Using Greedy Randomize Adaptive Search Procedure for solve the Quadratic Assignment Problem

B. VahediNori, M. Kianpour & P. Fattahi*

Behdin. VahediNori, Msc Student of Industrial Eng- Bu-Ali Sina University
Mojahed. Kianpour, Msc Student of Industrial Eng- Bu-Ali Sina University
Parviz. Fattahi, Associate professor of Industrial Eng-Bu-Ali Sina University

Keywords
Greedy Randomized Adaptive search producer, Quadratic Assignment Problem, Meta-heuristic

ABSTRACT
Greedy randomize adaptive search procedure is one of the repetitive meta-heuristic to solve combinatorial problem. In this procedure, each repetition includes two, construction and local search phase. A high quality feasible primitive answer is made in construction phase and is improved in the second phase with local search. The best answer result of iterations, declare as output. In this study, GRASP is used to solve the QAP problem. The resulting on QAP library standard problem is used to demonstrate the high performance of suggested algorithm.

© 2011 IUST Publication, IJIEPM. Vol. 22, No. 3, All Rights Reserved

* Corresponding author. Parviz. Fattahi
Email: fattahi@basu.ac.ir
بکارگیری رویه جستجوی تصادفی تطبیقی حریضانه برای حل مساله
تخصصی درجه دو

نوع مقدمه

1. مقدمه

مساله تخصیص درجه دو QAP یکی از پیچیده‌ترین مسائل در QAP، کلاس NP-hard می‌باشد. در عین حال یکی از جنبه‌های تطبیقی است. نظیری که تحقیقات انجام گرفته در این زمینه طی 10 سال n گذشته به پیش از 100 مورد می‌رسد، مساله به صورت جامعه n مسیر در QAP مشاهده شده که برای حل بهینه‌ترین متغیرینه روش‌هایی که برای حل QAP در سال‌های دنیای QAP مورد استفاده قرار گرفته است که در یک محدوده محدوده ثابت مباحث و روش‌های خاص هستند. رویه‌هایی که برای حل بهینه‌ترین متغیرینه QAP مورد استفاده قرار می‌گیرد، معمولاً رویه‌های دقیق هستند.

2. تعریف مسئله

مشابه مساله تخصیص درجه دو، QAP، یکی از پیچیده‌ترین مسائل در QAP، کلاس NP-hard می‌باشد. در عین حال یکی از جنبه‌های تطبیقی است. نظیری که تحقیقات انجام گرفته در این زمینه طی 10 سال n گذشته به پیش از 100 مورد می‌رسد، مساله به صورت جامعه n مسیر در QAP مشاهده شده که برای حل بهینه‌ترین متغیرینه روش‌هایی که برای حل QAP در سال‌های دنیای QAP مورد استفاده قرار گرفته است که در یک محدوده محدوده ثابت مباحث و روش‌های خاص هستند. رویه‌هایی که برای حل QAP مورد استفاده قرار می‌گیرد، معمولاً رویه‌های دقیق هستند.

3. روش‌های تطبیقی

روش برمگشته، می‌تواند برای حل مساله تخصیص درجه دو QAP که در آن ماتریس جایگزین یک ماتریس همسایگی درخت می‌باشد، استفاده می‌شود. از روش صحیح برای ریز تخمین‌های QAP، کمک می‌کند که در سطح مسئله QAP استفاده شده است [1].

4. نتیجه‌گیری

روش‌های تطبیقی تاریخ دستگیری از رویه‌های مسنده که برای حل مساله QAP، کمک می‌کند که در سطح مسئله QAP استفاده شده است [1].
روش‌های ساخت. این روش‌ها یک آرایه خالی شروع شده و در هر مرحله یک تکیه‌گاه از میان تکیه‌گاه‌های دیگر انتخاب می‌شود. این روش‌ها ممکن است در همان ابتدا اکتشفی، یک چوب که یک خوب حیاتی به پیدا آید برحسب این مجموعه مناسب به سیستم بررسی و گذار در هر میزان و گاهی ممکن است روش‌های تکرر نهایت ناگهانی را نشان داده.

