Order Planning and Scheduling in Cold Rolling Unit of Mobarakeh Steel Co using MIP

S. Hashemi Nezhad, M. Bijari* & M. Ashrafi Nasrabady

Soheir Hashemi Nezhad, Department of Industrial Engineering, Isfahan University of Technology, Isfahan, Iran
Mehdi Bijari, Department of Industrial Engineering, Isfahan University of Technology, Isfahan, Iran
Mehdi Ashrafi Nasrabady, Mobarakeh Steel Co., Isfahan, Iran

Keywords
production planning,
Scheduling orders, MIP,
Cold rolling

ABSTRACT

In the steel industry that involves with large amount of wealth, labor and energy flow a small improvement in planning has significant consequences such as reducing costs, energy consumption, production time, delivery time and also increasing customer satisfaction. This research aim to present an efficient model in order to schedule the orders in the product line of cold rolled in the Mobarakeh Steel Company. The model is solved by applying real data of Mobarakeh Steel cold rolling in two stages. At first the third model without considering zero-one constraint is solved. Then the zero-one and some other constraints obtained from heuristic algorithm are added to the model and the model is solved by GAMS. Each product Production quantity on each machine was obtained in a three month horizon. Actual amount production of cold-rolled machines has been compared with the outputs of the model. The results show that by implementing this model, the number of delivered orders and also usage of the machines capacity are increased.

© 2014 IUST Publication, IJIEPM. Vol. 25, No. 1, All Rights Reserved

* Corresponding author. Mehdi Bijari
Email: bijari@cc.iut.ac.ir
برنامه‌ریزی و زمان‌بندی سفارشات ناحیه نورد سرد فولاد مبارکه با مدل برنامه‌ریزی ریاضی MIP

سهراب هاشمی نژاد، مهدی بیجاری و مهدی اشرفي‌نصرآبادي

چکیده:
در صنعت فولاد به حجم عظیمی از تروت، نیروی کار و انرژی مورد استفاده است. کوچکترين بهدوز در برنامه‌ریزی می‌تواند آثار حساسی در کاهش هزینه‌ها، کاهش مصرف انرژی، کاهش زمان تولید و برنامه‌ریزی زمان‌بندی سفارشات نورد سرد فولاد مبارکه با استفاده از مدل برنامه‌ریزی ریاضی MIP، درینگاهین به‌ نحوه‌ی نورد سرد اثر این سازمانی حاصل می‌شود.

کلمات کلیدی:
برنامه‌ریزی تولید، زمان‌بندی سفارشات، برنامه‌ریزی ریاضی MIP

1. مقدمه
امروز روند مصرف مصرف‌کننده در صنعت تولیدی و نیاز به کارایی بیشتر است. استفاده از تکنولوژی‌های نوین بجای تولید، اطماف بیشتر، کیفیت بهتر محصولات، افزایش هزینه همراه با استفاده از مشتریان و هزینه‌های کمتر، جهت تولید را تعمیر داده است و با توجه به ثروت‌های تولید و امکانات تولید، ابزارهای فوق‌العاده، قدرت رقابت در اختیار سازمانی است که ندامت و کوانتومی‌های زمان ممکن محصول مورد نیاز را در حجم کم و انتظار زندگی نماید.

2 Just in time
3 Lead time
4 Scheduling

تاریخ وصول: 99/6/40
لیست مراجع:
سهراب هاشمی نژاد، دکتر مهندس صنایع و سیستم‌های دانشگاه صنعتی اصفهان، s.hasheminezhad@in.iut.ac.ir
مهدی بیجاری، دکتر مهندس صنایع و سیستم‌های دانشگاه صنعتی اصفهان، bijari@cc.iut.ac.ir
مهدی اشرفی‌نصرآبادي، دکتر مهندس صنایع و سیستم‌های دانشگاه صنعتی اصفهان، ashrifi1976@yahoo.com

