Application of Decision Calculus in Allocation of Marketing Budgets Based on Markov Chains

H.R. Koosha & A. Albadvi*

Hamidreza Koosha Assistant Professor, Ferdowsi University of Mashhad, Iran, koosha@um.ac.ir
Amir Albadvi, Professor, Tarbiat Modares University, Iran, albadvi@modares.ac.ir

Keywords
Decision Calculus (DC), Customer relationship budgets, Management judgment, Markov chain, Transition matrix.

ABSTRACT
Decision Calculus (DC) is a judgment-based approach which considers managers’ opinion in formulation of real world situations. In DC, manager’s mind and the model are aggregated to each other. Little in 1970 introduced the philosophy of decision calculus and it has been used widely in formulation of problems in marketing. The main purpose of this paper is to provide an application for DC in allocation of marketing budgets as a critical activity in marketing. In case of data availability and environmental complexity, researchers suggest the use of mixed models to face such situations to allocate marketing budgets. Mixed models are models which use all the data from the past and managers’ judgment altogether to provide more effective models. In this paper we suggest a simple mixed model. Then we provide a more complex model based on DC and Markov Chains Models (MCM). The suggested models are predicted to be effective in better decision making on allocation of customer relationship budgets.

© 2014 IUST Publication, IJIEPM. Vol. 25, No. 1, All Rights Reserved

*Corresponding author, Amir Albadvi
Email: albadvi@modares.ac.ir
به کارگیری ریاضیات تصمیم در تخصیص بودجه‌های بازاریابی متقا بر زنجیره‌های مارکوف

حمیدرضا کوشا و امیر البدوی

چکیده:

کلمات کلیدی: ریاضیات تصمیم (DC)، تصمیم‌گیری بر قضاوتهای ارتباط با مشتری، فضا و زمان، زنجیره‌های مارکوف، ماتریس انتقال

دیگر کلمات کلیدی: تصمیم‌‌گیری بر قضاوت، ریاضیات تصمیم (DC)، تصمیم‌گیری بر قضاوت، ریاضیات تصمیم (DC)

بخش ۱: مقدمه

از دیدگاه مدیران فعل در عرصه بازاریابی، هدف اصلی استفاده از مدیریت بازاریابی برای افزایش آنها و افزایش شرایط بازاریابی است. زمانی این اطلاعات مفیدی نبوده و به جای آن نکاتی از بخش‌های مختلف بازاریابی بوده که دچار تغییراتی هستند.

در این مقاله کوشا و البدوی بر اساس مدل‌های مارکوف، تصمیم‌گیری بر قضاوت و زنجیره زمانی بر اساس مدل‌های ریاضی مطرح می‌کنند. در این مقاله این مدل را در بخش اول بررسی و آن را در دوازده‌مجله به تکنیک های دقیق تجزیه و تحلیل، مدل‌های ریاضی و تحلیل‌های دقیق و تکنیک‌های دقیق تجزیه و تحلیل به‌کار برده می‌گردند.

1 مقدمه

از دیدگاه مدیران فعل در عرصه بازاریابی، هدف اصلی استفاده از مدیریت بازاریابی برای افزایش آنها و افزایش شرایط بازاریابی است. زمانی این اطلاعات مفیدی نبوده و به جای آن نکاتی از بخش‌های مختلف بازاریابی بوده که دچار تغییراتی هستند.

در این مقاله کوشا و البدوی بر اساس مدل‌های مارکوف، تصمیم‌گیری بر قضاوت و زنجیره زمانی بر اساس مدل‌های ریاضی مطرح می‌کنند. در این مقاله این مدل را در بخش اول بررسی و آن را در دوازده‌مجله به تکنیک های دقیق تجزیه و تحلیل، مدل‌های ریاضی و تحلیل‌های دقیق و تکنیک‌های دقیق تجزیه و تحلیل به‌کار برده می‌گردند.
به کارگیری ریاضیات در تصمیم در تخصص بودجه‌های بازاریابی، منکی بر زنجیره‌های مارکوف

حمیدرضا کوش‌آبادی و امیر‌البسطی

شده است و فرض شده است که اطلاعات چندانی از گذشته موجود نمی‌باشد. این در حالی است که در آثار محیط‌محیط گوناگون بازرگان و به‌طور عمده اطلاعات معمولاً وجود ندارد. مدلی که در این تحقیق ارائه شده است، با فرض وجود چنین محیط‌هایی تحقیق دقیق افتاده است.

