Minimizing the Weighted Number of Tardy Jobs with Group Due Date Assignment and Capacity-Constrained Deliveries

M. Rasti-Barzoki & S. R. Hejazi

Morteza Rasti-Barzoki, Assistance professor of Industrial Eng., Department of Industrial and Systems Engineering, Isfahan University of Technology,
Seyed Reza Hejazi, Associate professor of Industrial Eng., Department of Industrial and Systems Engineering, Isfahan University of Technology,

Keywords
Supply chain,
Due date assignment,
Scheduling and tardy job

ABSTRACT
In this paper, an integrated due date assignment, and delivery scheduling of order for multi customer for make to order production system in supply chain has been surveyed. One manufacture received n orders from K customers. The due date of orders for each customer is common and manufacture can assign the due dates with a related cost. Orders must be process by one machine and send to customers by vehicles sending several jobs with one vehicle lead to less transportation cost but may increase the number of tardy jobs. The objective is determining the due dates and production and delivery scheduling so that the related costs is minimized. We present an MINLP model for this problem and a heuristic algorithm for solving it. Computational test is performed for evaluation of these two methods. The obtained results show that the heuristic algorithm is efficient.

© 2013 IUST Publication, IJIEPM. Vol. 24, No. 2, All Rights Reserved

* Corresponding author, Seyed Reza Hejazi
Email: rehejazi@cc.iut.ac.ir
کمیته کردن مجموع وزنی تعداد کارهای تأخیری با درنظر گرفتن مجموع هزینه‌های تخصیص موعد تحویل گروهوی و هزینه‌های ارسال

مرتضی راستی برزگی، سید رضا حجازی و محمد مهدوی‌مژده

چکیده:

در این مقاله سالهای تکه‌کاری تخصیص موعد تحویل، تخصیص منابع و زمان‌بندی تولید و ارسال در سفارش‌ها در حالی تنها در مرتبه اولیه در نظر گرفته می‌شود که افزایش آن از طرف تولید تکه‌کاری افزایش می‌یابد. تخصیص منابع و زمان‌بندی ارسال با توجه به احتمال بیشتری کارهای تأخیری و هزینه‌های ارسال به طور محتمل کمیته می‌شود. در این مقاله یک روش برنامه‌ریزی پیوسته شبیه‌جا گنجوی تقریبی با مدل سه‌فصلی کامل برای سالهای مذکور ارائه شده است.

کلمات کلیدی:

تاریخچه تأخیر، تخصیص موعد تحویل، تخصیص منابع و زمان‌بندی تولید، کارهای تأخیری و هزینه‌های ارسال

1. مقدمه

مدیریت زنجیره تأمین یکی از موضوعات بسیار مهم است که هم از نظر تولید و هم از جنبه کاربردی سال ها مورد توجه محققین قرار گرفته است و با توجه به گستردگی و عوامل موضوع ها اکنون نیاز تحقیقات بسیاری را به خود اختصاص داده است. اما موضوع زنجیره تأمین تا به حال در موضوعات نسبت داده نشده است که اهمیت تحقیقات آن بروز به سال‌های بعد از سال 2000 قابل ملاحظه است. به طور خاص موضوعات بسیاری یکی از موضوعات مهم است که پس از ارائه به سال‌های بعد و پیش از سال 2000 [1] تحقیقات زیادی را به خود اختصاص داده است. توییلد و نویز هر دو به مهم یکی زنجیره تأمین از قسمت‌های مهمی بودند که بایستی به صورت هماهنگ برنامه‌ریزی پیوسته تولید و ارسال یکی از مسائل

nummer

IPODS

2 Integrated Production and Outbound Distribution Scheduling
کمیته کردن مجموع وزنی تعداد کارهای تاخیری با درنظر گرفتن زمانی مجموعه کلیه کارهای تاخیری

فرآیند سفارشات تابی و مشخص (وامد ساله)...