نسخه الکترونیکی مقاله (پذیرشی) 1392 خرداد
نشریه بين المللی مهندسی صنایع و مدیریت تولید، شماره 25/ 1392- جلد 66- شماره 1
برنامه‌ریزی تولید در صنعت فولاد و مروری بر تحقیقات صورت گرفته

1. مشخصات مدل برنامه‌ریزی تولید در صنعت فولاد

2. برنامه‌ریزی تولید در صنعت فولاد و مروری بر تحقیقات صورت گرفته

برنامه‌ریزی تولید، در صنعت فولاد و مروری بر تحقیقات صورت گرفته است. نشان دهنده این موضوع چندین مدل برنامه‌ریزی در صنعت فولاد است. همچنین عواملی که در صنعت فولاد تأثیرگذار هستند و این روند را تأثیرگذار کرده‌اند به‌طور کلی می‌تواند به طور کلی به مدل‌های گروهی گزیده شود.

چندین مدل برنامه‌ریزی در صنعت فولاد است. نشان دهنده این موضوع چندین مدل برنامه‌ریزی در صنعت فولاد است. همچنین عواملی که در صنعت فولاد تأثیرگذار هستند و این روند را تأثیرگذار کرده‌اند به‌طور کلی می‌تواند به مدل‌های گروهی گزیده شود.

2.1. گزیده‌ای از تحقیقات صورت گرفته در صنعت فولاد

یکی از مهم‌ترین پیشرفت‌های اخیر در صنعت فولاد تأثیرگذاری است که بهبود کیفیت و کارایی تولید را فراهم کرده‌است. این پیشرفت‌ها باعث بهبود تولید و کاهش هزینه‌های تولید شده‌اند.

2.2. مدل‌های مختلف مورد استفاده در صنعت فولاد

برنامه‌ریزی تولید در صنعت فولاد از سال‌های قبل به عنوان یکی از بهترین روش‌های مدیریت تولید در صنعت فولاد مورد استفاده قرار می‌گیرد.

3. یکی از مهم‌ترین پیشرفت‌های اخیر در صنعت فولاد تأثیرگذاری است که بهبود کیفیت و کارایی تولید را فراهم کرده‌است. این پیشرفت‌ها باعث بهبود تولید و کاهش هزینه‌های تولید شده‌اند.

2.3. مدل‌های مختلف مورد استفاده در صنعت فولاد

برنامه‌ریزی تولید در صنعت فولاد از سال‌های قبل به عنوان یکی از بهترین روش‌های مدیریت تولید در صنعت فولاد مورد استفاده قرار می‌گیرد.

پرس: از تبدیل سنتی به گنده و احیا، ما می‌توانیم با استفاده از کوه‌های پیوند کردن به منابع و سیستم‌های فنی، بهبود و بهبود گیری پیوسته تبدیل به تختال می‌شود. تخلخل‌ها در ناحیه‌ی نورد می‌تواند با اعمال کلاه‌های گرم در ادامه و پایان محوطه‌های ماده‌ای وارد شده‌ها و اینکه این محصول به‌صورت عمده در فرآیند ساخت‌بندی عضوگیری. این محصولات به‌طور ماشین‌هایه نورد وارد شده در دو برای ساخت و یا بازپردازی‌های عمده بار، این محصولات به‌طور عمده روند شده و این محصولات به‌طور عمده منتقل شود.

3. تعريف مسئله

پسازی محصول باعث کاهش کارایی مسیرسازی بوده و بهبود در جهت ایجاد سیستم‌های فرآیندها. شوک در منابع و سیستم‌های فنی بهبود و بهبود گیری پیوسته تبدیل به تختال می‌شود. تخلخل‌ها در ناحیه‌ی نورد می‌تواند با اعمال کلاه‌های گرم در ادامه و پایان محوطه‌های ماده‌ای وارد شده‌ها و اینکه این محصولات به‌طور عمده در فرآیند ساخت‌بندی عضوگیری. این محصولات به‌طور عمده روند شده و این محصولات به‌طور عمده منتقل شود.

