Minimizing the Weighted Number of Tardy Jobs with Group Due Date Assignment and Capacity-Constrained Deliveries

M. Rasti-Barzoki & S. R. Hejazi *

Morteza Rasti-Barzoki, Assistance professor of Industrial Eng., Department of Industrial and Systems Engineering, Isfahan University of Technology, Seyed Reza Hejazi, Associate professor of Industrial Eng., Department of Industrial and Systems Engineering, Isfahan University of Technology.

Keywords
- Supply chain
- Due date assignment
- Scheduling and tardy job

ABSTRACT

In this paper, an integrated due date assignment, and delivery scheduling of order for multi customer for make to order production system in supply chain has been surveyed. One manufacture received n orders from K customers. The due date of orders for each customer is common and manufacture can assign the due dates with a related cost. Orders must be process by one machine and send to customers by vehicles sending several jobs with one vehicle lead to less transportation cost but may increase the number of tardy jobs. The objective is determining the due dates and production and delivery scheduling so that the related costs is minimized. We present an MINLP model for this problem and a heuristic algorithm for solving it. Computational test is performed for evaluation of these two methods. The obtained results show that the heuristic algorithm is efficient.

© 2013 IUST Publication, IJIEPM. Vol. 24, No. 2, All Rights Reserved

* Corresponding author, Seyed Reza Hejazi
Email: rehejazi@cc.iut.ac.ir
کمینه کردن مجموع وزنی تعداد کارهای تأخیری با درنظر گرفتن مجموع هزینه‌های تخصیص موعد تحویل گروهی و هزینه‌های ارسال

در این مقاله سالهای بیشتری تخصیص موعد تحویل، تخصیص منابع و زمانی توسط متخصصان و مدیران ارسال تهیه و در سال‌های اخیر مورد حمایت قرار گرفته است. با گزارش کردن این موضوع، نیاز به تحقیقات بسیاری در حوزه اختصاص داده شده است. این موضوع به عنوان یکی از موضوعات عمومی تاکید داشته و در سال‌های 2001 از این موضوع در جنگل‌های مخزن‌های مکانیکی و ارسال‌های یک‌باره‌ای از طریق بازی‌های دستگاه‌های تلویزیونی، نیز به تحقیقات بسیاری را به خود اختصاص داده است. اما موضوع زمان‌بندی زنجیره تأمین در موضوعات تحقیقاتی حاضر است که همچنان تحقیقاتی در این زمینه نیز انجام شده است. این موضوع در سال‌های 2002 و 2003 بهره‌مندی‌ها و تغییرات بسیاری از گزارش‌های بیشتری تولید شده و در مورد تغییرات بسیاری در حوزه‌های مختلف ارمغان‌کننده تحقیقات در این زمینه بوده است.

کلمات کلیدی:
- زنجیره تأمین
- تخصیص موعد تحویل
- تخصیص منابع و زمانی توسط متخصصان و مدیران
- زمان‌بندی
- کارهای تأخیر

چکیده:
در این مقاله سالهای بیشتری تخصیص موعد تحویل، تخصیص منابع و زمانی توسط متخصصان و مدیران ارسال تهیه و در سال‌های اخیر مورد حمایت قرار گرفته است. با گزارش کردن این موضوع، نیاز به تحقیقات بسیاری در حوزه اختصاص داده شده است. این موضوع به عنوان یکی از موضوعات عمومی تاکید داشته و در سال‌های 2001 از این موضوع در جنگل‌های مخزن‌های مکانیکی و ارسال‌های یک‌باره‌ای از طریق بازی‌های دستگاه‌های تلویزیونی، نیز به تحقیقات بسیاری را به خود اختصاص داده است. اما موضوع زمان‌بندی زنجیره تأمین در موضوعات تحقیقاتی حاضر است که همچنان تحقیقاتی در این زمینه نیز انجام شده است. این موضوع در سال‌های 2002 و 2003 بهره‌مندی‌ها و تغییرات بسیاری از گزارش‌های بیشتری تولید شده و در مورد تغییرات بسیاری در حوزه‌های مختلف ارمغان‌کننده تحقیقات در این زمینه بوده است.
کمینه کردن مجموع وزنی تعداد کارهای تاخیری با درنظر گرفتن زمان‌های تأخیری، برای مسأله‌های به‌عنوان توابع مربوط به بارگیری و برداشت و روش‌نامه‌های مربوط به بارگیری و برداشت و رو
کمیت کردن مجموع وزنی تعداد کارهای تاخیری با درنظر... مرتبی راستی برزگی، سید رضا حجازی

112

کمینه کردن مجموع وزنی تعداد کارهای تاخیری با درنظر گرفتن تعداد کارهای تاخیری... مرتضی راستی برزکی، هدایت: مرجع: شجریه مهندسی صنایع و مدیریت تولید، شماره صفر و... نشست مقاله سازی عیالی مصطفی.