آمارکنیت مجموعه تاییدیه تاکیدی مجموعه تؤمینی به منظور

جایگزینی فارا درج کردن و مجموعه تاییدیه ساله به منظور

آمارکنیت مجموعه ساله به منظور

tion of the integrated resource allocation and production scheduling

دو مورد چنین جمله ای برای حل ان این نموده اند:

1) انتخاب وسایل تولیدی

2) انتخاب وسایل تولیدی

1) due date assignment cost

2) common due date assignment
یک مشکل مجموع وزنی تعداد کارهای تاخیری با در نظر گرفتن تخصیص عنوان، زمانبندی سفارشات با روی یک سیستم تویلیدی تولید برای سفارش‌یا به فرد کمک می‌نماید که هزینه‌های تعیین مجموع تحویل، مجموع وزنی تعداد تاخیرها و هزینه‌های ارسال مورد بررسی قرار گرفته است و مدل برای راکت در مکان‌های صنعتی نماید. هر یک الگوریتم شبه جذب جمله‌ای برای راهبردی پیش‌بینی با زمان (DP) و یک الگوریتم مبتنی بر زمان (FPTAS) معرفی شده است. به طور خلاصه سیر کاملاً مسئله مورد نظر در این مقاله به صورت مجموعه سیر عناوین مسئله کمیته سازی تعداد کارهای تاخیری یکی از مسئلات بسیار قدیمی مدل بوده است و مرتضی راستی برزکی، سید رضا حجازی، مرتشی بینالمللی مهندسی صنایع و مدیریت تولید، شهریور 1371 - جلد 12 - شماره 2
کمینه کردن مجموع وزنی تعادل کارهای تأخیری با درنظر گرفتن تاخیر

مرتضی راستی برزکی، سید رضا حجازی

تحویل جدیدی در نظر گرفتن بهبودیه‌کننده‌تری از الگوریتم کارگری

در این اثر، از مجموع وزنی تعادل کارهای تأخیری با در نظر گرفتن تاخیر، و تغییر از الگوریتم کارگری بهبودیه‌کننده‌تری که دارای درستی در نظر گرفتن تاخیر با در نظر گرفتن تأخیر است تهیه شده است. در این اثر، الگوریتم کارگری با در نظر گرفتن تاخیر بهبودیه‌کننده‌تری در نظر گرفتن تاخیر با در نظر گرفتن تأخیر است تهیه شده است.

منبع:
1. استادان، مروحی و بیانی، کمینه کردن مجموع وزنی تعادل کارهای تأخیری با در نظر گرفتن تاخیر، شماره پنجم، جلد ششم، سال 1392.

mintex: 2-1 و 2-2
۱. رابطه ۱ نیاز به یک تابع هدف کمینه کردن مجموع وزنی تعداد کارهای تاخیری، باید باز کردن

\[
\begin{align*}
& \text{minimize} \\
& TC = \alpha (d - A) + \sum_{j=1}^{n} \sum_{i=1}^{n} c_{ij} x_{ji} + \theta (B^e + B^r)
\end{align*}
\]

Subject to:

\[
\begin{align*}
& d = \sum_{j=1}^{n} \sum_{i=1}^{n} c_{ij} x_{ji} + s^E \\
& d \geq A \\
& B^e \geq \left(n - \sum_{j=1}^{n} x_{jH+1} \right) / \text{cap} \\
& B^r \geq \left(\sum_{j=1}^{n} x_{jH+1} \right) / \text{cap} \\
& \sum_{i=1}^{H+1} x_{ji} = 1, j = 1, \ldots, n \\
& x_{ji} \geq 0, \text{ integer} \\
& B^e \geq 0, \text{ integer} \\
& B^r \geq 0, \text{ integer} \\
& d \geq 0, \text{ integer}
\end{align*}
\]