1 Greedy assignment (based on assignment cost)
2 Greedy assignment (based on assignment, utilization and production flow cost)
3 Local search assignment
4 Knapsack

44 نشریه بین المللی مهندسی صنایع و مدیریت تولید. خرداد 1393 - جلد 25 - شماره 1
برنامه‌هایی تعمیرات اساسی و اضطراری در نظر گرفته شود.

- میزان کل کافی بر عرض و ضخامت قابل قبول جهت تولید روي مانی‌های نورد دیده شود.

- بیان از مانی‌های خصوص علی‌حال به‌درمانی را نمود (کاهش تعداد آماده‌سازی‌ها)

- ورودی الکتریکی از واحدهای نورد، در نظر گرفته شود و بر اساس ضمانت اجرای داشته باشد.

- حداکثر تولید جهت راپید مانی‌ها در یک روز در نظر گرفته شود (را به اندازه مانی‌ها در یک روز) برای نوش‌بندی باشد.

- مسیر توپلیک ناحیه نورد سرد شامل 21 خط توپلیک، 8 اضلاع میانی و 9 اضلاع نهایی جهت بارگیری و تولید سفارشات می‌باشد. شکل 1-3 برج تولید ناحیه نورد سرد، مانی‌های آت و نماهای میانی و نهایی را جهت استفاده در مدل برنامه‌ریزی نشان می‌دهد.

3.1-1.‌ آنالیز تولید ناحیه نورد سرد سیستم فولاد مبارکه

شکل 1. گراف چریان تولید ناحیه نورد سرد

لایه نهایی طراحی شرکت اولویت بیشتری برای عدم تأخیر در توپلیک، و نسبت به دیگر سفارشات، با توجه به شرایط یکسان-دارند.

که این ویژگی نیز با پیوسته در مدل اعمال شود.

3.2-2. ویژگی‌های خاص در برنامه‌ریزی ممجتمع فولاد مبارکه

برنامه‌ریزی توپلیک در مجمع فولاد مبارکه بر روی یک مانی‌پای یا پدیده مدد زمان مشخص بطور
بحث برنامه‌ریزی زمان‌بندی سفارشات ناحیه نورد... سهراب هاشمی نژاد، مهدی بیجاری و مهدی اشرفي نصرآبادي

مثال: در شیفت در انبار بمانند. سپس سیتووان آن را برای پرداخت بر روی منصوب بوده در برنامه قرار داده دانستی می‌باشد. در یک شیفت نیز شیفت بر روی دو منشی پرداخت شود. علاوه بر این برای شیفت‌های مناسب، باید از تمرین‌های کیفیت مقبول منشیان از مناسب در انبار قبل از مناسب بودن در سیکل موردراز 32 ساعت تا 34 ساعت تمیزند.

4 مدل برنامه‌ریزی ریاضی صفر و یک مختلط

\[
\text{مقدار مصرف شده برای تولید یک نسخه از محصول } p \text{ در منابع } \{ \text{مصرف } \} \text{ مقدار مصرف شده برای تولید یک نسخه از محصول } p \text{ در منابع } \{ \text{مصرف } \} \text{ مقدار مصرف شده برای تولید یک نسخه از محصول } p \text{ در منابع } \{ \text{مصرف } \}
\]

\[
\text{مقدار مصرف شده برای تولید یک نسخه از محصول } p \text{ در منابع } \{ \text{مصرف } \} \text{ مقدار مصرف شده برای تولید یک نسخه از محصول } p \text{ در منابع } \{ \text{مصرف } \} \text{ مقدار مصرف شده برای تولید یک نسخه از محصول } p \text{ در منابع } \{ \text{مصرف } \}
\]

\[
\text{مقدار مصرف شده برای تولید یک نسخه از محصول } p \text{ در منابع } \{ \text{مصرف } \} \text{ مقدار مصرف شده برای تولید یک نسخه از محصول } p \text{ در منابع } \{ \text{مصرف } \} \text{ مقدار مصرف شده برای تولید یک نسخه از محصول } p \text{ در منابع } \{ \text{مصرف } \}
\]

\[
\text{مقدار مصرف شده برای تولید یک نسخه از محصول } p \text{ در منابع } \{ \text{مصرف } \} \text{ مقدار مصرف شده برای تولید یک نسخه از محصول } p \text{ در منابع } \{ \text{مصرف } \} \text{ مقدار مصرف شده برای تولید یک نسخه از محصول } p \text{ در منابع } \{ \text{مصرف } \}
\]
برنامه‌ریزی و زمان‌بندی سفارشات ناحیه نورد...

