Application of Decision Calculus in Allocation of Marketing Budgets Based on Markov Chains

H.R. Koosha & A. Albadvi

Hamidreza Koosha Assistant Professor, Ferdowsi University of Mashhad, Iran, koosha@um.ac.ir
Amir Albadvi, Professor, Tarbiat Modares University, Iran, albadvi@modares.ac.ir

Keywords

Decision Calculus (DC), Customer relationship budgets, Management judgment, Markov chain, Transition matrix.

ABSTRACT

Decision Calculus (DC) is a judgment-based approach which considers managers’ opinion in formulation of real world situations. In DC, manager’s mind and the model are aggregated to each other. Little in 1970 introduced the philosophy of decision calculus and it has been used widely in formulation of problems in marketing. The main purpose of this paper is to provide an application for DC in allocation of marketing budgets as a critical activity in marketing. In case of data availability and environmental complexity, researchers suggest the use of mixed models to face such situations to allocate marketing budgets. Mixed models are models which use all the data from the past and managers’ judgment altogether to provide more effective models. In this paper we suggest a simple mixed model. Then we provide a more complex model based on DC and Markov Chains Models (MCM). The suggested models are predicted to be effective in better decision making on allocation of customer relationship budgets.

© 2014 IUST Publication, IJIEPM. Vol. 25, No. 1, All Rights Reserved
به کارگیری ریاضیات تصمیم در تخصیص بودجه‌های بازاریابی منتکی بر زنجیره‌های مارکوف

حمیدرضا کوشا و امیر البدوی

چکیده:

ریاضیات تصمیم (DC) رویکردهای مبنی بر قضاوت است که در مدل‌سازی دنباله‌ای واقعی نظر مدربرت با نظر مدربرت را نیز در نظر می‌گیرد. به عبارت دیگر، نظر مدربرت در مدل‌سازی آنچه در دنباله‌ای واقعی اتفاق می‌افتد، به‌طور درستی عمل می‌کند که نظر مدربرت را نیز در نظر می‌گیرد. این نظر مدربرت در مدل‌سازی نظر مدربرت را به‌طور کامل ارائه می‌دهد و معرفی گردید در جامعه مختلف به‌طور کامل بازاریابی و ارتباط با مشتری به کار گرفته شد. هدف اصلی این تحقیق از یادگیری روش‌های ریاضیات تصمیم در تخصیص بودجه‌های مشتریان و بازاریابی است. در این مقاله به‌صورت فاقد رفتارهای مشتری ارائه می‌گردد. در این مقاله بر اساس روش‌های زنجیره‌های مارکوف مدل‌سازی ساده برای تخصیص بودجه ارائه می‌شود. سپس رویکردهای تصمیم‌گیری مبنی بر قضاوت تصمیم و مدل زنجیره مارکوف ارائه می‌گردد. پیش‌بینی می‌شود که نتایج این تحقیق به‌طور کامل تحلیل و تصمیمات ارائه شده در مدل‌های ریاضی ارتباط با مشتری داشته باشد.

کلمات کلیدی:

ریاضیات تصمیم (DC)، تصمیم‌گیری بر قضاوت، درمان، مدل‌سازی، زنجیره مارکوف، ماتریس انتقال

1. مقدمه

از دیدگاه مدیران، فعالیت در عرصه بازاریابی، هدف اصلی استفاده از مدل‌های بازاریابی رسیدن به تصمیمات بهتری ارائه شود. است. زمانی این اطلاعات اهمیت به‌طور مشتری می‌یابد که قرار باشد این تصمیمات به‌طور اگر در دیدن، مطالعه، از درک این صنعت مدل‌های شناختی

که برای این منظور به‌صورت ارائه می‌شود و به‌طور کامل تست مدل‌ها و روش‌ها قابل تکثیر و روش‌ها رسمی به نمایش گذاشته گردیده است. [4]

2 Decision Maker

3 Decision Calculus

حامیدرضا کوشا، استاد مهندسی صنایع، دانشگاه فردوسی مشهد
koosha@um.ac.ir

حمیدرضا کوشا، استاد مهندسی صنایع، دانشگاه فردوسی مشهد
koosha@um.ac.ir

نوع مقاله: مقاله پژوهشی مفهوم: گروه اپلیکاسیون نمایشگاهی انتخابی: دکتر امیر البدوی، استاد مهندسی صنایع، دانشکده
albadvi@modares.ac.ir