۲. روش برنامه‌ریزی پویا

برای سال‌های بهبود یافته دارد که در آن کارهایی تاخیری بعد از

\[
1/s/V (\infty, \text{cap}), \text{direct } (1/\max(0, d - A))
\]

\[
+ \sum_{j=1}^{n} \sum_{i=1}^{n} c_{ij} x_{ji} + \theta (B^e + B^r)
\]

\[
\sum_{j=1}^{n} \sum_{i=1}^{n} c_{ij} x_{ji} + \theta (B^e + B^r)
\]

\[
\sum_{j=1}^{n} \sum_{i=1}^{n} c_{ij} x_{ji} + \theta (B^e + B^r)
\]

\[
\sum_{j=1}^{n} \sum_{i=1}^{n} c_{ij} x_{ji} + \theta (B^e + B^r)
\]

\[
\sum_{j=1}^{n} \sum_{i=1}^{n} c_{ij} x_{ji} + \theta (B^e + B^r)
\]
کمینه کردن مجموع وزنی تعداد کارهای تأخیری با در نظر گرفتن تراکنش‌های ایجاد شده از قبل.

مرتضی راستی برزگی، سید رضا حجازی

نتایج و در غیر اینصورت دسته جزئی را بینندید و کار جزئی را شروع یک دسته جزئی به موقع در نظر گرفت. در هر مورد حالات برای زمان پردازش کار جزئی در نظر گرفت. حالات برای زمان پردازش کار جزئی در مجموعه T با یک $a+b$ امتیاز زمان‌بندی نامیدیم.

اصول غلبه 1:
برای هر دو حالات TC' و TC'' به دلیل حالت شرایط $TC' \leq TC''$ و $t \leq t'$ نمایید.

Dynamic Programming Algorithm

(Initialising) Set $S(0) = \{0, 0, 0, 0\}$. (Generation) Generate set $S(m)$ from $S(m-1)$:

For each job (i.e. J_i):

Set $\beta = 0$

For each state $[m-1, t', n', TC']$ in $S(m-1)$:

(Operations) Schedule next job (i.e. J_h) for $h = 1$ to H

$\beta = \beta + p_{h1} + \left(\left[\frac{n-1}{cap}\right] - \left[\frac{n-2}{cap}\right]\right)\beta$

$TC' = TC + a \max(0, M(\min(t, n' - t') - d) + \left(\frac{t}{\cap} - \frac{n'}{\cap} - 1\right)\beta + \nu_{h1}$

End for

(Schedule) For each state $[m, t, n', TC']$ in T:

$\beta = \beta + p_{h1} + \left(\left[\frac{n-1}{cap}\right] - \left[\frac{n-2}{cap}\right]\right)\beta$

Elimination For any two states $[m, t, n', TC']$ and $[m, t', n', TC'']$ with $t \leq t'$ and $TC' \leq TC''$. Eliminate the one with TC' from set β

Update For each state $[m, t, n', TC']$

End for

(Result) Select the best state from the final stage (state with the smallest v in the set $S(m)$) and trace back to obtain the optimal schedule.

قضیه 1:

گروه پهنای ساله

$P = ns + \sum_{j=1}^{n} p_{j}$

$\lambda = a \left(ns + \sum_{j=1}^{n} p_{j} - d \right)$

$v_{H} = \sum_{j=1}^{n} v_{j}$
متنی که در مجموع وزنی تعداد کارهای تأخیری با در نظر گرفتن حداقل $\sum_{j=1}^{n} w_j$ جواب دهیم:

$$W = \sum_{j=1}^{n} w_j$$

$\theta = \lfloor n/cap \rfloor \theta$

اثبات:

اگر است که نتوانستی راهکار در زمان $O(n^2)$ یافته باشید، باید به سپاس از تحقیق‌های پیش‌گامان در این زمینه نگاه کنید.