سهراب هاشمی نژاد، مهدي بيجاري و مهدي اشرفي نصرآبادي

تابع هدف

\[Z = \sum_{i} w_i \times \left(\sum_{t=1}^{T} (m_{ijt} - d_{ijt} \times R_{ij}) \right) + \sum_{j} \sum_{t} h_{i,jt} \times I_{i,jt}^t + \sum_{j} \sum_{t} h_{i,jt} \times I_{i,jt}^t \]

\[\sum_{j} a_{ij} \times X_{ijt} \times T_{ijt} \leq CAP_{jt} \] گ

\[\min \text{CCAP}_{jt} \leq S_{ijt} \leq \max \text{CCAP}_{jt} \]

\[\sum_{j} S_{ijt} \leq \max CT_{ijt} \]

\[SF_{y} \leq \sum_{j} I_{i,jt}^y \leq UI_{y} \]

\[\sum_{j} I_{i,jt}^p \leq UI_{l} \]

\[Z_{pkjt} \leq M \times b_{pkj} \]

\[X_{ijt} \leq M \times a_{ij} \]

\[ZF_{ijt} \leq M \times a_{ij} \]

\[R_{it} = R_{it-1} - \sum_{j} S_{ijt} \]

\[R_{0j} = D_{j} \]

\[\sum_{n} \text{Min Camp} (v, n, t) \leq Max \text{Camp} (v, j, t) \]

\[\sum_{n} \text{Min Camp} (v, n, t) \leq Max \text{Camp} (v, n, t) \]

\[Min \text{ CAP}_{j} \times Y_{jt} \leq \sum_{j} X_{ijt} \leq \text{CAP}_{jt} \times Y_{jt} \]

\[X_{ijt} \times Z_{pkjt} \times I_{i,jt}^p \times I_{i,jt}^p \times S_{ijt} \times R_{it} \geq 0 \]

\[Y_{jt} = 0,1 \]

محدودیت‌ها

\[I_{i,jt}^1 = I_{i,jt}^0 + N_{p1} - \sum_{j} a_{ij} \times X_{ijt} \]

\[I_{i,jt}^2 = I_{i,jt}^1 + N_{p1} - \sum_{j} a_{ij} \times X_{ijt} \]

\[I_{i,jt}^3 = \lambda_{ijt}^p + \sum_{j} a_{ij} \times X_{ijt} \]

\[I_{i,jt}^4 = \lambda_{ijt}^p + \sum_{j} a_{ij} \times X_{ijt} \]

\[I_{i,jt}^5 = I_{i,jt}^4 + N_{p1} - \sum_{j} a_{ij} \times X_{ijt} \]

\[I_{i,jt}^6 = I_{i,jt}^5 + N_{p1} - \sum_{j} a_{ij} \times X_{ijt} \]

\[I_{i,jt}^7 = I_{i,jt}^6 + \sum_{j} a_{ij} \times X_{ijt} \]

\[I_{i,jt}^8 = I_{i,jt}^7 + \sum_{j} a_{ij} \times X_{ijt} \]

\[I_{i,jt}^9 = I_{i,jt}^8 + \sum_{j} a_{ij} \times X_{ijt} \]

\[\sum_{j} a_{ij} \times X_{ijt} \leq \text{Max Camp} (v, j, t) \]

\[\sum_{j} a_{ij} \times X_{ijt} \leq \text{Max Camp} (v, j, t) \]

