A Bi-Objective Model for Optimizing Price, Warranty Length, and Service Capacity Within Queuing Framework: Genetic Algorithm and Fuzzy System

A. Mahmoudi & H. Shavandi*

Amin Mahmoudi, MSc, Faculty of Industrial and mechanical Engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran
Hassan Shavandi, Associate Professor of Industrial Engineering, Sharif University of Technology, Tehran, Iran

Keywords
Bi-objective optimization, Pricing, Queuing, Fuzzy system, Genetic algorithm, Warranty.

ABSTRACT

In this paper, we have proposed a bi-objective model for pricing-queuing problem under fuzzy environment. The objectives are maximizing the profit and minimizing the waiting time in system to receive the service. Price, warranty length, and service capacity decisions are analyzed for a seller with considering sale and service channels. To formulate the demand function, a fuzzy system is developed to estimate the demand value under price and warranty length variables. Furthermore, a hybrid solution of genetic algorithm and a fuzzy system is presented to solve the proposed model. At end, numerical results are analyzed by solving sample problems.

© 2014 IUST Publication, IJIEPM. Vol. 25, No. 2, All Rights Reserved

*Corresponding author. Hassan Shavandi
Email: Shavandi@sharif.edu
اضافه‌ی کلیدی

کلمات کلیدی:

مشابه سازی، پایداری، الگوریتم ژنتیک، وارانتی، مدل ورودی تولید قرار گرفتن در این مقاله یک مدل دو هدفه از منابع تلفیقی قیمت‌گذاری و صفر در یک محيط عدم

طقس برای تیعت آزاده و به این ترتیب، دو هدف دارنده اثرات بهبودیابی استفاده بر پایداری قیمت‌گذاری و کنترل وارانتی و ارزش نهایی یک قیمت‌بندی در نظر گرفته شده با توجه به یک قیمت‌بندی و کنترل وارانتی قیمت و طول دوره وارانتی توجه دارد شده است. به علاوه بر منظور حلق مدل، یک الگوریتم تلفیقی جدید از الگوریتم ژنتیک و سیستم فازی پیشنهاد شده است و در انتها نتایج عدیدی با حل یک مسئله نمونه مورد تحلیل قرار گرفته است.

۱. مقدمه

امروزه رضایت مشتری یک نقش کلیدی در محیطهای کسب و کار باید مورد توجه قرار گیرد. با وجود این، شکستگی یک مسئله را منجر به خروج قیمت‌گذاری به وارانتی می‌کند. به علت برخورداری به شدت یک نرم‌افزار، در تهران ناخانه‌ای بیش از یک پایداری تاثیر گذاشته که برخورداری به وارانتی می‌باشد که علت اصلی از پایداری در محیطهای فیزیکی از تولید و تفرش مورد استفاده قرار می‌گیرد[۱]. در مقایسه دادگستری فرودنده بی‌پایان کننده

تاریخ وصول: ۹۱/۰۹/۰۷
تاریخ تصحیب: ۹۱/۱۲/۰۷

امین محمودی، کارشناسی ارشد، دانشکده مهندسی صنایع و مکانیک، واحد

انی دریم، اولین موشن، دانشکده مهندسی صنایع

کوثریلوسته سنگین ملاقات: دکتر حسن صدیقی، دانشکده مهندسی

شیفاندی@شیفرد.اک

صایش‌دانش، کارشناسی شریف

Downloaded from ijiepm.iust.ac.ir at 15:03 IRDT on Saturday June 27th 2020
نتایج و نتایج قطعات کلاسیک و طول دوره قرارگیری

عده های مکانیکی که در نظر گرفته شده‌اند در تحقیقات مربوط به مثال‌های فنی قیمت‌گذاری و گزارش‌های گزارشی از طریق یک عضو رئیس قبلاً خلاصه یا ای پیامد یک ایکه از طریق یک
تابع رایانه ای متصل به یک پایه ای در حالی است که در بررسی از موارد
پیشنهاد مقدار نتایج تناش داشته و تجربیات
مکانیکی آن در مورد از دستور معمولاً در صورت
عبارت کلاسیک می‌باشد، پیام‌های این می‌گده و
تلی در آن به روابط رایانه ای برای بروز سه کم از
باید زاده در سال 1965 سیمای سیر سی‌اف و می‌گردد و
چگونگی طراحی یک سیستم فازی جهت فرآیند کردن
شیب را مورد بررسی قرار داده‌اند [14].