در این مقاله هم‌چنین مدلی عمومی ارائه می‌گردد که در آن تخصص بودجه‌های بازاریابی به کمک ریاضیات تصمیم مدل، سازی می‌شود.

پس از مقدمه، بیشینهی موضوع ریاضیات تصمیم مورر می‌تواند سپس به بررسی مدل‌های بیشینهی تصمیم‌گیری و تئوری تغییر انتقال باشد.

در ادامه مدل‌های موجود گردید که در آن تکنیکی از اطلاعات مستند گذشته پژوهش‌های بازاریابی و به‌طور کلی بخش‌های مختلفی از شرکت به‌طور م例行 تهیه و ارائه می‌شود.

در ادامه بیان سلسله‌های مختلف روابط با متمتیکاً مدل تصمیم‌گیری بازاریابی و رابطه بازاریابی با شرکت را توضیح می‌دهد.

رویکرد ریاضیات تصمیم در سال ۱۹۷۰ توسط لیبت پیشنهاد گردید. بسیار موثر توجه واقع شد که بازاریابی گسترش‌یافته در زمینه بازاریابی بسیار گسترده است. این موضوع را در مدل Management Science مطرح کرد. این مدل به عنوان یکی از Management Science متقارن مدل‌هایی است که در طول سال‌ها در این زمینه اکثر بکار گرفته شده است.

بحث ۱. تاریخچه ریاضیات تصمیم در تخصص بودجه‌های بازاریابی

در سال ۱۹۷۰ لیبت فنوسه جدید ریاضیات تصمیم را که رویکرد ضروری مجموعه‌ای از روش‌های مدل‌سازی برای بردهای و روانکاری در روابط بازاریابی معرفی نمود. [۱] لیبت در [۱۲] مفاهیم ریاضیات تصمیم را به عنوان رویکردی برای تصمیم‌گیری در بودجه‌های بازاریابی ارائه می‌دهد.

رویکرد همگی می‌توانند تکنیکی معمولی بازاریابی در اساسیت است. این امر از دیدگاه صاحبان سهام از دیگر مشاهده شده است. بازاریابی، به عنوان یکی از رواج‌هایی که بازاریابی به چنین مشاهده‌هایی می‌یابد، به عنوان یکی از رواج‌هایی که بازاریابی به چنین مشاهده‌هایی می‌یابد.

یکی از مهم‌ترین عوامل در بازاریابی که در آن می‌توان از ریاضیات تصمیم استفاده نمود، بررسی تاثیر تصمیم‌گیری و تئوری تغییر انتقال بازاریابی در جنبش به‌نهاگیری مشاهده است. در این حوزه از تصمیم‌گیری به عنوان یکی از جنبه‌هایی که بازاریابی به چنین مشاهده‌هایی می‌یابد.

هر چند در این حوزه [۱۰] و [۱۱] کارهایی را ارائه نموده‌اند، اما در مدل‌های آن‌ها نگاهی که به‌طور یکسان با مدلهای ریاضیات تصمیم

۱. Decision Analysis
۲. Systems Dynamics
۳. Relationship Marketing
پاسخ به پرسش اول یک نقطه از منحصراً پاسخ را به ما ارائه می‌کند و مقدار R دو قابل اندازه‌گیری می‌باشد. همچنین پاسخ به پرسش دوم دوم
C_F به قابل اندازه‌گیری می‌کند. با در نظر گرفتی که با داشتن یک نقطه از منحصراً و معلوم شدن بیان‌رای پارامتر جهول،
[10] برای تصویب بهره‌مندی ارتباط با مشتری آرای شده است:

\[
\text{Max } CE = am - A + \frac{a}{1 + d - r} (mr - R)
\]

\[
A + rA \leq B
\]
\[
A, R \geq 0
\]

می‌توان با توجه به چنین مدل‌ها، آن‌ها به‌کمک رابطهument {1} و تعریف {2} می‌تواند با حل مسئله اواساز حاصلی سهمی از کاهش مشتری‌می‌باشد که یک سنجی می‌باشد. بهمین‌طور در روابطی با منابع مشتری‌می‌باشد.

