی یک فرآیند، طول دوره گارانتی و ظرفیت خدماتی دهم برای یک فرآیند به
نظر گرفته شد. این مدل در تولید کننده یک محصول سازی را دوگانه معرفی کرد.
یکی از این محصولات یک فرآیند باطری که از نظر تأثیر بر روی
ظرفیت خدماتی دهم بهینه سازی شده است. به علاوه به منظور حل مسئله یک
گام در این مقاله دوگانه معرفی شد. این مدل در این مسئله
نمونه مورد تحلیل قرار گرفته است.

کلمات کلیدی:
- سیستم مدار
- فازی
- الگوریتم ژنتیک

1 مقدمه
امروز رضایت مشتری یک نشانگر کلیدی در محیطهای کسب و
کار است. مبتنی بر روش‌های سازهای مناسب بر روی
محصولات یک باطری سپر تأثیر گذار در برخی معنی‌ها می‌باشد. که
می‌تواند باعث تغییر کردن مشتریان به خرید شود. در ضمن قرار
داد کارشناس به عنوان شناسایی یکی از عوامل محصول یکی دیگر از
پارامترهای تأثیر گذار در تأثیر تغییر می‌باشد که به عنوان
ارایه‌ای در محیطهای فناوری از تولید و فروش مورد استفاده قرار
می‌گیرد [1]. در قرار داد گارانتی و فروشنده با تولید کننده

نتایج و تسهیلات
امین محمودی، کارشناسی ارشد، دانشکده مهندسی صنایع و مکانیک واحد
amin.mahmoudi10@gmail.com
جووید، دانشگاه صنعتی تریف
شوندی
Shavandi@sharif.edu

Downloaded from ijiepm.iust.ac.ir at 20:53 IRST on Monday February 18th 2019
عکسی از نسخه فاصله‌سازی‌شده صفحه اصلی دیده نمی‌شود.
۲- تشريح مدل ریاضی

در این مقاله ما یک نظریه تامین متمرکز که شامل یک فروشندگی و خدمات پس از فروش آن می‌باشد را در نظر می‌گیریم. در این مدل فروشندگی مجزا به تعداد محصولاتی این که در طول دوره کارهایی خراب می-شوند. در ضمن می‌بایست و کاری تقاضای مشتریان، با تقاضای خرید در آخرین مدت بررسی و جویاز کرده است که با مشتریان، برای این می‌باشد.

۱۵ تعداد خرید در محصولات (تعداد کارهایی که وارد خدمات پس از فروش می-شود) از توزیع کوئینز قابل کمک بوده و در توزیع خرید با ونر و پرم و تک نمایی پروپر می‌باشد.

۲- تابع سود (نحوه هدف اول)

هر روزکرده یک در نسبت، فروشندگی و کارهایی با شرایط‌های تامین متمرکز با مشتریان می‌باشد. هر از می‌باشد در طول دوره کارهایی با شرایط‌های تامین متمرکز با مشتریان می‌باشد. در این مدل ریاضی به تعداد با شرایط‌های تامین متمرکز با مشتریان می‌باشد. در این مدل ریاضی به تعداد با شرایط‌های تامین متمرکز با مشتریان می‌باشد. در این مدل ریاضی به تعداد با شرایط‌های تامین متمرکز با مشتریان می‌باشد. در این مدل ریاضی به تعداد با شرایط‌های تامین متمرکز با مشتریان می‌باشد.
3. طراحی سیستم فازی برای تخمین تقاضا

تخمین تقاضا یکی از آگاهی‌های مهم در علم مدیریت درامد می‌باشد. این معمولاً در دنیای واقعی، به ویژه در راستای مناسبی از تقاضا وجود ندارد که به پردازش‌های مختلف ناگهان گذار در تقاضا وابسته باشد.

در بسیاری از موارد واقعی تصمیم‌گیری و تحلیل مسائل بر مبنای داده‌های ثبتی و قابل‌توجهی خبرگان می‌باشد. منطق فازی یکی از روش‌های مروف برای تحلیل داده‌های کلیه خبرگان می‌باشد که برای اولین بار توسط آقی‌زاده علی و برای فرموله کردن دانش برتری مورد استفاده قرار گرفت. این مقاله یک سیستم فازی برای تخمین تقاضا وابسته به رفتار و طول دوره گزارشی طراحی می‌شود.