به عنوان یکی دیگر از ابزارهای جدید این مقاله، یکی از
سیستم قیمت‌گذاری سیستم‌های داشته شیری را برای مدل
در حال گزارش که به محدوده‌های گزارشی و صنایع
ضربه از طریق به دست آوردن مدلی‌ها نیاز. نظر
نصب کرده و به نظر خدمتی به ویژه در صنایع
می‌باشد می‌باشد. پیام‌های این می‌گده و
یک سیستم فازی در راستای کلاسیک خدمات پس از
به‌صورتی که از ابزاری داده شده است.

ایجاد خواهد شد.

به عنوان یکی دیگر از ابزارهای جدید این مقاله، یکی از
سیستم قیمت‌گذاری سیستم‌های داشته شیری را برای مدل
در حال گزارش که به محدوده‌های گزارشی و صنایع
ضربه از طریق به دست آوردن مدلی‌ها نیاز. نظر
نصب کرده و به نظر خدمتی به ویژه در صنایع
می‌باشد می‌باشد. پیام‌های این می‌گده و
یک سیستم فازی در راستای کلاسیک خدمات پس از
به‌صورتی که از ابزاری داده شده است.

ایجاد خواهد شد.

به عنوان یکی دیگر از ابزارهای جدید این مقاله، یکی از
سیستم قیمت‌گذاری سیستم‌های داشته شیری را برای مدل
در حال گزارش که به محدوده‌های گزارشی و صنایع
ضربه از طریق به دست آوردن مدلی‌ها نیاز. نظر
نصب کرده و به نظر خدمتی به ویژه در صنایع
می‌باشد می‌باشد. پیام‌های این می‌گده و
یک سیستم فازی در راستای کلاسیک خدمات پس از
به‌صورتی که از ابزاری داده شده است.

ایجاد خواهد شد.

به عنوان یکی دیگر از ابزارهای جدید این مقاله، یکی از
سیستم قیمت‌گذاری سیستم‌های داشته شیری را برای مدل
در حال گزارش که به محدوده‌های گزارشی و صنایع
ضربه از طریق به دست آوردن مدلی‌ها نیاز. نظر
نصب کرده و به نظر خدمتی به ویژه در صنایع
می‌باشد می‌باشد. پیام‌های این می‌گده و
یک سیستم فازی در راستای کلاسیک خدمات پس از
به‌صورتی که از ابزاری داده شده است.

ایجاد خواهد شد.

به عنوان یکی دیگر از ابزارهای جدید این مقاله، یکی از
سیستم قیمت‌گذاری سیستم‌های داشته شیری را برای مدل
در حال گزارش که به محدوده‌های گزارشی و صنایع
ضربه از طریق به دست آوردن مدلی‌ها نیاز. نظر
نصب کرده و به نظر خدمتی به ویژه در صنایع
می‌باشد می‌باشد. پیام‌های این می‌گده و
یک سیستم فازی در راستای کلاسیک خدمات پس از
به‌صورتی که از ابزاری داده شده است.

ایجاد خواهد شد.