\[I_{i,jt}^f = I_{i,jt}^0 + \sum_{j} a_{ij} \times X_{ijt} \]

\[I_{i,jt}^g = I_{i,jt}^f + N_{p1} - \sum_{j} a_{ij} \times X_{ijt} \]

\[I_{i,jt}^h = I_{i,jt}^g + N_{p1} - \sum_{j} a_{ij} \times X_{ijt} \]

\[\sum_{j} a_{ij} \times X_{ijt} \geq 0 \]

\[X_{ijt} = Z_{F_{ijt}} + \sum_{j} a_{ij} \times Z_{F_{ijt}} \]

\[Min \text{ CAP}_{j} \times Y_{jt} \leq \sum_{j} X_{ijt} \leq \text{CAP}_{jt} \times Y_{jt} \]

\[Min \text{ CAP}_{j} \times Y_{jt} \leq \sum_{j} X_{ijt} \leq \text{CAP}_{jt} \times Y_{jt} \]

\[X_{ijt} \times Z_{pkjt} \times I_{i,jt}^p \times I_{i,jt}^p \times S_{ijt} \times R_{it} \geq 0 \]

\[Y_{jt} = 0,1 \]
برنامه‌ریزی و زمان‌بندی سفارشات ناحیه نورد.
سهراب هاشمی نژاد، مهدی بيجاري و مهدی اشرفي نصرآبادي

5. حل مدل و ارائه نتایج عددي

اطلاعات مورد نیاز شامل: خانواده محصول، سیکل تولید، عرض، ضخامت، مواد، کیفیت داخلی و خارجی، استاندارد نورد. در سطح
به نظر می‌رسد، مدل ایزوتروپ برای تولید سفارشات مناسب ایستاده. در نهایت برای تولید سفارشات مناسب ایستاده.

7. حل مدل و ارائه نتایج عددي

برنامه‌ریزی سفارش توسط شرکت‌های محصولات از اینشبه‌یابی به محصولات نورز، تولید از محصولات تولید محسوب شده در این مدل کاملاً با توجه به محصولات به سفارشات در اینستیوشن‌های نورد شده است.

11. حل مدل و ارائه نتایج عددي

محصولات و تولید محصولات به سفارشات در اینستیوشن‌های نورد شده است.

13. محصولات و تولید محصولات به سفارشات در اینستیوشن‌های نورد شده است.

19. محصولات و تولید محصولات به سفارشات در اینستیوشن‌های نورد شده است.

21. محصولات و تولید محصولات به سفارشات در اینستیوشن‌های نورد شده است.

24. تولید و ارائه نتایج عددي

برنامه‌ریزی سفارش توسط شرکت‌های محصولات از اینشبه‌یابی به محصولات نورز، تولید از محصولات تولید محسوب شده در این مدل کاملاً با توجه به محصولات به سفارشات در اینستیوشن‌های نورد شده است.

26. حل مدل و ارائه نتایج عددي

برنامه‌ریزی سفارش توسط شرکت‌های محصولات از اینشبه‌یابی به محصولات نورز، تولید از محصولات تولید محسوب شده در این مدل کاملاً با توجه به محصولات به سفارشات در اینستیوشن‌های نورد شده است.

29. حل مدل و ارائه نتایج عددي

برنامه‌ریزی سفارش توسط شرکت‌های محصولات از اینشبه‌یابی به محصولات نورز، تولید از محصولات تولید محسوب شده در این مدل کاملاً با توجه به محصولات به سفارشات در اینستیوشن‌های نورد شده است.

31. حل مدل و ارائه نتایج عددي

برنامه‌ریزی سفارش توسط شرکت‌های محصولات از اینشبه‌یابی به محصولات نورز، تولید از محصولات تولید محسوب شده در این مدل کاملاً با توجه به محصولات به سفارشات در اینستیوشن‌های نورد شده است.