مدیریت کلیه مقدماتی در تابع سوم و دوم در تابع زمان انتظار بکار رفته است که این حساب کردن مقادیر مناسب از قیمت و طول دوره گزارشی برای یک‌باره بودن مقادیر محاسباتی از مناسبی است. این سیستم می‌تواند از آن در جریان بهبود سازی از جهت بهبود مقادیر مطلوب از تصمیم‌گیری تخصیص استفاده شود. جهت برقراری سیستم فازی، پایه‌گذاری فازی و سیستم استوایی فازی در ادامه شرح داده خواهد شد.

\[
Z_1 = P \bar{D} - C_r \bar{x} - C_\mu \mu
\]

مقدار تقاضا است که که از طریق سیستم فازی استثنای می‌کند.در زیرش نشان داده شده.

2-3 تابع زمان انتظار (دست هدف دوم)

زمان که محصول در طی دوره گزارشی خراب می‌شود، مشتریان بهبود تضعیف خراب یافته به خدمات پس از فروش مربوط به فروشندگان مراجعه می‌کنند. تبلیغات محصولات خرابی که به خدمات پس از فروش مراجعه می‌گردد به عنوان ورودی یک سیستم و در نتیجه فراهم می‌شود. هر دو تاریخ که در فرضیات بانک نرخ ورودی به سیستم صفر و نرخ خرید به سیستم صفر در نظر گرفته می‌شود. فرضیه که در فرضیات بانک نرخ ورودی به سیستم صفر از نظر پوستون بیش از مقدار می‌باشد. زمان بر حسب این فرضیه می‌باشد. تابع زمان انتظار به میزان مشتری به شرح زیر که می‌باشد.

\[
Z_2 = \frac{1}{\mu - \lambda}
\]

2-4 مدل دو هدفه

معمولاً در دنیای واقعی سود و رضایت مشتری دو هدف منافق در مدیریت زنجیره تأمین می‌باشد. به طوری که افزایش رضایت مشتری باعث کاهش سود می‌شود. از این نظر بهبود دقت ماشین انرژی مشتریان بهبود گزارش کننده و فروشنده‌گان بهبود می‌باشد. مدل دو هدفه که در این مقاله برقرار شده بصورت زیر می‌باشد:

\[
Max : \quad Z_1 = P \bar{D} - C_r \bar{x} - C_\mu \mu
\]

\[
Min : \quad Z_2 = \frac{1}{\mu - \lambda}
\]

Subject to:

\[
P \frac{C_r \bar{x} + C_\mu \mu}{D} \quad \mu > \lambda
\]

در مدل فوق، محدودیت اول تضمین می‌کند که تابع سود منفی\[\text{شفو و محدودیت دوم مربوط به شرط پذیرفتن سیستم صفر می‌باشد.}\]
آگاهی فازی در پایگاه فوادم فازی وجود خواهد داشت که در جدول 1 نشان داده شده است. قادمی زیر نمونه ای از فوادم بکار رفته در پایگاه فوادم فازی می‌باشد.

\[
\text{If } P \text{ is } H \text{ and } W \text{ is } L \text{ Then } D \text{ is } L.
\]

شکل 2: نتایج درک عدد فازی متناسب

![شکل 2: نتایج درک عدد فازی متناسب](image)

سبیم فازی طراحی شده شامل دو ورودی و یک خروجی می‌باشد که در سیستم فازی MISO بتول می‌باشد. متناسبهای ورودی سیستم فازی عبارتند از قیمت و طول دوره گرانتی و همچنین متناسب خروجی مقدار نفت قیمت می‌باشد. بنابراین طراحی سیستم فازی متناسب به‌دست آمده‌ای از متناسبهای ورودی و خروجی به صورت شکل 4 می‌باشد.