همانطور که مشاهده می‌شود در روابطی نظر جنگ و نظر تغییری قابل مشاهده هستند. یک فرض منطقی آن است که نظر جنگ و نظر تغییری قابل با توجه به آن تغییری ضریب صفر شده برای
A و B به ویژه در این صورت ریاضیات

\[
C_s = \beta_s - \beta_t \theta_s + \alpha_s \theta_t
\]

\[
\theta_s \geq 0, \beta_s > 0, \alpha_s > 0
\]

به‌کمک رابطهument {1} و ارتباط با منابع نظر نیشته نموده‌اند. آن‌ها برای این منظور اقدام در مدل

\[
C_s = \beta_s - \beta_t \theta_s + \alpha_s \theta_t
\]

\[
\theta_s \geq 0, \beta_s > 0, \alpha_s > 0
\]

به‌کمک رابطهument {1} می‌تواند با حل مسئله اواساز حاصلی سهمی از کاهش مشتری‌می‌باشد.

\[
C_s = \beta_s - \beta_t \theta_s + \alpha_s \theta_t
\]

\[
\theta_s \geq 0, \beta_s > 0, \alpha_s > 0
\]

به‌کمک رابطهument {1} و ارتباط با منابع نظر نیشته نموده‌اند. آن‌ها برای این منظور اقدام در مدل

\[
C_s = \beta_s - \beta_t \theta_s + \alpha_s \theta_t
\]

\[
\theta_s \geq 0, \beta_s > 0, \alpha_s > 0
\]

به‌کمک رابطهument {1} می‌تواند با حل مسئله اواساز حاصلی سهمی از کاهش مشتری‌می‌باشد.

\[
C_s = \beta_s - \beta_t \theta_s + \alpha_s \theta_t
\]

\[
\theta_s \geq 0, \beta_s > 0, \alpha_s > 0
\]
462 - نشریه بین المللی مهندسی صنایع و مدیریت تولید، خرداد 1392- جلد 25- شماره 1

حمیدرضا کوشا و امیر البدوی

به کارگیری ریاضیات تصادفی در تخصیص بودجه‌های بازاریابی منحی بر زنجیره‌های مارکوف

شکل ۱. نمونه‌ای از منحنی نرخ جذب و نگهداری (نرخ جذب S-شکل و نرخ نگهداری مقعر)

مشکل دیگری که در همه روابط مذکور وجود دارد این است که اگر هزینه‌های برای تغییرات مصرف تدریجی، تریجاً جذب و نگهداری صفر شوند، این جمله در حالتی که در دنبال واقعین نیست، با همین ممکن مصرف‌دریجی باشد به صورت زیر اصلاح می‌شود [۱۸]:

\[r = C_r \frac{R_h}{W_2 + R_h} \quad \text{و} \quad a = C_a \frac{A_h}{W_1 + A_h} \]

\[a = a_0 + (C_a - a_0) \frac{A_h}{W_1 + A_h} \]

\[r = r_0 + (C_r - r_0) \frac{R_h}{W_2 + R_h} \]

در روابط اخیر، \(a_0 \) و \(r_0 \) به ترتیب نرخ جذب و نگهداری در زمانی هستند که هزینه‌های صرف نشده است. همان‌طور که گفته شد مقدار \(C_r \) و \(C_a \) به ترتیب زیر قابل محاسبه هستند:

\[C_r = \beta_r \theta_h^h \quad \text{و} \quad C_a = \alpha_a + \alpha_r \theta_h^h \]

\[\beta \] و \(\theta_h \) می‌شود؟

در اینجا نمونه‌ای از منحنی نرخ جذب و نگهداری (نرخ جذب S-شکل و نرخ نگهداری مقعر) قابل دیدن است. هر دو جذب و نگهداری به ترتیب به صورت زیر محاسبه می‌شوند:

\[r = C_r \frac{R_h}{W_2 + R_h} \quad \text{و} \quad a = C_a \frac{A_h}{W_1 + A_h} \]

\[a = a_0 + (C_a - a_0) \frac{A_h}{W_1 + A_h} \]

\[r = r_0 + (C_r - r_0) \frac{R_h}{W_2 + R_h} \]

\[\beta \] و \(\theta_h \) می‌شود؟
مقدمه

بر اساس مدل‌های ریاضی، تخصیص منابع باید به‌دست‌آورده نشود. این مقاله به‌طور گسترده‌ای در زمینه آماری، استاندارد و مدیریت استفاده شده است. پیشنهاداتی که برای استفاده از مدل‌های ریاضی در مدیریت منابع بیشتر استفاده شده است.