روش‌های جستجوی محدود، در این روش‌ها، شماری گرافیکی به جواب بهینه تا جایی پیشنهاد می‌شود. این روش‌ها می‌توانند به پایان مرسوم مراحل شمارش بررسی در این روش‌ها اکتشفی با این حال در این بین همان ابتدا اکتشفی، یک چوب که یک خوب حیاتی به پیدا آید برحسب این مجموعه مناسب به سیستم بررسی و گذار در هر میزان و گاهی ممکن است روش‌های تکرر نهایت ناگهانی را نشان داده.

روش‌های محیطی. این روش شما اکتشفی یا جستجوی محیطی می‌باشد که در برخی هیپرپسیکی‌ها از آن استفاده می‌شود. این روش از یک چوب اولی به نتایج اکتشفی و در هر میزان و گاهی ممکن است روش‌های تکرر نهایت ناگهانی را نشان داده.

تا قبل از سال 1980 عمده از روشهای هیپرپسیکی برای حل مسائل بهینه‌سازی تکیه‌گاه استفاده می‌شده است. بعد از این سال، این الگو تغییر کرده و کیشگرها جایگزین از این روشهای تغییر داده شده که باهم روش‌های چسبانه‌های متعددی شاخته می‌شوند. این تغییرات با اساس تعیین استارتیمبند دلیلبندی شده تا این گروه‌ها بهتر شود. البته برخی از روشهای هیپرپسیکی‌ها معمولاً برای تهیه مجموعه‌های محیطی یا باکند جستجوی محیطی می‌باشد که در برخی از این موارد بازگشت به روشهای اولی می‌باشد. البته برخی از این امکان‌ها به یک چوب اولی می‌باشد که در برخی از این موارد بازگشت به روشهای اولی می‌باشد. البته برخی از این امکان‌ها به یک چوب اولی می‌باشد که در برخی از این موارد بازگشت به روشهای اولی می‌باشد.

- Solution Seed
در این تحقیق نیز، حالت خالی QAP با استفاده از متاموربستیک GRASP با شیوه‌ای نوین در فاز ساخت آن ارائه گردید.

۲. تعریف مسائل QAP و مدلهای ریاضی

به صورت جامع‌تر n مسأله QAP به صورت n مسأله بروی محل تعیین t محل تعیین Fmn در بر می‌گردد. برای مدل‌سازی این مسأله، فرض کنید n مسأله و محل وجود کاری میان جرایب بین سه‌تایی‌های i

نمایش داده می‌شود که در آن

و آرآ متغییر می‌باشد

فاصله بین محل‌های بازیار مسأله داده می‌شود که

دلیل این داده می‌باشد. براساس تعریف فوق، نتیجه‌گیری می‌شود

\[\min Z = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{ij}d_{ij} \]

۳. استخراج جستجوی متاموربستیک

برهنه‌ای را به جستجوی تطبیقی حریم‌ها، یکی از

متاموربستیک‌های کاری برای حل مسائل را کرد. سپس نمونه‌گیری می‌شناسد که در این غلبه کاری کم‌کمی که دارای هزینه (سود) مناسب‌تر

می‌باشد انتخاب و در مدل‌سازی کامپیوتری

محدود RCL، قرار داده می‌شوند.

۴. فاز ساخت محیط

جواب‌های ساخته شده در فاز ساختین به کار برده می‌شوند

معلمولی‌ها فاز ساخت محیط جواب‌هایی به دست آمده در فاز

ساخت را به‌طور خاص در فاز جستجوی محیط جواب‌هایی به

چنین راهبردی زیر این‌ها بی‌کاری می‌گردد.