یک پایگاه فوادم فازی مشکل از مجموعه‌ای از فوادم اگر-آگاهی می‌باشد که در مقدار فازی می‌باشد. در مقدار اگر به عنوان قسمت سه‌گانه قادمی فازی می‌باشد.

قسمت 2-2 سیستم استنتاج فازی

به منظور تبدیل متناسبهای ورودی به متناسب خروجی از سیستم استنتاج فازی استفاده می‌شود که با استفاده از فرضیات زیر در این مقاله ضروری است [118]:

- فازی ساز متناسبهای داده شده را متناسبهای استفاده می‌شود.
- مجموعه اعداد متناسبهای متنسب به منظور استنتاج متناسب خروجی استفاده می‌شود.

از متناسبهای میانگین میزان به عنوان رابط غیر فازی‌ساز استفاده می‌شود.

پایگاه فوادم فازی توسط داده در این مقاله شامل دو متناسبهای ورودی و یک متناسب خروجی می‌باشد. X(t) = X1(t), X2(t) و X3(t) که متناسبهایی در نظر گرفته شده‌اند. سایر پارامترهای یک فازی استنتاج فازی همانند پارامترهای نشانی شده در می‌باشد.

الگوریتم قسمت استنتاج فازی از مجموعه‌ای از مشخصات در این مقاله اگر-آگاهی می‌باشد که به ذاکر مجموعه‌ای از فوادم اگر-آگاهی می‌باشد که به عنوان قسمت سه‌گانه قادمی فازی می‌باشد.

قسمت 3-2 قادمی فازی

در سیستم فازی طراحی شده در این مقاله، قسمت اگر شامل متناسبهای قیمت (P) و طول دوره گرانتی (D) که به عنوان متناسبهای ورودی می‌باشد و همچنین نیاز به متناسبهای متناسبهای فازی در مقاله اگر-آگاهی می‌باشد. همچنین اگر قیمت در این مقاله استفاده می‌شود بطور مزید

قسمت 4-4 قادمی فازی

[[2] Singleton Fuzzifier
[4] Centroid defuzzifier

1 MISO Input Single Output

نشرین بهمنی مهندسی صنایع و مدیریت تولید، شهیدروداز 2-1393- جلد 25-شماره 2
شکل شماره ۵ نشان دهنده روابط استنباط می‌باشد:

\[
\sum_{j=1}^{r} \alpha_j
\]

(۷) \]

جدول ۱ پایگاه قواعد فازی از نظرات خبرگان

| شماره قاعد | عملکرد ورودی | نتیجه فازی | عملکرد خروجی | پیشنهاد
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>۱</td>
</tr>
<tr>
<td>H</td>
<td>VH</td>
<td>M</td>
<td>L</td>
<td>۲</td>
</tr>
<tr>
<td>FL</td>
<td>VL</td>
<td>H</td>
<td>VH</td>
<td>۳</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
<td>VH</td>
<td>۴</td>
</tr>
<tr>
<td>M</td>
<td>H</td>
<td>H</td>
<td>VH</td>
<td>۵</td>
</tr>
<tr>
<td>M</td>
<td>VH</td>
<td>L</td>
<td>H</td>
<td>۶</td>
</tr>
<tr>
<td>M</td>
<td>VL</td>
<td>VH</td>
<td>M</td>
<td>۷</td>
</tr>
<tr>
<td>FL</td>
<td>L</td>
<td>VH</td>
<td>L</td>
<td>۸</td>
</tr>
<tr>
<td>FL</td>
<td>M</td>
<td>VH</td>
<td>M</td>
<td>۹</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>VH</td>
<td>L</td>
<td>۱۰</td>
</tr>
<tr>
<td>M</td>
<td>VH</td>
<td>L</td>
<td>M</td>
<td>۱۱</td>
</tr>
<tr>
<td>M</td>
<td>VL</td>
<td>VH</td>
<td>M</td>
<td>۱۲</td>
</tr>
<tr>
<td>M</td>
<td>VL</td>
<td>L</td>
<td>M</td>
<td>۱۳</td>
</tr>
</tbody>
</table>

شکل ۴ تقسیم بندی فازی متغیرهای ورودی و خروجی

شکل ۵ روش استنباط میدانی

مواجه هستیم. بنابراین در این حالت باید جواب‌های کارا را برای هر یک از اهداف بدست آوریم. جواب کارا جوابی است که جواب
دیگری نسبت به آن بیشتر نشود مگر اینکه، جواب حداکثر یکی از
اهداف بیشتر شود. مدل عمومی مسائل چنین هدفه ذبیو یا می‌باشد[۱۸].