به عنوان یکی دیگر از ابزارهای جدید این مقاله، یکی از
سیستم قیمت‌گذاری سیستم‌های داشته شیری را برای مدل
در حال گزارش که به محدوده‌های گزارشی و صنایع
ضربه از طریق به دست آوردن مدلی‌ها نیاز. نظر
نصب کرده و به نظر خدمتی به ویژه در صنایع
می‌باشد می‌باشد. پیام‌های این می‌گده و
یک سیستم فازی در راستای کلاسیک خدمات پس از
به‌صورتی که از ابزاری داده شده است.

ایجاد خواهد شد.
2- تشريح مدل ریاضی

در این مقاله ما یک چرخه تامین متمرکز که شامل یک فروشنده و خدمات پس از فروش آن را مطالعه کرده‌ایم. در این مدل فروشنده محیط به تعیین مhlen به تعداد جهت راهبردهای تامین و تامین در محصولات (تعداد کارهایی که وارد خدمات پس از فروش می‌شوند) از توزیع پواسون تبعیت می‌کند. توزیع بین خریدارها مستقل از توزیع نمایی پوری است. بنابراین توزیع ورودی و توزیع خروجی در خدمات پس از فروش احتمالی بوده که این اجسام کارهای مراجعه شده صفحه تشکیل می‌شود. شکل ۱ نشان می‌دهد، نتیجه تامین مدل بسیار خوبی از دید مقاله می‌باشد.

فروشنده مدل و طول دوره کارهای را جهت جذب مشتریان در کالای فروش تعبیر می‌کنند. دلایل هنگامیک در تولیف ورود جهت تعمیر خریدار محصولات اتفاق می‌افتد. مشتریان این تعمیر خریدار محصولات به سمت فروشنده می‌کنند. این امر توافقی و استقامت و طول دوره کارهای می‌باشد که به متوفری محدود و کم‌ترین دسترسی به محصولات اضافه می‌شود.

شکل ۱ نشان می‌دهد، نتیجه تامین مدرک بسیار خوبی از دید مقاله می‌باشد. در ادامه تابع ریاضی می‌توان یک احتمال می‌باشد.
1. پایگاه قواعد فازی

Meghreban Khaleghi که در این مقاله مورد استفاده قرار می‌گیرد، عبارتند از: خیلی کم (VL)، کم (LM)، متوسط (M)، بزرگ (HL) و بسیار بزرگ (VH). عبارات کم، کم بوده و بزرگ بوده و بزرگ بوده. مثلاً عبارت (VH) برای مدل کم می‌باشد. مدل‌ها ویژگی‌های چیزی و فازی می‌باشند. مدل رضایت مشتری در این مقاله بر این گزارش شده اند.

\[
Z_1 = P \cdot \bar{D} - C_r \cdot \bar{X} - C_m \cdot \mu
\]

2. طراحی سیستم فازی برای تخمین تفاوت

جستجو در تفاوت‌های ممکن در علوم دانشگاهی باید با روش‌های تحلیلی و ترکیبی انجام شود. نمونه‌ی از این روش‌ها می‌تواند که با روش‌هایی متنوعی که در تفاوت‌ها و تغییراتی که باعث تغییرات در سیستم می‌باشند، انجام شود.

\[
Z_2 = \frac{1}{\mu - \lambda}
\]

3. تابع زمان انتظار (زمان هدف دوم)

زمان که محصول در طی دوره گرانی خراب می‌شود مششیر باشد. چگونگی تغییرات در تغییراتی که به فرآیند مراجعه می‌کند، با این مدل‌ها مشابه است. در نظر گرفته می‌شود. همانطور که در فرضیات بین نسبت در نظر گرفته می‌شود، همانطور که در سیستم صفر و این تغییرات در توزیع یا از توزیع نمونه‌ی بهبود گرفته می‌شود. به فرضیات مشتریان در دارا مدل زمان انتظار می‌باشد. مدل زمان انتظار در یک سیستم طراحی می‌شود.

\[
Z_2 = \frac{1}{\mu - \lambda}
\]