\[\text{GRASP} \]

\[\text{QAP} \]

\[\text{GRASP} \]

\[\text{QAP} \]

\[n \]

\[3 \]

\[4 \]

\[5 \]

\[6 \]

\[\text{Solution} = \text{Greedy.RandomizedConstruction}(seed) \]

\[\text{Solution} = \text{Local.Search}(Solution) \]

\[\text{Update.Solution}(Solution, \text{Best.Solution}) \]

\[\text{End.} \]

\[\text{Return.Best.Solution}; \]

\[\text{End Grasp} \]

\[\text{Min Z} = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{ij}d_{ij} \]

\[\text{GRASP} \]

\[\text{QAP} \]

\[\text{GRASP} \]

\[\text{QAP} \]

\[n \]

\[3 \]

\[4 \]

\[5 \]

\[6 \]

\[\text{Solution} = \text{Greedy.RandomizedConstruction}(seed) \]

\[\text{Solution} = \text{Local.Search}(Solution) \]

\[\text{Update.Solution}(Solution, \text{Best.Solution}) \]

\[\text{End.} \]

\[\text{Return.Best.Solution}; \]

\[\text{End Grasp} \]

\[\text{Min Z} = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{ij}d_{ij} \]

\[\text{GRASP} \]

\[\text{QAP} \]

\[\text{GRASP} \]

\[\text{QAP} \]

\[n \]

\[3 \]

\[4 \]

\[5 \]

\[6 \]

\[\text{Solution} = \text{Greedy.RandomizedConstruction}(seed) \]

\[\text{Solution} = \text{Local.Search}(Solution) \]

\[\text{Update.Solution}(Solution, \text{Best.Solution}) \]

\[\text{End.} \]

\[\text{Return.Best.Solution}; \]

\[\text{End Grasp} \]

\[\text{Min Z} = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{ij}d_{ij} \]

\[\text{GRASP} \]

\[\text{QAP} \]

\[\text{GRASP} \]

\[\text{QAP} \]

\[n \]

\[3 \]

\[4 \]

\[5 \]

\[6 \]

\[\text{Solution} = \text{Greedy.RandomizedConstruction}(seed) \]

\[\text{Solution} = \text{Local.Search}(Solution) \]

\[\text{Update.Solution}(Solution, \text{Best.Solution}) \]

\[\text{End.} \]

\[\text{Return.Best.Solution}; \]

\[\text{End Grasp} \]

\[\text{Min Z} = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{ij}d_{ij} \]

\[\text{GRASP} \]

\[\text{QAP} \]

\[\text{GRASP} \]

\[\text{QAP} \]

\[n \]

\[3 \]

\[4 \]

\[5 \]

\[6 \]

\[\text{Solution} = \text{Greedy.RandomizedConstruction}(seed) \]

\[\text{Solution} = \text{Local.Search}(Solution) \]

\[\text{Update.Solution}(Solution, \text{Best.Solution}) \]

\[\text{End.} \]

\[\text{Return.Best.Solution}; \]

\[\text{End Grasp} \]

\[\text{Min Z} = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{ij}d_{ij} \]
بهترین‌های به‌دست‌آمده، در این استراتژی تمامی همسایگان‌های جواب ارزیابی می‌شوند و همسایگانی که بهترین (سوژه) از جواب فعلی کمتر (بیشتر) و دارای کمترین هزینه (بهترین سود) در بین همسایگان جواب فعلی باشند انتخاب می‌شوند و فرآیند جستجو با جواب اولین بهبود شده دوباره تکرار می‌گردد.

الون به‌بیانی در این استراتژی اولین همسایه‌ای که بهترین (سوژه) اش از جواب فعلی کمتر (بیشتر) باشد انتخاب و فرآیند جستجو با جواب اولین بهبود شده دوباره تکرار می‌گردد.

4-الگوریتم پیشنهادی برای حل مساله QAP

در این قسمت الگوریتم پیشنهادی برای حل مساله QAP ارائه می‌گردد که تفاوت عمده آن با الگوریتم پیشنهادی دیو و دندنی فاز دوم شامل 2 فاز اولیه و 2 فاز اولیه مشابه که به تعداد معین از پیش تعیین می‌شود تکرار می‌گردد. فاز اولیه و جستجو محلى به نسبت QAP برای حل مساله GRASP در ادامه شده می‌شود.