3 تعريف مسئله

پی مسئله زمانپذیری زمان‌نامه (SCS) را به روش کمیت کردن مجموع وزنی تعداد کارهای تاخیری با در نظر گرفتن تعداد کارهای تاخیری (MTO) تعریف می‌کنیم. مجموع وزنی تعداد تاخیرها و زمان‌نامه‌های ارسال مواد بررسی گرده‌مانده مدل‌های رانتیمن رشته‌ای تولید پروژه‌های تولیدی (IP) و پیک اگزکتوپوم تقریبی با زمان (FPTAS) نیز کمینه می‌شود. به طور کلی این مسئله تعریف می‌شود:

$$\text{FPTAS (Fully Polynomial Time Approximation Scheme)}$$

$\text{DP (Dynamic Programming)}$

$\text{IP (Integer Programming)}$

$\text{B&B (Branch and Bound)}$

$\text{TAS (Time Accumulation Scheme)}$

$\text{SCS (Supply Chain Scheduling)}$

که به میزان تعداد صرف‌شده به کار کرده است بدر تعداد مراحل ما و 1 تعداد کارهای تاخیری با در نظر گرفتن تعداد کارهای تاخیری (MTO) تعریف می‌کنیم.

مرحله اولیه

تعریف مسئله مجموع وزنی تعداد کارهای تاخیری با در نظر گرفتن تعداد کارهای تاخیری (MTO) تعریف می‌کنیم. مجموع وزنی تعداد تاخیرها و زمان‌نامه‌های ارسال مواد بررسی گرده‌مانده مدل‌های رانتیمن رشته‌ای تولید پروژه‌های تولیدی (IP) و پیک اگزکتوپوم تقریبی با زمان (FPTAS) نیز کمینه می‌شود. به طور کلی این مسئله تعریف می‌شود:

$$\text{FPTAS (Fully Polynomial Time Approximation Scheme)}$$

$\text{DP (Dynamic Programming)}$

$\text{IP (Integer Programming)}$

$\text{B&B (Branch and Bound)}$

$\text{TAS (Time Accumulation Scheme)}$

$\text{SCS (Supply Chain Scheduling)}$

که به میزان تعداد صرف‌شده به کار کرده است بدر تعداد مراحل ما و 1 تعداد کارهای تاخیری با در نظر گرفتن تعداد کارهای تاخیری (MTO) تعریف می‌کنیم.

مرحله اولیه

تعریف مسئله مجموع وزنی تعداد کارهای تاخیری با در نظر گرفتن تعداد کارهای تاخیری (MTO) تعریف می‌کنیم. مجموع وزنی تعداد تاخیرها و زمان‌نامه‌های ارسال مواد بررسی گرده‌مانده مدل‌های رانتیمن رشته‌ای تولید پروژه‌های تولیدی (IP) و پیک اگزکتوپوم تقریبی با زمان (FPTAS) نیز کمینه می‌شود. به طور کلی این مسئله تعریف می‌شود:

$$\text{FPTAS (Fully Polynomial Time Approximation Scheme)}$$

$\text{DP (Dynamic Programming)}$

$\text{IP (Integer Programming)}$

$\text{B&B (Branch and Bound)}$

$\text{TAS (Time Accumulation Scheme)}$

$\text{SCS (Supply Chain Scheduling)}$
کمینه کردن مجموع وزنی تعداد کارهای تأخیری با درنظر گرفتن مجموع وزنی تعداد کارهای تأخیری، برای هر یک از J_j به دو صورت در نظر گرفته می‌شود:

1. گره‌های تأخیری که در هر J_j دارای شرایط درستی هستند.
2. گره‌های تأخیری که در هر J_j دارای شرایط نادرست هستند.