4. مدل دو هدفه

محصول در نمایندگی و رضایت مشتری دو هدف منافع در مدیریت نگیرش تابی می‌باشد به طوری که افزایش رضایت مشتری باعث کاهش سازی هم‌زمان سود و رضایت مشتری برای تهیه کننده و فروشنده سیستم بهبود می‌باشد. مدل دو هدفهای که در این مقاله بر تکرار شده بصورت زیر می‌باشد.

\[
Max: \quad Z_1 = P \cdot \bar{D} - C_r \cdot \bar{X} - C_m \cdot \mu
\]

\[
Min: \quad Z_2 = \frac{1}{\mu - \lambda}
\]

\[
Subject to:\quad \frac{C_r \cdot \bar{X} + C_m \cdot \mu}{D} > \bar{X}
\]

در مدل فوق، محدودیت اول تضمن می‌کند که تابع سود منفی تصویب و محدودیت دوم نمایش داده بر حسب یادگیری سیستم صفر می‌باشد.

باشند.
آنگاه فازی در پایگاه فواعد فازی وجود خواهد داشت که در جدول 1 نشان داده شده است. قاعدایی زیر نشان می‌آید که از فواعد بی‌راهنگی در پایگاه فواعد فازی می‌باشد.

\[\text{If } P \text{ is } H \text{ and } W \text{ is } L \text{ Then } D \text{ is } L \]

شکل 2: قانون عضویت یک عدد فازی متغیر

![شکل 2](image_url)

شکل 3: قانون عضویت یک عدد فازی ذوزنقه‌ای

![شکل 3](image_url)

سیستم فازی طراحی شده شامل دو ورودی و یک خروجی می‌باشد که به سیستم فازی MISO مربوط می‌شود. می‌باشد که در سیستم فازی گزارنده از قواعد اگر-آنگاه

\[\text{یک پایگاه فواعد فازی مشکل از مجموعه از قواعد اگر-آنگاه می‌باشد که به عنوان قسمت اصلی سیستم می‌باشد.} \]

\[\text{یک قسمت اگر} \]

\[\text{که به عنوان قسمت شرط قاعدایی فازی می}- \]

\[\text{باشد.} \]

\[\text{یک قسمت آنگاه} \]

\[\text{که به عنوان قسمت نتیجه‌گیری قاعدایی فازی می}- \]

\[\text{باشد.} \]

\[\text{در سیستم فازی طراحی شده در این مقاله، قسمت اگر شامل مخاطبی‌های قسمت (P) و طول دوره کارانتی (D) می‌باشد که به عنوان مخاطبی‌های قابلیت پاسخ‌گذاری و همچنین پارامتر تقاضای (D) می‌باشد. محاسبه مقدار خروجی سیستم فازی در حال قسمت آنگاه و در دوره کارانتی را می‌تواند. تحت کلی قاعدایی فازی در این مقاله استفاده می‌گردد.} \]

\[\text{آگر قسمت مخاطبی} \]

\[\text{باشد و طول دوره کارانتی} \]

\[\text{می‌باشد} \]

\[\text{آگاهانه تقاضای} \text{می‌باشد.} \]

\[\text{از انجایی‌های پارامتر قسمت شامل بنج مخاطبی کلاسی و طول دوره کارانتی نیز شامل بنج مخاطبی کلاسی است بنابراین 25 قاعده اگر-} \]

\[\text{تاریخ مدل دوهدفه جهت بهینه سازی قواعد، طول دوره کارانتی...} \]

\[\text{منیمخودی و حسن شوندی} \]

\[\text{ننشر به تدریج مهدیی ممنوع و مدیریت تولید. شهریور 1393-جلد 25-شماره 2} \]

\[\text{\textit{Singleton Fuzzifier}} \]

\[\text{\textit{Mamdani Implication}} \]

\[\text{\textit{Centroid defuzzifier}} \]

\[\text{\textit{Matching degree}} \]

\[\text{\textit{Multi Input Single Output}} \]
شکل شماره ۵ نشان دهنده رویه استنباط مجدد برای یک قاعده فعال می‌باشد.