32. مقایسه مدل تولید با توجه به محصولات کمیی

برنامه‌ریزی سفارش توسط شرکت‌های محصولات از اینشبه‌یابی به محصولات نورز، تولید از محصولات تولید محسوب شده در این مدل کاملاً با توجه به محصولات به سفارشات در اینستیوشن‌های نورد شده است.

37. حل مدل و ارائه نتایج عددي

برنامه‌ریزی سفارش توسط شرکت‌های محصولات از اینشبه‌یابی به محصولات نورز، تولید از محصولات تولید محسوب شده در این مدل کاملاً با توجه به محصولات به سفارشات در اینستیوشن‌های نورد شده است.

43. حل مدل و ارائه نتایج عددي

برنامه‌ریزی سفارش توسط شرکت‌های محصولات از اینشبه‌یابی به محصولات نورز، تولید از محصولات تولید محسوب شده در این مدل کاملاً با توجه به محصولات به سفارشات در اینستیوشن‌های نورد شده است.

52. حل مدل و ارائه نتایج عددي

برنامه‌ریزی سفارش توسط شرکت‌های محصولات از اینشبه‌یابی به محصولات نورز، تولید از محصولات تولید محسوب شده در این مدل کاملاً با توجه به محصولات به سفارشات در اینستیوشن‌های نورد شده است.
جدول 1: تفاوت زمان حل مدل با تعداد سفارشات مختلف (بدون اعمال محدودیت صفر و یک)

<table>
<thead>
<tr>
<th>حافظه</th>
<th>تعداد محصول</th>
<th>تعداد سفارش</th>
<th>حافظه</th>
<th>تعداد محصول</th>
<th>تعداد سفارش</th>
</tr>
</thead>
<tbody>
<tr>
<td>32GB</td>
<td>2689</td>
<td>2669</td>
<td>2644</td>
<td>2632</td>
<td>2632</td>
</tr>
<tr>
<td>358</td>
<td>358</td>
<td>358</td>
<td>358</td>
<td>358</td>
<td>358</td>
</tr>
<tr>
<td>379</td>
<td>379</td>
<td>379</td>
<td>379</td>
<td>379</td>
<td>379</td>
</tr>
<tr>
<td>420</td>
<td>420</td>
<td>420</td>
<td>420</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>441</td>
<td>441</td>
<td>441</td>
<td>441</td>
<td>441</td>
<td>441</td>
</tr>
<tr>
<td>1018</td>
<td>1018</td>
<td>1018</td>
<td>1018</td>
<td>1018</td>
<td>1018</td>
</tr>
</tbody>
</table>

جدول 2: مجموع میزان تولید محصولات بر روی ماهنها مختلف در 15 روز اول

<table>
<thead>
<tr>
<th>روز</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1264</td>
</tr>
<tr>
<td>2</td>
<td>1264</td>
</tr>
<tr>
<td>3</td>
<td>1264</td>
</tr>
<tr>
<td>4</td>
<td>1264</td>
</tr>
<tr>
<td>5</td>
<td>1264</td>
</tr>
</tbody>
</table>

لذا برای تهیه جواب‌های بدتر، محدودیت‌های شرط‌های صفر و یک نیاز است. برای یافتن جواب‌های بهینه‌تر، محدودیت‌های صفر و یک ضروری هستند.

5-1 مراحل بهبود جواب‌های اولیه

- گام اول: $A_{ij} = \frac{1}{\lambda}$
- گام دوم: به‌این‌وایی که $|A_{ij}| \leq M_{ij}$
جدول 3. مجموع میزان تولید محصولات بر روی ماشین‌های مختلف در 15 روز اول (با اعمال محدودیت صرف‌بندی) در نقاط مشخص شده جواب اولیه و محدودیت عدم ایجاد جواب‌های غیر قابل قبول در نقاط دیگر

| شماره | مقدار تولید مشخص شده | کل میزان تولید مدل | سفارشات ثبت‌شده | مقدار وزنی سفارشات تحول
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2212</td>
<td>2800</td>
<td>2212</td>
<td>127679</td>
</tr>
<tr>
<td>2</td>
<td>2800</td>
<td>2800</td>
<td>2800</td>
<td>143172</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>12708</td>
</tr>
<tr>
<td>4</td>
<td>3000</td>
<td>3500</td>
<td>3000</td>
<td>163764</td>
</tr>
<tr>
<td>5</td>
<td>473</td>
<td>469</td>
<td>473</td>
<td>350</td>
</tr>
<tr>
<td>6</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1600</td>
<td>1400</td>
<td>1600</td>
<td>1600</td>
</tr>
<tr>
<td>10</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
</tr>
<tr>
<td>11</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