مقدار J_j به عنوان مجموع وزنی تعداد کارهای تأخیری در هر J_j تعیین می‌شود. برای هر یک از J_j به دو صورت در نظر گرفته می‌شود:

1. گره‌های تأخیری که در هر J_j دارای شرایط درستی هستند.
2. گره‌های تأخیری که در هر J_j دارای شرایط نادرست هستند.

مقدار J_j به عنوان مجموع وزنی تعداد کارهای تأخیری در هر J_j تعیین می‌شود. برای هر یک از J_j به دو صورت در نظر گرفته می‌شود:

1. گره‌های تأخیری که در هر J_j دارای شرایط درستی هستند.
2. گره‌های تأخیری که در هر J_j دارای شرایط نادرست هستند.

مقدار J_j به عنوان مجموع وزنی تعداد کارهای تأخیری در هر J_j تعیین می‌شود. برای هر یک از J_j به دو صورت در نظر گرفته می‌شود:

1. گره‌های تأخیری که در هر J_j دارای شرایط درستی هستند.
2. گره‌های تأخیری که در هر J_j دارای شرایط نادرست هستند.

مقدار J_j به عنوان مجموع وزنی تعداد کارهای تأخیری در هر J_j تعیین می‌شود. برای هر یک از J_j به دو صورت در نظر گرفته می‌شود:

1. گره‌های تأخیری که در هر J_j دارای شرایط درستی هستند.
2. گره‌های تأخیری که در هر J_j دارای شرایط نادرست هستند.

مقدار J_j به عنوان مجموع وزنی تعداد کارهای تأخیری در هر J_j تعیین می‌شود. برای هر یک از J_j به دو صورت در نظر گرفته می‌شود:

1. گره‌های تأخیری که در هر J_j دارای شرایط درستی هستند.
2. گره‌های تأخیری که در هر J_j دارای شرایط نادرست هستند.

مقدار J_j به عنوان مجموع وزنی تعداد کارهای تأخیری در هر J_j تعیین می‌شود. برای هر یک از J_j به دو صورت در نظر گرفته می‌شود:

1. گره‌های تأخیری که در هر J_j دارای شرایط درستی هستند.
2. گره‌های تأخیری که در هر J_j دارای شرایط نادرست هستند.

مقدار J_j به عنوان مجموع وزنی تعداد کارهای تأخیری در هر J_j تعیین می‌شود. برای هر یک از J_j به دو صورت در N
118
کارهای تأخیری با در نظر
باتری مدل برنامه‌ریزی پویا

\[\begin{align*}
 \text{minimize} & \quad T C = \alpha(d - A) + \sum_{j=1}^{n} \sum_{i=1}^{H+1} c_{ji} x_{ji} + \theta (B^E + B^F) \\
 \text{Subject to:} & \quad d \geq \sum_{j=1}^{n} \sum_{i=1}^{H+1} c_{ji} x_{ji} + s B^E \\
 & \quad d \geq A \\
 & \quad B^E \geq \left(\frac{n - \sum_{j=1}^{n} x_{jH+1}}{\text{cap}} \right) \\
 & \quad B^F \geq \left(\frac{\sum_{j=1}^{n} x_{jH+1}}{\text{cap}} \right) \\
 & \quad \sum_{i=1}^{H+1} x_{ji} = 1 \quad j = 1, \ldots, n \\
 & \quad x_{ji} \geq 0 \quad \text{integer} \\
 & \quad B^E \geq 0 \quad \text{integer} \\
 & \quad B^F \geq 0 \quad \text{integer} \\
 & \quad d \geq 0 \quad \text{integer}
\end{align*} \]

روش برنامه‌ریزی پویا

در این بخش، یک مدل برنامه‌ریزی پویا به روش جول برای مسئله بیان شده می‌شود. گرچه در مدل موجود، جول برای مسئله بیان شده می‌شود، اما بهتر است تا به مدل موجود توجه کنید.