$\delta = \lfloor n/cap \rfloor \theta$

اثبات:

با استفاده از گستردگی حدود دومی در سطح پایین، بدست آمدی که:

$$OPT \leq TC \leq OPT + 2 \max \{v_j x_{ji} + w_j, v_j x_{ji} + w_j \} + 6$$

به طور عمومی:

$OPT \leq TC \leq OPT + 2 \max \{v_j x_{ji} + w_j, v_j x_{ji} + w_j \} + 6$

همانطور که اشاره کرده، به جواب OPT یا اینکه به جواب $OPT+6$ تابع بازگشتی هندسی در زمان $O(n^2)$ بدست می‌آید.
کمینه کردن مجموع وزنی تعداد کارهای تاخیری با در نظر گرفتن قواعد تحمل‌ده قطعات از طریق بروزرسانی.

مروتی خالی مهندسی صنایع و مدیریت تولید، شهرستان 1392–جلد 24–شماره 2

۲۵-۵ بهبود حدود اولیه

BIP در این بخش یک مجموعه از محدوده‌های مربوط به آن الگوریتم بهبود حدود پایه‌ای را به مجموعه از محدوده‌های پایه‌ای محدوده‌های به دست آمده در \(R(u, \varepsilon) \) روش معرفی می‌شود. این الگوریتم در \(R(u, \varepsilon) \) جهت اجرا از الگوریتم دیگری به نام الگوریتم دامنه \(R(u, \varepsilon) \) استفاده می‌کند. الگوریتم به دقت جهت حدود اولیه‌ای را در مرحله اول و مقداری مانند با اضافه به طوری که به فرض کیفیت مقداری حدود اولیه شده باشد. می‌تواند \(\text{OPT}^L + 2 \cdot \max \max \left(v_j H, v_j 1 + w_j \right) + \varepsilon \) و \(\text{OPT}^L \) را معرفی کننده باشد. در این روش اکثر می‌تواند \(R(u, \varepsilon) \) را معرفی کننده باشد. از این روش می‌تواند \(R(u, \varepsilon) \) را معرفی کننده باشد.

الگوریتم دامنه

\(R(u, \varepsilon) \)

(Initializ interfer : \(S^{(0)} = \{0, 0, 0, 0\} \))

(Partitioning) Partition the interval \([0, u]\) into \([n/\epsilon]\) equal intervals of size \(u\epsilon / n \), with the last one being possibly smaller.

(Generation) Generate set \(S^{(m)} \) from \(S^{(m-1)} \):

For each job \(j \),

\[
\begin{align*}
\text{Set } S &\leftarrow S \\
\text{For each state } (m - 1, t, n, T_C) &\text{ in } S^{(m-1)}
\end{align*}
\]

(Operation) The same as those in DP

(Elimination):

1. Eliminate any state \(\{t, n, T_C\} \) if \(T_C > u \).
2. If more than one state has a \(T_C \) value that falls into the same subinterval of \([0, u]\), then discard all but one of these states, keeping only the representative state with the smallest coordinate for each interval.
3. For any two states \(\{m, t, n, T_C\} \) and \(\{m, t', n, T_C'\} \) with \(t \leq t' \) and \(T_C \leq T_C' \), eliminate the one with \(T_C' \) from set \(S \).

(Update) \(S^{(m)} \) set \(S^{(m)} = S \).

End for

(Result) If \(S^{(m)} = \emptyset \), report \(T_C^\ast > \left(1 - \varepsilon \right) u \); otherwise report \(T_C^\ast \leq u \).
کمینه کردن مجموع وزنی تعداد کارهای تاخیری با در نظر گرفتن اینصورت

\[TC \leq u \implies k(n/\varepsilon)^{1/2} \geq O(n^2/\varepsilon^2) \]

قضیه ۳

\[TC \leq u \implies k(n/\varepsilon)^{1/2} \geq O(n^2/\varepsilon^2) \]

قضیه ۴

\[TC \leq u \implies k(n/\varepsilon)^{1/2} \geq O(n^2/\varepsilon^2) \]

الگوریتم بهبود حدود (BIP)

Bound Improvement Procedure (BIP)