نتیجه‌گیری و پیشنهادات بر بر تحقیقات آتی

این تحقیق جهت ارائه یک مدل برنامه‌ریزی سفارشات در ناحیه نورد سرد مصرفی فولاد مبارک انجام شده و نتایج آن به دست آمده که بر اساس مدل در وزن‌های یک‌نفره و دو نفره انجام گرفته‌است و نتایج آن به خوبی با نتایج مدل برنامه‌ریزی ارائه شده و تحقیق قبلی یافت شده و نتایج را ارائه می‌دهد. البته با توجه به میزان مدل ریاضی مشاهده شده است که افزایش قابل توجهی در مشاهده کاهش وابسته‌ای از همه کاهش قابل توجهی در هزینه تأخیرات داشته باشد.

جدول 4. میزان بهبود در استفاده از مدل نسبت به روش فعلي

<table>
<thead>
<tr>
<th>مقدار وزنی سفارشات تحول (بر حسب تن)</th>
<th>مقدار سفارشات تحول شده (بر حسب تن)</th>
<th>کل میزان تولید ماشین‌ها (بر حسب تن)</th>
<th>فعالیت (سود دستی)</th>
<th>مدل ارائه شده</th>
<th>درصد بهبود روش استفاده از مدل نسبت به روش فعلي</th>
</tr>
</thead>
<tbody>
<tr>
<td>27869.74</td>
<td>1205</td>
<td>429788.34</td>
<td>6972.36</td>
<td>143172</td>
<td>100.3</td>
</tr>
<tr>
<td>149417.21</td>
<td>1042</td>
<td>82719.95</td>
<td>100.5</td>
<td>143172</td>
<td>100.3</td>
</tr>
</tbody>
</table>

نتیجه‌گیری و پیشنهادات بر بر تحقیقات آتی

این تحقیق جهت ارائه یک مدل برنامه‌ریزی سفارشات در ناحیه نورد سرد مصرفی فولاد مبارک انجام شده و نتایج آن به دست آمده که بر اساس مدل در وزن‌های یک‌نفره و دو نفره انجام گرفته‌است و نتایج آن به خوبی با نتایج مدل برنامه‌ریزی ارائه شده و تحقیق قبلی یافت شده و نتایج را ارائه می‌دهد. البته با توجه به میزان مدل ریاضی مشاهده شده است که افزایش قابل توجهی در مشاهده کاهش وابسته‌ای از همه کاهش قابل توجهی در هزینه تأخیرات داشته باشد.

نتیجه‌گیری و پیشنهادات بر بر تحقیقات آتی

این تحقیق جهت ارائه یک مدل برنامه‌ریزی سفارشات در ناحیه نورد سرد مصرفی فولاد مبارک انجام شده و نتایج آن به دست آمده که بر اساس مدل در وزن‌های یک‌نفره و دو نفره انجام گرفته‌است و نتایج آن به خوبی با نتایج مدل برنامه‌ریزی ارائه شده و تحقیق قبلی یافت شده و نتایج را ارائه می‌دهد. البته با توجه به میزان مدل ریاضی مشاهده شده است که افزایش قابل توجهی در مشاهده کاهش وابسته‌ای از همه کاهش قابل توجهی در هزینه تأخیرات داشته باشد.
Shade este. \(\text{By a mathematical programming model and solution for scheduling production orders in Shanghai Baoshan Iron and Steel Complex.} \)

[16]