3. مدل برنامه‌ریزی عدد صحیح

در این بخش، مدل برنامه‌ریزی عدد صحیح باید با توجه به مسئله مطرح شده، بررسی و جزئیاتی از آن بیان شود. گرچه در مدل موجود، جول برای مسئله بیان شده می‌شود، اما بهتر است تا به مدل موجود توجه کنید.
نمایید و در غیر اینصورت دسته جرای را بین دید و کار جرای را شروع یک دسته جاری به موقع در نظر گیریم. در هر حالات برای زمان برداشتن کار جاری در نظر گیریم. همچنین در هر مرحله در مورد یک کار تشغیم گیری می شود که ما آنرا کار جاری می نامیم. \(m_t, n_t, T_C \) نمایش یک زمان‌بندی جزئی رژیم‌بندی کارهای \(m_1, m_2, \ldots, m_n \) را به عنوان کار تأخیری در مجموعه تاک خاتمی به زمان \(T \) برای زمان‌بندی نمایید.

اصل غلبه 1:
برای هر دو حالات \(T_C \) باشد حالات شامل \(T_C \) در آن \(t \) و \(t' \) نمایید.

Dynamic Programming Algorithm

(Initialising) Set: \(\mathcal{S}^{(0)} = \{ 0, 0, 0 \} \).

(Generation) Generate set \(\mathcal{S}^{(m)} \) from \(\mathcal{S}^{(m-1)} \):

For each job \((i.e. J_i)\):

Set \(\mathcal{S} = \emptyset \)

For each state \([m-1, t, n', T_C] \) in \(\mathcal{S}^{(m-1)} \):

\(\mathcal{S} = \mathcal{S} U \{ j, t', n', T_C \} \)

where:

\[t' = t + p_{jk} \left(\frac{n_j + n_k - 1}{n_j + n_k} \right) \]

\[T'C' = T + \min \{ 0, \max(0, \frac{t' - t}{n_j} - \Delta) \} + \left(\frac{1}{n_j \cap} \right) + \left(\frac{1}{n_k \cap} \right) \]

End for

For each processing time of job \(J_i \) (i.e. for \(h = 1 \) to \(H \)):

Set \(\mathcal{S} = \mathcal{S} U \{ j, t, n', T_C \} \)

where:

\[T'C' = T + \frac{t'}{n_j \cap} + \left(\frac{p_{jk}}{n_j \cap} \right) \]

End for

(Elimination) For any two states \([m, t, n', T_C] \) and \([m, t', n', T_C'] \) with \(t \leq t' \) and \(T_C \leq T_C' \), eliminate the one with \(T_C' \) from set \(\mathcal{S} \).

(Update) Set \(\mathcal{S}^{(m)} = \mathcal{S} \).

End for

(Result) Select the best state from the final stage (state with the smallest \(v \) in the set \(\mathcal{S}^{(m)} \)) and trace back to obtain the optimal schedule.

قضیه 1:

اکثر تعداد کارهای دسته جاری کمتر از است کار \(m + 1 \) را به عنوان کار به موقع در دسته جاری زمان‌بندی

\[
P = ns + \sum_{j=1}^{n} p_{j1}
\]

\[
A = \alpha \left(ns + \sum_{j=1}^{n} p_{j1} - A \right)
\]

\[
v_H = \sum_{j=1}^{n} v_{jH}
\]

\[
1/s/V(\infty, cap), direct/1/a max(0, d - A) + \sum_{i=1}^{n} \sum_{j=1}^{n} v_{ij}x_{ij} + \sum_{j=1}^{n} w_jy_j + \theta B
\]

\[
O(n^2 \min(P, A + v_H + W + \theta))
\]

میکند که در این

نشانه بین المللی مهندسی صنایع و مدیریت تولید. شهیرتوری 1392-جلد 24-شماره 4
متغیرهایی از حالت صحیح خارج شده آن و جواب بهینه TC_i جواب بهینه مساله اصلی می‌باشد.

1- با استفاده از روش بهبود حدود (BIP) حدود فوق به BIP می‌باشد

2- با استفاده از حدود فوق، الگوریتم تقریبی به صورت برای t_n^{T}، TC با رایسبایل مذکور توصیع می‌باشد.

اثبات:

فرض است که روش $Generation$ دارد. هر تکرار کل حالت های امکان پذیر برای $[t_n, t_n^{T}, TC]$ دارای حد بالایی است که به شرح زیر تعریف می‌شود:

$OPT = [n/cap] \theta$

این مقدار مISMATCH در حالت $n+1$ $P(t+1+1) = \theta$ OPT مقدار مختلف برای t_n^{T} حداکثر $n+1$ $

OPT \leq TC \leq OPT + 2\max\{v_{ji}, v_{ji} + w_{j} \}$

بتی‌های مورد نیاز برای ثبت کلیه ضرایب مساله است.