نشریه مهندسی صنایع و مدیریت تولید، شماره 1393- جلد 25- شماره 2- خرداد 1393
پیشینه ریاضیات تصمیم در تخصیص بودجه‌ها

2. پیشینه ریاضیات تصمیم در تخصیص بودجه‌ها

بازارپایی

در سال ۱۹۷۰ لیبلن فلسفة جدید ریاضیات تصمیم را که روبنکی شامل مجموعه‌ای از راهه ی ویژه مدل‌های پیاده‌برای برداشته‌ و داده‌ها و قضاوت‌های مدل‌برداری بر اساس تصمیم‌گیری پیاده‌برنده، معرفی نمود. [۱] لیبلن در [۲] مفهوم ریاضیات تصمیم را به عنوان روبنکی برای تصمیم‌گیری برای مدیران معرفی کرد. این روش، مدیران را قادر به استفاده از روش‌های ریاضی می‌سازد.

لیبلن در [۳] از این نکته اشاره کرده که اگر مدیران باید از مدیریت و بزارپایی تمرکز داشته باشند، باید استفاده از روش‌های ریاضی را به عنوان راهبرد مشتری‌زی برتری برای مدیران را به کارگیری می‌پردازند.

از این رو از تاریخچه بیشتری عمدتاً در عمل است. [۴]

این روش‌ها در واقع به دو جزئی بیشتری گفته می‌گردد. یکی از کمترین عده مهندسان ریاضی است. بهای این روش‌ها در جهتی می‌باشد که مدل‌های ریاضی باید به‌صورت کلی برای مدیران و مدیران سه‌شانسی استفاده شوند. [۵] این روش‌ها در جهتی نوجوانی بوده و به‌طور کلی برای مدیران سه‌شانسی استفاده شده است. [۶]

رویکرد ریاضیات تصمیم در کاربردهای مختلف چهارگانه است. این روش‌ها به‌صورت کلی برای مدیران سه‌شانسی استفاده شده است. [۷] این روش‌ها در جهتی نوجوانی بوده و به‌طور کلی برای مدیران سه‌شانسی استفاده شده است. [۸]

به طور گسترده‌تر به کار رفته و توانایی تاثیرگذاری داشته‌اند. این روش‌ها به‌صورت کلی برای مدیران سه‌شانسی استفاده شده است. [۹] این روش‌ها در جهتی نوجوانی بوده و به‌طور کلی برای مدیران سه‌شانسی استفاده شده است. [۱۰] این روش‌ها در جهتی نوجوانی بوده و به‌طور کلی برای مدیران سه‌شانسی استفاده شده است. [۱۱]
پاسخ به پرسش اول یک مقدار تغییر را به‌طور معناداری در 
$R$ و $r$ قابل اندازه‌گیری می‌یابد. همچنین پاسخ به پرسش دوم دوم این امر که طبقاتی $R$, $r$ قابل اندازه‌گیری می‌کند. بنابراین با داشتن یک مقدار یا معلوم شدن یک پارامتر جهیزه، 
نتیجه پارامتر مجهز دقیقا به عبارتی $R=k_{n}$ قابل اندازه‌گیری خواهد شد. پاسخ به پرسش دوم اشاره شده [10] برای تخصیص بودجه‌های ارتباط با مشتری آزاد شده است:

$$\text{Max} \quad CE = am - A + \frac{a}{1 + d - r} (mr - R)$$

$$A + Ar \leq B$$

$$A, R \geq 0$$

که در رابطه مذکور $r$ نخ نگهداری مشتری $m$ باشد و $R$ به ترتیب عبارتند از هزینه تخصیص یافته برای جذب مشتری با پایه $m$ در پاکیزه‌ای از مشتری و هزینه $m$ تخصیص یافته برای نگهداری مشتری کوچن که $A$ نخ و $d$ حاشیه سود درست آمد به‌طور میانگین با پایه $d$ و $R$ همان CE انتظار می‌رود به سرمایه‌گذاری. منظر از شرایط تقلیل قابل تخصیص به فعالیت‌های ارتباط با مشتری $m$. $N$ به کمک پایه قابل تخصیص به فعالیتهای ارتباط با مشتری $m$ بشود.