وزن‌های پیشنهادی برای استفاده از مدل‌ها با اساس پیچیدگی و دسترسی به اطلاعات

در مرحله‌ای که داده‌های منابع باید به‌دست‌آورده شوند، نیاز به استفاده از مدل‌های ریاضی برای تخصیص منابع بوده‌است. در دو مرحله اصلی: (a) تخصیص منابع بتواند به شکل 2 و طرح استفاده از مدل‌های ریاضی در مدیریت منابع بتواند به‌کار گیرد.

شکل 1: پیشنهادات برای استفاده از مدل‌های ریاضی در مدیریت منابع

شکل 2: پیشنهادات برای استفاده از مدل‌های ریاضی در مدیریت منابع

جدول 3: مختصات منابع بایستی بر اساس منابع تخصیص

4 Objective
مشتری و سازمان را به حالت‌های بیشتری می‌توان طبقه‌بندی کرد. مزیت این کار در این این است که طبقه‌بندی به‌هیچ‌یک از مشتریان ارائه می‌شود و در نتیجه امید می‌رود به نتایج مطلوبتری دست پیدا کنیم.

پیکری از مدل‌های ارایه شده مدل ارایه [160] است. در این مدل که از مدل زنجیره مارکوف استفاده می‌شود، یک پالایش‌سازی منظم بر بالاست و احتمالات انتقال از حالت آزاد را در ماتریس تحریک عنوان مانند انتقال 1 جمع‌نمود. در این بخش رویکردی را برای یک پالایش‌سازی به کمک مدل ارایه شده در [160] و بر پایه تحلیل تخصیص ارائه ای که گفته بوده‌می‌تواند مدل‌های ریاضی ارایه شده به آن ترتیب زیر است:

• شناسایی حالت‌های ارتباط با مشتری
 • تهیه ماتریس انتقال و محاسبه احتمالات ماتریس مذکور به کمک رویکردهای تحلیلی
 • اندازه‌گیری محتمل جهت تخصیص بودجه
 • تخصیص بهینه بودجه ارتباط با مشتری

1.1 شناسایی حالت‌های ارتباط با مشتری

برای تخصیص بهینه منابع لازم که مشتریان از نظر سطح رابطه با ظن و نشانه‌شدن. به عنوان مثال در مدل ساده‌اند می‌توان مشتریان را با میزان موفقیت مشتریان کوچک و مشتریان بیشتر دانست. سادگی مدل حالت که در مدل‌های ساده‌اند كانه نمی‌پذیرد. در این ارائه شده نیز مشتریان را از نظر گرایش دانست. حالت ای است که مشتریان تا دو حالت داشته باشند با مشتری افرادی می‌گردد. مشتریان از نظر شامل دو حالت داشته باشند با مشتری افرادی می‌گردد. مشتریان از نظر شامل دو حالت داشته باشند با مشتری افرادی می‌گردد. مشتریان از نظر شامل دو حالت داشته باشند با مشتری افرادی می‌گردد.

\[
\sum_{i=1}^{m} (a_i - a_0 - (c_i - a_0) \cdot \frac{A_i}{w_i + A_i}) = 0
\]

\[
\sum_{i=1}^{m} (a_i - a_0 - (c_i - a_0) \cdot \frac{A_i}{w_i + A_i^2}) = 0
\]

• اکنون با حل مدل‌دیده می‌توان مشتری‌های جدیدی را برای انتخاب‌های فنی نرم‌افزارهای باین‌تیوی مسئله‌ای را حل کنیم.

4. رویکردهای جدید برای تخصیص بودجه‌های بازاریابی

به کمک روش‌های تحلیلی

در بخش قبل به مدل‌های آشکار که در آن با توجه به بودجه مشتریان یک مدل ساده برای کنترل اجرا می‌شد که در مدل‌های آشکارهای بازاریابی هدف‌های مشتری با مشتری است. به کمک این نشاندان که در آن روابط بین

\[f = \sum_{i=1}^{m} e_i^2 = \sum_{i=1}^{m} (a_i - \hat{a}_i)^2 \]

\[f = \sum_{i=1}^{m} (a_i - a_0 - (c_i - a_0) \cdot \frac{A_i}{w_i + A_i})^2 \]

\[\frac{\partial f}{\partial b_1} = 0 \]

\[\frac{\partial f}{\partial w_1} = 0 \]
۱۱۶
همدیدا کوشک و ایمر البدوی

به کارگیری ریاضیات تصمیم در تخصیص بودجه‌های بازاریابی: مکانی بر زنجیره‌های مارکوف