اثبات:

همانطور که اشاره شده و اثبات ویرگی باشد $OPT\leq TC^*$ به تعداد متغیرهایی که تعداد مشتمل در دایره این ویرگی است که تعداد متغیرهایی که تقاضا مشتمل گیرند حداکثر تعداد سطحی‌های ماتریس محصولات $n+4$ LP مقدار محدودیتی $OPT\leq TC^*$ $OPT\leq TC^*$ است. OPT مقدار حداقلی مقداری $OPT\leq TC^*$ می‌باشد؛ بنابراین در یک جواب پایه حداکثر $n+4$ TC مساله مشابه مشهور است.

اثبات:

$OPT\leq TC^*$ $

OPT\leq TC^* + 2\max\{v_{ji}, v_{ji} + w_{j} \} + \theta$

جواب بهینه مساله اصلی می‌باشد که $OPT\leq TC^*$ در آن $n\geq 4$.

$\theta = \frac{n}{cap} \theta$

اثبات:

این مقدار مISMATCH در حالت $n+1$ $P(t+1+1) = \theta$ OPT مقدار مختلف برای t_n^{T} حداکثر $n+1$ $

$OPT\leq TC^*$ $

OPT\leq TC^* + 2\max\{v_{ji}, v_{ji} + w_{j} \} + \theta$

$OPT\leq TC^*$ $

OPT\leq TC^* + 2\max\{v_{ji}, v_{ji} + w_{j} \} + \theta$

$OPT\leq TC^*$ $

OPT\leq TC^* + 2\max\{v_{ji}, v_{ji} + w_{j} \} + \theta$
کمینه کردن مجموع وزنی تعداد کارهای تاخیری با درنظر گرفتن اینکه:

\[H + 1 \]

زاویه بازگردی کارها که اینکه با اینکه تا حدی باید حداکثر ۴ مدتگاز از متغیرهای \(r_j \) عددی بین \(0 \) و \(8 \) صفر و یک (به‌طوری که \(8 \) می‌گردد) که اینکه اینکه تا حدی باید حداکثر دو کار، مقدار \(8 \) عددی بین صفر و یک است.

در مورد هر یک از این کارها، یکی از متغیرهای \(r_j \) با اندیس \(j \) بزرگتر یا را یکی از کمیت و سایر متغیرهای \(r_j \) آن کار را صفر در نظر می‌گیریم. در اینصورت تغییرات هرکل از اجزای هزینه به اینکه شرط می‌باشد:

یک توجه به اینکه عددی به یک در متغیر با اندیس \(j \) بالاتر انجام می‌شود زمان پردازش مربعی به اینکه کاکش می‌باشد (با اندازه \(k \) یا از بین گروه کارها، یکی از متغیرهای \(r_j \) آن کردن به یک باید حداکثر دو اکتفا می‌گردد هزینه تغییرات مربعی و

\[\text{max} \{ v_{jH}, v_{j1} + w_j \} \]

بهبود حدود اولیه \(\text{BIP} \)

در این بخش یک حداکثر به‌طور کل به اینکه \(LP \) به‌طور کل \(LP \) با اینکه \(LP \) به‌طور کل \(LP \) به‌طور کل \(LP \) به‌طور کل \(LP \)

\[(\epsilon 1, \ldots, \epsilon) \]

\[v_j < TC^* \leq \epsilon \]

\[u \]

\[TC \leq \epsilon \]

\[(1 - \epsilon)u \]

\[B^L + B^U \geq (n/cap) \]

\[\text{BIP} \]

\[R(u, \epsilon) \]

\[\text{Range Algorithm} \]

(Initializing) Set: \(S^{(0)} = \{ 0, 0, 0, 0 \} \)

(Partitioning) Partition the interval \([0, u]\) into \([n/\epsilon] \) equal intervals of size \(u\epsilon / n \), with the last one being possibly smaller.