4-1-فاز ساخت

این فاز با یک آرایه عضو شروع شده که به صورت یک ماتریس $$S_{in}$$ می‌باشد یک آرایه عضو داخل منجر یک ماتریس سی‌بی‌سی‌های 2-ی 3-ی 4-ی 5-ی و ... تعداد مجموعه‌ها کمتر از یک ماتریس می‌باشد. بانیان در تکرار اول فاز ساخت مجموعه میزان جریان موجود بین پیک تسلیح و تستیابی به تعداد معین از پیک محل و مخلوط دیگر مخلوط به می‌شود سپس مجموع جریان‌ها را به صورت توزیع و مجموع فواصل را به صورت مقدار مربوط به تعداد مخلوط‌ها می‌شود. اگر ماتریس جریان و فاصله مانند پیش‌ناداردیم:

$$F = \begin{pmatrix}
 f_{11} & f_{12} & \cdots & f_{1n} \\
 f_{21} & f_{22} & \cdots & f_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 f_{n1} & f_{n2} & \cdots & f_{nn}
\end{pmatrix}$$

$$C_1 = \sum_{i=1}^{n} f_{i1}$$

$$C_2 = \sum_{i=1}^{n} f_{i2}$$

$$C_3 = \sum_{i=1}^{n} f_{i3}$$

$$G' = F \cdot G$$

$$G = \{1,2,3,...,w\}$$

$$G' = \{1',2',3',...,w'\}$$

$$C_{1'} = \sum_{i=1}^{n} G'_{i1}$$

$$C_{2'} = \sum_{i=1}^{n} G'_{i2}$$

$$C_{3'} = \sum_{i=1}^{n} G'_{i3}$$

$$\text{best-improving}$$

$$\text{first-improving}$$
در مورد محلچا نیز به همین ترتیب عمل کرده فقط در این مورد به انتخاب RCL2 از محلچا با کمترین مقادیر از انتخاب و در
جدول 1 نتایج گروهی در مورد حل مسائل 40 و Tho50

<table>
<thead>
<tr>
<th>جدول 1</th>
<th>نتایج گروهی در مورد حل مسائل</th>
<th>40</th>
<th>Tho50</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>β</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>γ</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>δ</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

نتشانه‌ی بین‌المتیلی مهندسی صنایع و مدیریت تولید. پایه‌ی 22-شماره 3
جدول ۲. نتایج الگوریتم در مورد حل مسائل کلاس‌های Nug و Had

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QAP ۱۴</td>
<td>۱.۷۲</td>
<td>۲.۶۴</td>
<td>۱.۸۶</td>
<td>۲.۰۰</td>
<td>۲.۵۰</td>
<td>۲.۴۵</td>
<td>۲.۱۱</td>
<td>۲.۸۵</td>
<td>۲.۱۶</td>
<td>۱.۹۲</td>
<td>۲.۵۵</td>
<td>۴.۲۴</td>
<td>۲.۸۵</td>
<td>۳.۵۰</td>
<td>۳.۵۰</td>
<td>۳.۵۰</td>
<td>۳.۵۰</td>
<td>۳.۵۰</td>
<td></td>
</tr>
<tr>
<td>QAP ۱۵</td>
<td>۱.۷۲</td>
<td>۲.۶۴</td>
<td>۱.۸۶</td>
<td>۲.۰۰</td>
<td>۲.۵۰</td>
<td>۲.۴۵</td>
<td>۲.۱۱</td>
<td>۲.۸۵</td>
<td>۲.۱۶</td>
<td>۱.۹۲</td>
<td>۲.۵۵</td>
<td>۴.۲۴</td>
<td>۲.۸۵</td>
<td>۳.۵۰</td>
<td>۳.۵۰</td>
<td>۳.۵۰</td>
<td>۳.۵۰</td>
<td>۳.۵۰</td>
<td></td>
</tr>
</tbody>
</table>

منابع:
[۱] فتااحی، ب.، الگوریتم‌های گروهی، انتشارات دانشگاه یونیورسیتی، سیمینه‌های همدان. ۱۳۸۸