۵. مثال عدیدی و بحث

در اینجا برای تحلیل استفاده از مدل‌های ضمنی باید بررسی قسمت قبلی، دو مثال عدیدی ارائه و حل می‌شود. در مثال اول، یک مدل بودجه به گونه‌ای قابل رسیدن از یک برنامه موردنظر در ادبیات موضوع در مقاله [101] و

به کارگیری ریاضیات تصمیم در تخصیص بودجه‌های بازاریابی: مکانی بر زنجیره‌های مارکوف

۵. مثال عدیدی و بحث

در اینجا برای تحلیل استفاده از مدل‌های ضمنی باید بررسی قسمت قبلی، دو مثال عدیدی ارائه و حل می‌شود. در مثال اول، یک مدل بودجه به گونه‌ای قابل رسیدن از یک برنامه موردنظر در ادبیات موضوع در مقاله [101] و

به کارگیری ریاضیات تصمیم در تخصیص بودجه‌های بازاریابی: مکانی بر زنجیره‌های مارکوف

۵. مثال عدیدی و بحث

در اینجا برای تحلیل استفاده از مدل‌های ضمنی باید بررسی قسمت قبلی، دو مثال عدیدی ارائه و حل می‌شود. در مثال اول، یک مدل بودجه به گونه‌ای قابل رسیدن از یک برنامه موردنظر در ادبیات موضوع در مقاله [101] و

به کارگیری ریاضیات تصمیم در تخصیص بودجه‌های بازاریابی: مکانی بر زنجیره‌های مارکوف

۵. مثال عدیدی و بحث

در اینجا برای تحلیل استفاده از مدل‌های ضمنی باید بررسی قسمت قبلی، دو مثال عدیدی ارائه و حل می‌شود. در مثال اول، یک مدل بودجه به گونه‌ای قابل رسیدن از یک برنامه موردنظر در ادبیات موضوع در مقاله [101] و
نکته اصلی این کار گزارش تخصصی حسابداری محسوب

cارگیری ریاضیات تصمیم در تخصیص بودجه‌های بزرگ‌راه‌سازی و مدیریت تویله

حمیدرضا کوشان و امیر البودی

115

کارگیری‌ریاضیاتی‌در‌تصمیم‌گیری‌اقتصادی‌در‌به‌جهت‌وصول‌به‌بهترین‌نتایج

در (1) مقدار خودبندی با میانگین‌‌برداری را به‌کمک مدل عدمی انتخاب و در (2) مقدار خودبندی با جدایی جنبه‌های برنامه‌ریزی و سازمان‌کردن را به‌کمک مدل عدمی انتخاب و در (3) مقدار خودبندی با جدایی جنبه‌های برنامه‌ریزی و سازمان‌کردن را به‌کمک مدل عدمی انتخاب کرد.

مثال عددی 2: فرض کنید یک ایرانی لفظ همبند به‌کارگیری ریاضیاتی در تصمیم‌گیری در مرحله انتخاب برقراری یک انتخاب را به‌کمکی از مدل عدمی انتخاب کرد:

1. مدل عدمی انتخاب برقراری یک انتخاب را به‌کمکی از مدل عدمی انتخاب کرد.
2. مدل عدمی انتخاب برقراری یک انتخاب را به‌کمکی از مدل عدمی انتخاب کرد.
3. مدل عدمی انتخاب برقراری یک انتخاب را به‌کمکی از مدل عدمی انتخاب کرد.

به‌کمک این مدل، مورد بررسی می‌شود که به‌کمکی از مدل عدمی انتخاب کرد.

جاذب در این مدل، مورد بررسی می‌شود که به‌کمکی از مدل عدمی انتخاب کرد.

جاذب در این مدل، مورد بررسی می‌شود که به‌کمکی از مدل عدمی انتخاب کرد.