L-p metric لکنیک

همانطور که در بخش ۲ بیان شد، در مدل ریاضی، ارائه شده تابع
سود و نتایج زمان انتظار بطور همزمان بهینه سازی می‌شود
با استفاده از وابستگی تصمیم‌گیری چندهدفه (MODM) بنابراین ما با یک مثالی تصمیم‌گیری چندهدفه

نشریه بین المللی مهندسی صنایع و مدیریت تولید، شماره ۲۹-۲۰۱۹، تیر، ۱۳۹۸
استفاده شده است در تعدادی از الگوریتم‌های بهینه‌سازی بهینه‌سازی خوشه‌ای متفاوت در تعدادی الگوریتم شرایط استفاده می‌شود.

1.

GA

2.

Roulette Wheel

3.

P

4.

w

5.

μ

در گالیکس، طول دوره گالا و سایر متغیرهای واریانس و

پارامترهای ورودی سیستم فازی می‌باشند.

آزمایش می‌شود:

max: \(F(x) = \{ f_1(x), f_2(x), \ldots, f_k(x) \} \) \((8) \)

Subject to: \(x \in X \)

در یک تعداد از الگوریتم‌های بهینه‌سازی، می‌باشد. بیداد: چندین اهداف یک مسئله جدید به هدف یکی از الگوریتم‌های بهینه‌سازی متغیر خوشه‌ای (GA) می‌باشد. به یکی از الگوریتم‌های حل کننده‌های یک الگوریتم، به هدف استفاده می‌شود.

\[\text{Min: } L = p \left[\sum_{j=1}^{k} \left(\frac{f_j(x^*) - f_j(x)}{f_j(x^*)} \right)^{1/t} \right] \] \((9) \)

Subject to: \(x \in X \subseteq R^k \)

طلبیکه روز (همتی) هر تابع در بهینه‌سازی می‌باشد که توسط تخصیص‌کننده می‌شود (در این مقاله توسط فرمول در هم‌سازی و با ساختار جریان‌ها در گروه نیز) مقدار بهینه‌سازی مربوط به هدف لام می‌باشد. این الگوریتم با توجه به نقاط کلیدی استفاده‌های مربوط به تغییرات بهینه در توانایی تغییرات بهینه می‌باشد.

\[\text{Max: } Z_2 + a \text{Min: } Z_1 = b \] \((10) \)

در مسائل تولید چند سطحی و چند اهداف، به هدف استفاده می‌شود.

\[\text{Min: } Z_1 + a \text{Max: } Z_2 = b \] \((11) \)

که مقداری از تغییرات بهینه‌سازی در اول و دوم به تغییرات به صورت \(a = (Z_1, Z_2) \) باشد آن‌ها در این مقاله، از جمله یک داده رایج تغییرات مختلفی از روزهای مختلفی استفاده می‌شود.

1. Roulette Wheel

شکل 6-5 ساختار کروموزوم مربوط به مدل

| P | W | μ |

سایر تولیدی ساختار آبیاری می‌شود. پارامترهای P و W به‌صورت قبلاً نیز می‌باشند.

6-2 انتخاب و در دادن

جهت انتخاب عمک در نیاز به انتخاب و انتخاب دو والد (دو چوب) از

چومیت می‌باشد که در این مقاله از روش ول وای برای این کار استفاده می‌شود.

References:

1. "Roulette Wheel"
6 تحلیل عددي نتایج
در این قسمت یک مثال عددي به شکل دو قسمت می‌باشد. در چهار تحلیل نتایج مورد بررسی قرار گرفت و در ادامه با استفاده از سیستم فازی مورد بررسی قرار گرفت و در ادامه با استفاده گزارشات ارائه شده، مثال عددي مطرح شده را ادامه می‌دهم. تا گزارشات مناسبي از قیمت (P)، طول دوره کارانتی (W) و فرآیند خدمات‌دهی (μ) بدست آوریم. تفسیری بندی فازی که برای پارامترهای ورودی و خروجی در نظر گرفته شده بصورت شکل ۱ می‌باشد.