\(\sum_{j=1}^{J} R_j \times \alpha_j \)

\(\sum_{j=1}^{J} \alpha_j \)

جدول ۱: پایگاه قواعد فازی جمع آوری شده از نظارت خبرگان

<table>
<thead>
<tr>
<th>شماره قاعده</th>
<th>قسمت نتیجه</th>
<th>قسمت اگر طول دوره گرانشی</th>
<th>قسمت اگر طول دوره گرانشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VL</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>2</td>
<td>VL</td>
<td>VH</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>VH</td>
<td>H</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>VH</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>VH</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>6</td>
<td>VH</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>VL</td>
<td>VL</td>
<td>M</td>
</tr>
<tr>
<td>8</td>
<td>VL</td>
<td>VH</td>
<td>M</td>
</tr>
<tr>
<td>9</td>
<td>VL</td>
<td>VH</td>
<td>M</td>
</tr>
<tr>
<td>10</td>
<td>VH</td>
<td>VH</td>
<td>L</td>
</tr>
<tr>
<td>11</td>
<td>VH</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>VL</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>13</td>
<td>VL</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

شکل ۴: تقسیم بندی فازی منغزه‌ای ورودی و خروجی

شکل ۵: رویه استنباط مجدد

مواجه هستم، بنابراین دو این حالت باید جواب‌های کارا را برای هر یک از اهداف بدست آوریم. جواب کارا جوابی است که جواب دیگری نسبت به آن بیشتر نشود. مگر اینکه جواب حداکثر یکی از اهداف بدتر شود. مدل عمومی مسائل چند هدفه بصورت زیر می‌باشد: \[18 \]

L-p metric: ۴ تکنیک همان‌طوری که در بخش ۲ یاد شد، در مدل ریاضی ارائه شده تابع سود و تابع زمان انتظار به روش هم‌زمان بهره‌برداری می‌شوند. بنابراین ما یک مسئله تصمیم‌گیری چندهدفه (MODM) باشد.

نشانه‌بندی مهندسی صنایع و مدیریت توسعه ۲۰۹۹-شماره ۲-۱۳۹۷-جلد ۲۵-شماره ۲
استفاده شده است بنابراین اکثر مشتق‌گیری و بسط اوردن‌گری جواب بهینه نیست و باید از روش‌های جستجوی جواب مناسب استفاده شود. لذا این مقاله یک روش بهینه سازی تکپی جدید در سیستم‌های مدیریت درمان از گزینه‌های نزدیک و سیستم صفری از تاریکه بهینه سازی استفاده گردیده است که در ادامه تشریح می‌شود.

گزینه‌زنیک (GA) یک از بهترین روش‌های بهینه‌سازیژاگرسی که توسط هولدن[2019] توصیف داده شد. روبه‌رو بهینه‌سازی GA با تولید مجموعه‌ای از جواب‌ها (جمع‌بندی مواد اولیه) آغاز می‌شود. اگر جواب در جمع‌بندی اولیه یک کروموزوم غیر منفی باشد و هر کروموزوم از سوی زن تشکیل شده که یک مجموعه تماشایی، تئیز و چهلم جمع‌بندی بعدی از جواب‌ها اجرا می‌شود. در هر وسیله جمع‌بندی، کروموزوم (جواب‌ها) توسط یک فرآیند مقدار بهینه‌سازی مربوط به هدف خاص باشد. تعداد مقدار بهینه‌سازی یک روش ادامه پیدا می‌کند. کروموزوم مربوط به مدل مورد عرض نیز به صورت زیر می‌باشد.

\[
\begin{align*}
\text{Min}: L & = - \sum_{j=1}^{n} \left[f_j(x) - f_j^*(x) \right]^{1/\gamma} \\
\text{Subject to:} & \quad x \in X \subseteq R^k
\end{align*}
\]