به‌کارگیری ریاضیات تصمیم در تخصیص بودجه‌های بابازاربایان متکی بر زنجیره‌های مارکوف
حمیدرضا کوشا و امیر البدوی

فرض می‌کنیم که برای هر حالت i ما بودجه‌های به‌اندازه S_i صرف می‌کنیم، برای مشتریان بالقوه صرف i، می‌توان روابط زیر را بر اساس رابطه گذشته‌های نوشت:

$$p_{i,1} = p_{i,2}^0 + (c_{i,1} - p_{i,1}^0) \frac{S_i^{h,2}}{w_{1,2} + S_i^{h,2}}$$

$$p_{i,1} = 1 - p_{i,2}$$

در رابطه اول، احتمال انتقال از حالت i به حالت $i+1$ به‌این معنای بوده به‌ویژه بودجه‌های داراد که شرکت بر روی مشتریان بالقوه صرف می‌کند. احتمال انتقال از حالت i به حالت $i+1$ به‌ویژه که هیچ بودجه‌ای S_i صرف نشود نموده است که در رابطه بالا قابل روند است. بودجه‌های مشتریان به‌ویژه هر مشتری حالت i هزینه می‌شود $b_{i,2}$ مقدارد نتایی هستند که تخلیه گر باید خواهد کرد.

برای مشتریان حالت‌هایی که ۲ تا ۸ می‌توان احتمالات را از رابطه زیر بر اساس کرد:

$$p_{i,i+1} = p_{i,i+1}^0 + (c_{i,i+1} - p_{i,i+1}^0) \frac{S_i^{h,i+1}}{w_{i,i+1} + S_i^{h,i+1}}$$

$$i = 2, ..., 8$$

برای محبوب احتمال‌های $p_{i,12}, p_{i,15}$ می‌توان از اطلاعات موجود در پایگاه داده‌ای موجود استفاده کنیم. بنابراین، نسبت زیر را تعیین می‌کنیم:

$$\alpha_i = \frac{d_i}{d_i + b_i}$$

قابل ذکر است که در نهایت مارکوف فقط فرض شده است که مشتریان که دیگر مشتری نیستند، باید جذب نیستند و اگر ما یک مشتری را با دست داده‌ای مانند یک دیگر وجود ندارد، همچنان فرض شده است که اگر یک مشتری در سطح ۹ تا ۱۱ قرار گیرد و سپس مبلغ بدهد خود را برداشته می‌کند، به‌طور کلی بازخواهد گشت. بررسی نتایج معادلاتی که در بخش قبل ارائه کرده‌ایم، می‌توانیم مشاهده کنیم احتمالات با اکتا به روی مشتری‌هایی $[11]$ احتمال انتقال از حالت i به حالت j را می‌توان به صورت زیر محاسبه کرد:

$$p_{i,j+1} = p_{i,j+1}^0 + (c_{i,j+1} - p_{i,j+1}^0) \frac{S_i^{h,j+1}}{w_{i,j+1} + S_i^{h,j+1}}$$

همانطور که مشاهده می‌کنید، احتمال انتقال مشتری به کنار حالت به‌ویژه مشتری نیست، به‌ویژه از هزینه‌ای انتقال این مشتری آن حالت می‌شود. این احتمال را در رابطه بالا با P_{ij} نشان می‌دهیم. احتمال انتقال از حالت i به حالت j به‌ویژه نتایی هیچ که صرف کل b_{ij} مشتریانی می‌شود S_{ij} هزینه‌ای است که صرف کل

باید به مشتری صفر باشد را با P_{ij} نشان می‌دهیم. احتمال انتقال از حالت i به حالت j به‌ویژه نتایی هیچ که صرف کل b_{ij} مشتریانی می‌شود S_{ij} هزینه‌ای است که صرف کل

در مورد استفاده قرار داد. برای مثال:

$$p_{8,8} = p_{8,8}^0 + (c_{8,8} - p_{8,8}^0) \frac{S_i^{h,8}}{w_{8,8} + S_i^{h,8}}$$

نشريه بين المليه مهندسي صنایع و مدیريت توليد. خرداد 1393- جلد 25- شماره 1
در رابطه با d_i تعادل مشترکی است که در پایگاه داده از حالات 1 به حالت 9 تعداد مشترکی است که در پایگاه داده از حالات 1 به حالت 9 تعداد مشترکی است که در پایگاه داده از حالات 1 به حالت 9 نسبت مشترکی ویژه‌گان به گروه مشترکی است که در حاله 1 به یک حاله تابع مشترکی با یک حاله رابطه با خروجی اتم به می‌توان تقسیم یکدی:

\[p_{i,7} = (1 - \alpha_i)(1 - p_{i,i+1}) \]

\[p_{i,12} = \alpha_i (1 - p_{i,i+1}) \]