۵-۱ عملگر تقاطع
در این مورد، از تقاطع یک‌واخت استفاده می‌شود. بدين منظور، در هر بر تولید جمعیت دو از میان جمعیت انگشتر و سپس زندهایی که بدایا معاوضه شده با تولید عدد تصادفی صفر و یک در راستای گروه‌های مشخص می‌شوند. بنابراین، پس از تولید عدد تصادفی صفر و یک، زندهایی معاوضه می‌شوند که عدد تصادفی مربوط به آنها یک باشد. شکل ۷ نشان دهنده یک عملگر تقاطع نمونه‌ی می‌باشد.

۵-۴ عملگر جهش
برای این عملگر نقطه تصادفی چند از گروه‌زایی جمعیت انتخاب شده سپس جهش بطور تصادفی یکی از زنده‌های مربوط به آنها انتخاب شده و مقداری یک تصادفی به آن اضافه می‌کند. سپس نقطه یک مجزا، نماینده یک گروه جهش دو از جهش‌ها جدید ایجاد شده.

۵-۵ جایگزینی جواب‌ها
ما از جایگزینی تروریسم برای جایگزینی جواب‌های جدید در بین جمعیت استفاده می‌کنیم. بدين منظور در هر مرحله یک گروه کوچک از جمعیت انتخاب شده و سپس دو از بین سایر گروه‌های جمعیت قبلی دو واحد از جواب‌های جدید ایجاد شده.

۵-۴ حالت ترکیبی از الگوریتم زننیک و سیستم فازی
به منظور انجام عمل به‌پهنه‌سازی یک الگوریتم ترکیبی از الگوریتم زننیک و سیستم فازی ارائه شده است که روی انجام آن همانند فلچه‌آرات ارائه شده در شکل ۸ می‌باشد. ابتدا جمعیت اولیه از P و Q، در مدل و P و Q سیستم فازی مقداری منطق می‌شود که در نتیجه این مقدار تفاوت بیان می‌شود و سپس با استفاده از بهره‌های پارامترهای P و Q وارد جریه به بهینه‌سازی زننیک می‌شود. این‌ها به ترتیب مقدار ثابت‌بندی در طبقه‌بندی و تفاوت مقدار ثابت‌بندی با مقدار تفاوت می‌شود.

شکل ۷ نمونه‌ای از عملگر تقاطع

شکل ۸ حالت ترکیبی از الگوریتم زننیک و سیستم فازی
مقدار فازی سازهای مربوط به پارامترهای ورودی قیمت و طول دوره گزارشی بالا ترین ۹۰ در ۵ در نظر گرفته می‌شود. با وارد کردن مقدار فازی ساز به مجموعه‌های جایگزین، تا دو مجموعه فازی به ارائه گرد می‌شوند. بنابراین با ترکیب این مجموعه‌های جایگزین در نظر گرفته می‌شود و برای شهردادفی آزادی فعال یکدیگر که در جدول ۲ نشان داده شده است.

۱ Tournament replacement
با اجرای قدمهای ۱ تا ۶ که در زیر بخش ۳.۲ توضیح داده شده
نتایج جدول ۲ حاصل شده است که در ان m_0 مقدار تخمینی از
تقاضا می‌باشد. در ادامه، مثال مطرح شده را ادامه می‌دهیم تا
بهترین جواب‌ها را از منبع‌های تخمینی بدست آوریم.
فرض کنید $40 = C_r$, $C_r = 150$. $C_r = 1$, $\lambda = 2$, $\lambda = 1$
با شش. به منظور بدست آوردن جواب‌های کارا ابتدا با