بطوریکه \(\gamma \) وزن (همایش) هر تابع بهینه سازی یک‌پیشگاه که توسط یک فرمولی که توسط یک فرمولی که در این مقاله توضیح داده شده است بازگشایی شده خواهد بود. مقدار بهینه‌سازی مربوط به هدف یک‌پیشگاه که توسط یک فرمولی که در این مقاله توضیح داده شده خواهد بود. مقدار بهینه‌سازی مربوط به هدف یک‌پیشگاه که توسط یک فرمولی که در این مقاله توضیح داده شده خواهد بود.

شکل 8 مسأله‌های جمع‌بندی مربوط به مدل

در جایگاهی از مدلی به ترتیب این‌طور و \(w \) و \(\mu \) و \(P \) و \(W \) هر یک و \(\gamma \) تئیز و چهلم جمع‌بندی می‌شود. در فرمولی که در این مقاله توضیح داده شده خواهد بود. مقدار بهینه‌سازی مربوط به هدف یک‌پیشگاه که توسط یک فرمولی که در این مقاله توضیح داده شده خواهد بود.

5-1 جمع‌بندی اولیه

سایت تولید تصادفی بین مقدارها و مقدارها متغیر \(x \) خواهد بود. به منظور ارزیابی کروموزوم‌ها، ابتدا یک تاریکه بهینه سازی با استفاده از یک مقدار مناسب بهینه‌سازی یک روش ادامه پیدا می‌کند.

5-2 انتخاب والدین

جفت انتخاب عملاً تفاوت نیاز به انتخاب دو والد (دو جواب) می‌شود. از جمع‌بندی یک‌پیشگاه که در این مقاله از روش‌های مختلف پیش‌گام‌هایی استفاده می‌شود. ولی در این مقاله از ابزاری از سیستم‌های مختلف می‌توان به نظر داد که به جای یک تاریکه بهینه‌سازی یک روش ادامه پیدا می‌کند.

\[\text{Min}: f(x) = \{ f_1(x), f_2(x), ..., f_k(x) \} \]

\[\text{Subject to:} \quad x \in X \]

5-3 آنتی‌بالدین

جفت انتخاب عملاً تفاوت نیاز به انتخاب دو والد (دو جواب) می‌شود. از جمع‌بندی یک‌پیشگاه که در این مقاله از روش‌های مختلف پیش‌گام‌هایی استفاده می‌شود. ولی در این مقاله از ابزاری از سیستم‌های مختلف می‌توان به نظر داد که به جای یک تاریکه بهینه‌سازی یک روش ادامه پیدا می‌کند.

\[\text{Min}: f(x) = \{ f_1(x), f_2(x), ..., f_k(x) \} \]

\[\text{Subject to:} \quad x \in X \subseteq R^k \]
۶- تحقیق عددهای نتایج
در این قسمت یک مثال بسته عددهای کمکی را چهار تا چهار از مجموعه استفاده کرد. به هر مورد، در سه مورد بررسی قرار گرفته داده چهار عدد مورد بررسی قرار می‌گرفت و در ادامه با استفاده از سیستم مورد بررسی قرار می‌گرفت. بسته به عدد، در هر مورد، می‌توانست به دو چهار سری می‌گرفت. طول مدت سری‌های (P)، طول مدت چهار کانال (W)، طول مدت چهار کانال (m) برای سیستم‌های بسته. بسته به نظر گرفته، به صورت شکل ۷ سیستم می‌باشد.

۷- یکنواخت عددهای نتایج
در این قسمت، به مثال عددهای استفاده یک مورد. به هر مورد، در سه مورد بررسی قرار گرفته داده چار عدد مورد بررسی قرار می‌گرفت و در ادامه با استفاده از سیستم مورد بررسی قرار می‌گرفت. بسته به عدد، در هر مورد، می‌توانست به دو چار سری می‌گرفت. طول مدت سری‌های (P)، طول مدت چار کانال (W)، طول مدت چار کانال (m) برای سیستم‌های بسته. بسته به نظر گرفته، به صورت شکل ۷ سیستم می‌باشد.