برای $9, 10, 11$ هدف این است که یک باید عبارت L داده مشترکی به حالت از بهینه رابطه با خروجی 9 به حالات مربوط به 2 بازین روابط اتمی تعاملات دیگری اتنال بشده، دستگاه معادلات زیر به دست می‌آید:

\[\sum_{i=1}^{n} (p_{i,i} - 0.2 - 0.8 - 0.2) = 0 \]

\[\sum_{i=1}^{n} (p_{i,i} - 0.2 - 0.8 - 0.2) = 0 \]

حالات 2 برای مشترکی حالت‌های $9, 10$ و 11 مطلوب است، هر جو موجه به دست آمده از دستگاه معیار تعادل است $w_2 = 94722$ و $b_1 = 3.0000$.

برای 1 به حالات مطلوب 2 عبارت است از:

\[p_{1,2} = 0.2 + 0.6 \frac{94722}{5} \]

به شیوه مشابه به می‌توان سایر احتمالات مشترک اتنال را محاسبه کرده باید با شرط مشترک روابط انتقالی داشته باشد.

جدول 1 متغیر پارامترهای ورودی

<table>
<thead>
<tr>
<th>d_i</th>
<th>(α_i)</th>
<th>$(p_{i,2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0</td>
<td>0.85</td>
<td>0.4</td>
</tr>
</tbody>
</table>

نتیجه‌های دستگاه معادلات حاصل از جدول بالا را در جدول 2 خلاصه کردیم.
برای دوره‌ای که تمرکز بر نگهداری مشتریان است، ماتریس زیر را خواهیم داشت:

\[
\begin{bmatrix}
0.8 & 0.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.43 & 0 & 0 & 0 & 0 & 0.285 & 0 & 0 & 0 \\
0 & 0 & 0.62 & 0 & 0 & 0 & 0.19 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.67 & 0 & 0 & 0.155 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.72 & 0 & 0.14 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.72 & 0.14 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.72 & 0.14 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.72 & 0.14 & 0 & 0 \\
0.43 & 0 & 0 & 0.72 & 0 & 0.14 & 0 & 0.14 & 0 & 0 \\
0.33 & 0 & 0 & 0 & 0.72 & 0.14 & 0 & 0 & 0.14 & 0 \\
0.16 & 0 & 0 & 0 & 0 & 0.72 & 0.14 & 0 & 0 & 0.14 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

نتیجه گیری
در این تحقیق، روابطی برای فرموله‌گردن رفتار مشتری و در ادامه بر اساس روشی برای تخصیص بودجه‌های ارباط با مشتری ارائه شد. در این روابط، اکثریت موجود در یک روابط پیکارچه به همراه پیش‌بینی مدل‌سازی رفتار مشتری به‌همگان اجزای پرداخته شده است. نمودبر و آن را به منظور تخصیص بودجه‌های ارباط با مشتری به کار برده.

جدول ۲ مقدار برآورد شده پارامترها نامعلوم

<table>
<thead>
<tr>
<th>(w_{ij})</th>
<th>(b_{ij})</th>
<th>احتمال</th>
</tr>
</thead>
<tbody>
<tr>
<td>94722</td>
<td>3.0000</td>
<td>1.1</td>
</tr>
<tr>
<td>99067</td>
<td>3.0000</td>
<td>2.2</td>
</tr>
<tr>
<td>94722</td>
<td>3.0000</td>
<td>3.4</td>
</tr>
<tr>
<td>94722</td>
<td>3.0000</td>
<td>4.5</td>
</tr>
<tr>
<td>99967</td>
<td>3.0000</td>
<td>5.6</td>
</tr>
<tr>
<td>99967</td>
<td>3.0000</td>
<td>6.7</td>
</tr>
<tr>
<td>99967</td>
<td>3.0000</td>
<td>7.8</td>
</tr>
<tr>
<td>99967</td>
<td>3.0000</td>
<td>8.8</td>
</tr>
<tr>
<td>99159</td>
<td>3.0000</td>
<td>9.1</td>
</tr>
<tr>
<td>94773</td>
<td>3.0000</td>
<td>10.2</td>
</tr>
<tr>
<td>99171</td>
<td>3.0000</td>
<td>11.3</td>
</tr>
</tbody>
</table>

برای دوره‌ای که در آن تمرکز بر جذب مشتری است، ماتریس آنتی‌گرای مشتری با توجه به زمینه مربوطه‌بوده است.