(Generation) Generate set \(S^{(m)} \) from \(S^{(m-1)} \):

For each job (i.e. \(j \))

Set \(S \leftarrow \emptyset \)

For each state \((m-1, t, n, TC) \) in \(S^{(m-1)} \):

(Operation) The same as those in DP

(Elimination):

1. Eliminate any state \((t, n, TC) \) if \(TC > u \).
2. If more than one state has a \(TC \) value that falls into the same subinterval of \([0, u]\), then discard all but one of these states, keeping only the representative state with the smallest \(TC \) coordinate for each interval.
3. For any two states \((m, t, n, TC) \) and \((m, t', n, TC') \) with \(t \leq t' \) and \(TC \leq TC' \), eliminate the one with \(TC' \) from set \(S \).

(Update) Set \(S^{(m)} \) set \(S^{(m)} = S \).

End for

(End for)

If \(S^{(m)} = \emptyset \), report \(TC^* > (1 - \epsilon)u \), otherwise report \(TC^* \leq u \)
Case 3:

\[TC^* \leq u \leq TC^* \leq \frac{1}{2}u + \frac{\theta}{3}\epsilon \]

The algorithm terminates with a state at \(TC^* \).

Case 2:

The algorithm terminates with a state at \(TC^* \).

Case 1:

The algorithm terminates with a state at \(TC^* \).

DP-based Approximation Algorithm (DPAA)

Initializing: Set \(\delta^{(0)} = [0, 0, 0, 0] \).

Partitioning: Partition the interval \([0, (1 + \epsilon/3)3v]\) into \([3/\epsilon + 1]n\) equal intervals of size \(v/\epsilon/n\), with the last one being possibly smaller.

Generation: Generate set \(\delta^{(m)} \) from \(\delta^{(m-1)} \).

For each job (i.e., \(j \))

Set \(\delta \leftarrow \emptyset \)

For each state \(\{m - 1, t, n, TC\} \) in \(\delta^{(m-1)} \)

Operation: The same as those in DP

Elimination: 1. Eliminate any state \(\{t, n, TC\} \) if \(TC > u \).
کمینه کردن مجموع وزنی تعداد کارهای تأخیری با در نظر گرفتن بیش از یک جواب (\(n^2\)\(\varepsilon\)-آنتی پریپی برای مسئله DPAA،\(\varepsilon\) ≥ 0)؛ انتخاب برای مساله (MA)

\[
\frac{1}{\varepsilon} \left(\frac{n \cap \text{cap}}{n} \right) \max (0, d - e) + \sum_{i=1}^{n} \sum_{k=1}^{\text{cap}} v_j z_{jk} + \sum_{j=1}^{n} w_j U_j + \theta B
\]

برای هر\(\varepsilon\) ≥ 0، انتخاب برای مساله (MA)

\[
\frac{1}{\varepsilon} \left(\frac{n \cap \text{cap}}{n} \right) \max (0, d - e) + \sum_{i=1}^{n} \sum_{k=1}^{\text{cap}} v_j z_{jk} + \sum_{j=1}^{n} w_j U_j + \theta B
\]

در زمان\(O(n^2/\varepsilon)\) به دست می‌آید.

نتیجه‌گری

1. حل مدل IP و به دست آوردن حدود اولیه برای جواب مدل IP

2. در این مقاله، مسئله تصمیم‌گیری همزمان (یکپارچه) تخصیص مجموع تحویل‌گر، تخصیص منابع، زمان‌بندی تولید و دسته‌بندی و زمان‌بندی ارسال به هدف کمینه‌سازی مجموع هزینه‌های

3. مربوطه

\[
\frac{1}{\varepsilon} \left(\frac{n \cap \text{cap}}{n} \right) \max (0, d - e) + \sum_{i=1}^{n} \sum_{k=1}^{\text{cap}} v_j z_{jk} + \sum_{j=1}^{n} w_j U_j + \theta B
\]

مراجع

نتریه بین الملی مهندسی صنایع و مدیریت تولید، شهروند 1392-جلد 24-شماره 2
کمینه کردن مجموع وزنی تعداد کارهای تاخیری با درنظر گرفتن محدودیت ها

[26] Steiner, G., Zhang, R., Approximation Algorithms for Minimizing the Total Weighted Number of Late Jobs with Late Deliveries in Two-Level Supply Chains, Journal of Scheduling, 12(6), 2009, pp. 565–574.

[38] Zhu, Z., Sun, L., Chu, F., Liu, M., Due-Window Assignment and Scheduling with Multiple Rate-Modifying Activities Under the Effects of Deterioration and Learning Mathematical Problems in Engineering, art. 2011, No. 151563.