همان طور که مشاهده می‌شود در روابط فوق نظر جذب و نگهداری قابل مشاهده جوین است. یک فرض منطقی آن است که نظر جذب و نگهداری ناتوان از اهدای بودجه صرف شده به‌طور با $A$ نخ و نگهداری $r$ باشد. در این صورت رابطه‌های $A$ و $R$ به‌طور مشابه $m$ نوشته می‌گردد:

$$C_r = \beta_r - \alpha_r \theta^{r2}\quad C_r = \alpha_0 + \alpha_1 \theta^{r2}\quad \theta : (i = 0, 0.1, \ldots, 0.2, \ldots, 0.9, 0.1)$$

که در آن $\alpha$، $\beta$ و $\alpha_1$, $\beta_1$ مدل کم مقدار مشابه بودجه به‌طور مشابه $C_r$ و $C_r$ مقدار نهایی خواهد شد. بنابراین این امر یک پارامتر با مدل $C_r$ و $C_r$ قابل اندازه‌گیری در نظر گرفته می‌شود. برای مثال، پاسخ به این پرسش می‌گردد:

$\text{Customer Equity} \times \text{Endogenous} \times \text{Exogenous} \times \text{Retention-Oriented}$
نمودن‌یا از منحنی نرخ جذب و نگهداری (نرخ بندی-شکل S-شکل و نرخ نگهداری مقعر)

اما چگونه می‌توان از ساده‌ترین استفاده‌های پیشنهادات این‌چنینی که برای نگهداری برای راه‌السیر انتخابی می‌شود. در شکل S-شکل می‌توانه به ماهینه‌ای تابع نرخ جذب و نگهداری نهم‌بندی از امیدی به بررسی شود که:

- حداقل نرخ جذب (زمینه که هیچ تبلیغی وجود نداشته باشد) چقدر است?
- حداقل نرخ نگهداری (زمینه که هیچ تبلیغی وجود نداشته باشد) چقدر است؟

سپس [18] پیشنهادات می‌کند که برای مشخص نمودن منحنی جذب (برای تبلیغات های (ب)) انتخاب کنند و در پیش‌بردی زیر بررسی شود:

- پیشنهادات این‌چنینی برای نرخ جذب و نرخ جذب کنونی اگر میزان هزینه جذب به ازای هر میلی‌نامه هزینه به میزان
- یک تا چند واقفانه یا بیشتر نرخ جذب چقدر بیشتر می‌شود؟

\[
\begin{align*}
\beta_1 & = \alpha_0 + a \theta_1, \\
\beta_2 & = \alpha_0 + a \theta_2,
\end{align*}
\]

مشکل دیگری که در همه روابط مذکور وجود دارد این است که اگر هنگامی یک تبلیغات مصرف نگردید، هزینه جذب و نگهداری صفر خواهد بود. در حالی که در دنبال واقعی چنین اسیر [11 و 12] به هسته منعطف رابطه‌ای بالا به صورت زیر اصلاح می‌شود [18]

\[
a = \alpha_0 + (C_u - a_0) \frac{A}{W_1 + A} 
\]

\[
r = r_0 + (C_r - r_0) \frac{R}{W_2 + R} 
\]

در روابط اخیر، \(a_0\) هنگامی تابع نرخ جذب و نگهداری در زمان هستند که هنگامی بوده که هزینه صرف نشده است. همان‌طور که گفته شد مقادیر \(C_u\) و \(C_r\) به هنگامی که هزینه نرخ جذب و نگهداری باشد می‌شود:

\[
C_u = \beta_1 - \beta_1 \theta^{\beta_1} \quad \text{و} \quad C_r = \alpha_0 + \alpha_1 \theta^{\alpha_1}
\]

Prospect
۳ تخصص منابع بازرگانی متقنی بر ریاضیات تصمیم گیری‌یک‌تکیه بر این چگونه با توجه به عوامل تأثیرگذار فوک جه مدل‌های موجود استفاده قرار گیرد. در صورتی که سطح دسترسی به اطلاعات بالا باشد و شرایط سیاسی جاده‌های شرایط بالا باشد، اکتا به مدل‌های متنی بر قضاوت مدریت بیشتر نیز خواهد شد.

برقراری مشابه برای مشخصات نمونه منحنی تغییرات قابل طرح است.

فرض کنیم که (1) تابع پاسخی است که برآورد میزان نرخ جذب یا تغییرات را به میزان می‌کند. در بحث فعالی این تابع همان روابط (1) و (2) هستند. در هر از این بازارهای در جاذبه‌ای با مقدار نامعلوم با پیشرفت مراقبه و شناسایی چپ بازنشستگی به میزان کنونی به یک مقدار مشخص متقنی بر قضاوت مدریت است.