پس از اجرای الگوریتم برای تک تک اهداف، مقادیر مناسب حاصل
از بهینه سازی افرادی با صورت $Z_1^* = 380071$ و
$Z_2^* = 0.000495$ ($Z_2^* = 0.000495$) $Z_2^* = 0.000495$
پس تابع
را جهت بدست آوردن جواب کارا بصورت زیر
تشکیل می‌دهیم.

$$\min : \lambda - p = \frac{\bigg(\frac{Z_1^* - Z_1}{Z_1^*} \bigg)^2 + \bigg(\frac{Z_2^* - Z_2}{Z_2^*} \bigg)^2}{2}$$

Subject to:

$\lambda \geq \frac{C_r \lambda + C_{\mu \lambda}}{D}$

به منظور همگن سازی توابع هدف ما از استفاده می‌کینی تا هر دوی اهم‌تریک ساز
شordova الگوریتم ترکیبی از الگوریتم سازی و ساختار
قاچین با تابع مربوط به الگوریتم metric
در ترم افزار
اجرا شده که نتایج حاصل شده برای این مثال عدادی در
جدول ۲ گزارش شده است.

جدول ۲: نتایج حاصل از توابع هدف

<table>
<thead>
<tr>
<th>L-p metric</th>
<th>Z_2</th>
<th>Z_1</th>
<th>μ</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.118</td>
<td>1.89</td>
<td>2.32</td>
<td>1.07</td>
<td>0.37</td>
<td>0.54</td>
</tr>
<tr>
<td>0.126</td>
<td>1.87</td>
<td>2.32</td>
<td>1.07</td>
<td>0.37</td>
<td>0.54</td>
</tr>
<tr>
<td>0.132</td>
<td>1.84</td>
<td>2.32</td>
<td>1.07</td>
<td>0.37</td>
<td>0.54</td>
</tr>
<tr>
<td>0.138</td>
<td>1.82</td>
<td>2.32</td>
<td>1.07</td>
<td>0.37</td>
<td>0.54</td>
</tr>
<tr>
<td>0.144</td>
<td>1.80</td>
<td>2.32</td>
<td>1.07</td>
<td>0.37</td>
<td>0.54</td>
</tr>
</tbody>
</table>

جدول ۳: نتایج اجرای الگوریتم در ترم افزار

<table>
<thead>
<tr>
<th>L-p metric</th>
<th>Z_2</th>
<th>Z_1</th>
<th>μ</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.114</td>
<td>1.88</td>
<td>2.32</td>
<td>1.07</td>
<td>0.37</td>
<td>0.54</td>
</tr>
<tr>
<td>0.120</td>
<td>1.86</td>
<td>2.32</td>
<td>1.07</td>
<td>0.37</td>
<td>0.54</td>
</tr>
<tr>
<td>0.126</td>
<td>1.84</td>
<td>2.32</td>
<td>1.07</td>
<td>0.37</td>
<td>0.54</td>
</tr>
<tr>
<td>0.132</td>
<td>1.82</td>
<td>2.32</td>
<td>1.07</td>
<td>0.37</td>
<td>0.54</td>
</tr>
<tr>
<td>0.138</td>
<td>1.80</td>
<td>2.32</td>
<td>1.07</td>
<td>0.37</td>
<td>0.54</td>
</tr>
</tbody>
</table>
همگراپی مربوط به اجرای گروه‌های در شکل 10 نشان داده شده است.

t_{-p}^{\text{metric}}

شکل 10. نمودار همکارپی مربوط به اجرای گروه‌های ارتقاء شده

نتیجه‌گیری

در این مقاله، ما تاثیر طول دوره گارانتی و زمان انتظار را در یک سیستم صفر مورد بررسی قرار دادیم. هر یک از تفاوت‌های قابل توجهی مذکوره در زمینه گارانتی از لحاظ تجربیات و نظرات مصرفندگان و لیسته‌سازی‌های توسعه و مصرف‌کنندگان در محیطهای مختلف که برای ساخت و کارایی گارانتی‌های بهتر و بهتری در کنال‌های مصرف کنندگان مصرف‌کنندگان مصرف‌کنندگان و مصرف‌کنندگان مصرف‌کنندگان مصرف‌کنندگان مصرف‌کنندگان

مراجع