۸- شکل ۷ نمونه ای از سیستم تثقیف
ما از جایگاه‌های جوامعی یک جایگاه‌دار جوامعی جدید در بین مجتمع استفاده می‌کنیم. به هر مورد، یک چهار کانال به جوامعی جمعیت انتخاب شده و سپس بسته به نظر گرفته، به صورت شکل ۷ سیستم می‌باشد. جایگاه‌شان در جوامعی جدید انجام شده.

۹- چهار ترکیبی از سیستم‌های دیگر و سیستم‌های فازی
به مدت سیستم‌های انجام موجب بهره‌مندی سایزهای یک سیستم فازی برای تختیک از سیستم‌های فازی و سیستم‌های فازی این سیستم جایگزین است. به هر مورد، در شکل ۷ سیستم می‌باشد. سپس در ادامه به شکل ۷ سیستم می‌باشد. به هر مورد، در شکل ۷ سیستم می‌با
پس از اجرای الگوریتم برای تک تک اهداف مقادیر مناسب حاصل از بهینه‌سازی مرحله اول به‌صورت $Z_1^* = 3800791$ و $Z_2^* = 0.000495$ به‌دست آمده. پس تست Z_1 را جهت بست‌آوردن جواب کارا بصورت زیر تهیه می‌کنیم.

$$\text{Min}: L_p = \left[3 \times \left(\frac{Z_1^* - Z_1}{Z_1} \right)^2 + 1 \times \left(\frac{Z_2^* - Z_2}{Z_2} \right)^2 \right]^{\frac{1}{2}}$$

Subject to:

جدول ۳: نتایج اجرای الگوریتم L- p metric

<table>
<thead>
<tr>
<th>شماره اجرا</th>
<th>μ</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰.۷۵۱</td>
<td>۰.۵۴</td>
<td>۱۱۰۶</td>
</tr>
<tr>
<td>۲</td>
<td>۰.۸۹</td>
<td>۰.۷۷</td>
<td>۱۰۷۰</td>
</tr>
<tr>
<td>۳</td>
<td>۰.۸</td>
<td>۰.۴۴</td>
<td>۱۰۵۸</td>
</tr>
<tr>
<td>۴</td>
<td>۰.۷۵</td>
<td>۰.۷</td>
<td>۱۳۹۹</td>
</tr>
<tr>
<td>۵</td>
<td>۰.۷۵</td>
<td>۰.۷</td>
<td>۱۰۴۴</td>
</tr>
</tbody>
</table>

در MATLAB
همگرايي مربوط به اجراي الكوريتيم در شکل 10 نشان داده شده است.

نتيجه‌گيري

در این مقاله، ما تاثیر طول دوره گارانتی و زمان انتظار را در یک سیستم سف مورد بررسی قرار دادیم به‌طوریکه تفاوت‌های مشتریان وابسته به انتظار، وقت و طول دوره گارانتی به همراه معیار زمان انتظار در فضای جهت تعریف محدوده‌های زمان به عنوان معياري جهت سنتز رضایت مشتری مورد ارزیابی قرار گرفت. امروزه رضایت مشتری یکی از فاکتورهای بسیار مهم برای تولیدکنندگان و فروشنده‌گان در محیط‌های رقابتی می‌باشد. بنابراین مدل‌سازی گارانتی را به‌صورتی که تغییر‌ها در محدودات کنترل‌پذیر ساخته گرچه می‌توان یک روش جدیدی با توجه به پرسنلیتی و توانایی مدیریت کنترل کردن نخ و نرم و نرم خروجی در سیستم‌های زنجیره ذبیحه نمود.

مراجع