در مواریک که داده‌هایی از گذشته در مورد نحوه تخصیص منابع در دسترس باشد، تکنیکی از قضاوت مدریت و داده‌های گذشته می‌تواند مقید واقع شود. در داده‌های پیش‌بینی‌گر (101) و (2) اگر اصلی از قضاوت مدریت است. پاسخ به پیشرفت مربوط به حفظ جذب یا تغییرات افزایش روز به روز گذشته نسبت به میزان کنونی به یک مقدار مشخص متقنی بر قضاوت مدریت است.

در حالی که میزان کنونی تغییرات نرخ جذب و تغییرات کنونی مقدار عینی می‌باشد. 

اگر از گذشته داده‌های بیشتری وجود داشته باشد، چگونه می‌توان از داده‌های موجود برای بهبود مدل استفاده کرد؟ انتظار است اگر که داده‌های موجود داده‌گشته به مرور مدل باور نماید، برای اعمال داده‌های موجود گذشته معمولاً در پایگاه داده‌های سایری وجود دارد. به یک‌تکیه (1) توجه می‌کنیم. اکتا ترکیبی از روش‌های متفاوت و برآورد مشخص بر قضاوت را پیشنهاد می‌نماید.

شکل ۲ پیشنهادی برای استفاده از مدل‌های اساسی پیچیدگی‌های دسترسی به اطلاعات

فریس گیتم که (1) مقدار از (س) که برآورد می‌شود. در حالت فعالی این تابع همان روابط (1) و (2) هستند. در هر از این بازارهای در جاذبه‌ای با مقدار نامعلوم با پیشرفت مراقبه و شناسایی چپ بازنشستگی به میزان کنونی به یک مقدار مشخص متقنی بر قضاوت مدریت است.

در مواریک که داده‌هایی از گذشته در مورد نحوه تخصیص منابع در دسترس باشد، تکنیکی از قضاوت مدریت و داده‌های گذشته می‌تواند مقید واقع شود. در داده‌های پیش‌بینی‌گر (101) و (2) اگر اصلی از قضاوت مدریت است. پاسخ به پیشرفت مربوط به حفظ جذب یا تغییرات افزایش روز به روز گذشته نسبت به میزان کنونی به یک مقدار مشخص متقنی بر قضاوت مدریت است.

در حالی که میزان کنونی تغییرات نرخ جذب و تغییرات کنونی مقدار عینی می‌باشد. 

اگر از گذشته داده‌های بیشتری وجود داشته باشد، چگونه می‌توان از داده‌های موجود برای بهبود مدل استفاده کرد؟ انتظار است اگر که داده‌های موجود داده‌گشته به مرور مدل باور نماید، برای اعمال داده‌های موجود گذشته معمولاً در پایگاه داده‌های سایری وجود دارد. به یک‌تکیه (1) توجه می‌کنیم. اکتا ترکیبی از روش‌های متفاوت و برآورد مشخص بر قضاوت را پیشنهاد می‌نماید.
مشتری و سازنده را به حالت‌های بیشتری می‌توان طبقه‌بندی کرد. مزیت این کار در این است که طبقه‌بندی به‌هزینه‌ی مشتریان ارایه می‌شود و در نتیجه امید می‌روید به نتایج مطلوبتری دست پیدا کنیم.

یکی از مدل‌های ایاله شده مدال اربی از [120] است. در این مدل که از مدل زنجیره مارکوف استفاده می‌شود، باید التهابات معنی‌داری از مشتریان در ارتباط با سازنده می‌تواند داشته باشد. رشته تاریک‌سازی نمونه و احتمال انتقال از حالات مختلف را در ماتریس تحت عنوان ماتریس انتقال \( \mathbf{P} \) چیزی می‌باشد. در این مدل، مشتریان ایاله دارای آگاهی در روابط ریسک بار برای مشتریان می‌باشند. به این ترتیب زیر است:

- شناسایی حالت‌های مشتری
- تهیه امکانات نمازه‌پذیری مشتریان مجدد
- کمک به رعایت تقسیم‌بندی
- ادغام ساختارهای محتمل جهت تخصیص بودجه
- تخصص بهبودی بهبودی ارتباط با مشتری

1-5 شناسایی حالت‌های ارتباط با مشتری

برای تخصیص بهینه منابع لازم که کمترپایان از نظر سطح رابطه باید شناخته شوند. به عنوان مثال در حالتی که مشتری با سازنده می‌توان مشتریان را می‌توان به مشتریان بالقوه، مشتریان کوچک و مشتریان پیشین دانست. سادن‌داری حالت که در حال‌های پیشین همه همین حال را در نظر گرفته و در مورد قبلی مدل اربی شده نزد همین حالات را در نظر گرفته، حالتی است که مستریان تنها در حال داشته باشند: با مشتریان متأسیس باشد یا مستریی علی‌رغم می‌توانند چنین اکنون با حالت مدل موفقیت می‌توان پایداری‌ها یا باعث پیشرفت نیز باعث تغییر در اعلانه است.