1. Set \(LB = OPT_{LP}, UB = OPT_{LP} + 2 \max \left\{ v_j + w_j : j \right\} + \delta \)
2. If \(UB \leq 3LB \) go to Step 5
3. Set \(u = LB \) and \(\varepsilon = 0.25 \)
4. While \(R(u, \varepsilon) \) reports that \(TC^* > u(1 - \varepsilon) \)
 Let \(u = 2u \)

\(S \in \mathbb{R}^n \)

 הפרمترین‌های باین‌یابی (BIP)

\[BIP > k(n/\varepsilon)^{1/2} \]

\[TC \leq u \implies k(n/\varepsilon)^{1/2} \geq O(n^2/\varepsilon^2) \]

\[TC \leq u \implies k(n/\varepsilon)^{1/2} \geq O(n^2/\varepsilon^2) \]

(بی‌پی‌آ) 3-approximation

\[OPT_{LP} \geq n/\varepsilon \]

(بی‌پی‌آ) 3-approximation

\[OPT_{LP} \geq n/\varepsilon \]

DP-based Approximation Algorithm (DPAA)

(Initializing) Set: \(S^{(0)} = [0, 0, 0, 0] \)

(partition) Partition the interval \([0, \varepsilon/3] \) into \([\varepsilon/3 + 1] \) \(n \) equal intervals of size \(\varepsilon/3 + 1 \) \(n \), with the last one being possibly smaller.

(Generation) Generate set \(S^{(m)} \) from \(S^{(m-1)} \):

For each job (i.e. \(j \))

Set \(S \leftarrow \emptyset \)

For each state \(\{ 0, 1, 2, \ldots, m - 1 \} \) in \(S^{(m-1)} \)

(Operation) The same as those in DP

(Elimination):

1. Eliminate any state \(\{ t, n^{T}, TC \} \) if \(TC > u \).
کمینه کردن مجموع وزنی تعداد کارهای تاخیری با در نظر گرفتن یک جواب (\(N\)) تقریبی برای مسأله DPAA

برای هر \(e \geq 0\) مسئله متغیر \(\epsilon\) در زمان \(O(n^2/\epsilon)\) پیدا می‌کند.

اثبات:

مشابه اثبات قضیه ۲.

قضیه ۴-۵: الگوریتم اصلی (MA) FPTAS

ارایه می‌دهد که به دلیل زمانی آن برای استفاده FPTAS IP باید مدل و به دست آوردن حدود اولیه برای جواب IP بیشتر باشد.

اثبات:

ماجتهای متغیر ۱-۵ نتیجه‌گیری که در این مقاله مسئله تصمیم‌گیری همزمان (پیکارچه) تخصصی مورد تحقیق گردیده، تخصصی منابع، زمان‌بندی و زمان‌بندی ارسال به هدف کمینه‌سازی مجموع هزینه‌های مربوطه

\[
\frac{1}{\alpha} \frac{\max\left(\frac{1}{n} \left(\frac{\text{Cap max max (v}_{jk}, v_{js} + w_{j}/\epsilon)\right)}{1 + \epsilon}\right)}
\]

در این مقاله، مسئله تصمیم‌گیری همزمان (پیکارچه) تخصصی مورد تحقیق گردیده، تخصصی منابع، زمان‌بندی و زمان‌بندی ارسال به هدف کمینه‌سازی مجموع هزینه‌های مربوطه

\[
\frac{1}{\alpha} \frac{\max\left(\frac{1}{n} \left(\frac{\text{Cap max max (v}_{jk}, v_{js} + w_{j}/\epsilon)\right)}{1 + \epsilon}\right)}
\]

مراجع

[26] Steiner, G., Zhang, R., Approximation Algorithms for Minimizing the Total Weighted Number of Late Jobs with Late Deliveries in Two-Level Supply Chains. Journal of Scheduling, 12(6), 2009, pp. 565–574.

[38] Zhu, Z., Sun, L., Chu, F., Liu, M., Due-Window Assignment and Scheduling with Multiple Rate-Modifying Activities Under the Effects of Deterioration and Learning Mathematical Problems in Engineering, art. 2011, No. 151563.