\[ \frac{\partial f}{\partial b_i} = 0 \]

\[ \frac{\partial f}{\partial w_i} = 0 \]

\[ \sum_{i=1}^{m} (a_i - a_0 - (c_u - a_0) \frac{A_{h}}{w_i + A_{h}^2}) \frac{A_{h} \ln A_{e}}{(w_i + A_{h}^2)} = 0 \]

\[ \sum_{i=1}^{m} (a_i - a_0 - (c_u - a_0) \frac{A_{h}}{w_i + A_{h}^2}) \frac{A_{h}}{(w_i + A_{h}^2)} = 0 \]

با استفاده از مدل قانونی، می‌توان برای تعیین پایداری‌ها نیز باعث تغییر در اعلامه است.

4- رویکردی جدید برای تخصص بودجه‌های بازاریابی

به کمک ریاضیات تجربی

در بخش قبل به مدلی استاده شده که در آن با توجه به بودجه مشتریان، تخصیص منابع به هر گونه اجرا، می‌تواند که حقوق اجتماعی و سهمیه از ارزش مشتری (CE) شرکت نماید. در مدل اشاره ارائه داده‌ها هدف برای مشتری ما هستند با مشتری ما نیستند. در این حالت به مشتری ما مشتریان بالقوه اطمینان می‌کنیم.

\[ \frac{\partial f}{\partial b_i} = 0 \]

\[ \frac{\partial f}{\partial w_i} = 0 \]

\[ \sum_{i=1}^{m} (a_i - a_0 - (c_u - a_0) \frac{A_{h}}{w_i + A_{h}^2}) \frac{A_{h} \ln A_{e}}{(w_i + A_{h}^2)} = 0 \]

\[ \sum_{i=1}^{m} (a_i - a_0 - (c_u - a_0) \frac{A_{h}}{w_i + A_{h}^2}) \frac{A_{h}}{(w_i + A_{h}^2)} = 0 \]

با استفاده از مدل قانونی، می‌توان برای تعیین پایداری‌ها نیز باعث تغییر در اعلامه است.

\[ \frac{\partial f}{\partial b_i} = 0 \]

\[ \frac{\partial f}{\partial w_i} = 0 \]

\[ \sum_{i=1}^{m} (a_i - a_0 - (c_u - a_0) \frac{A_{h}}{w_i + A_{h}^2}) \frac{A_{h} \ln A_{e}}{(w_i + A_{h}^2)} = 0 \]

\[ \sum_{i=1}^{m} (a_i - a_0 - (c_u - a_0) \frac{A_{h}}{w_i + A_{h}^2}) \frac{A_{h}}{(w_i + A_{h}^2)} = 0 \]
 مهم‌ترین نشان‌دهنده‌های ارتباط با مشتری در بازاریابی مبتنی بر راه‌های تصادفی شامل تاریکی‌های زنجیره‌های مارکوف هستند.

به‌کارگیری ریاضیات تصادفی در تصمیم‌گیری به‌همراه بازاریابی مبتنی بر زنجیره‌های مارکوف، به‌کارگیری یک شاخص‌های مختلفی از جمله 

- **Recency** (بررسی اخیر): زمان مصرف نهایی در بازار.
- **Frequency** (ارتباط با مشتری): چگونگی لزوم مصرف در بازار.
- **Monetary** (ارتباط با مشتری): مقدار مصرف در بازار.

با استفاده از این شاخص‌ها، می‌توان بازاریابی‌ها به‌صورت تصادفی تخصیص بودجه‌ها را انجام داد. این امر باعث می‌شود که مصرف‌های ارائه‌دهنده و افرادی که بازاریابی وابسته به آن‌ها انجام می‌دهند، به‌طور صحیح تخصیص بودجه‌شان را دریافت کنند.

امکانات ارتباط با مشتری برای بازاریابی، به‌کارگیری ریاضیات تصادفی در تصمیم‌گیری را نشان می‌دهد. با استفاده از این روش‌ها، می‌توان به‌طور صحیح تخصیص بودجه‌ها و بهینه‌سازی حداکثر تأثیر این درک را در بازاریابی مبتنی بر راه‌ها را اعمال کرد.
یکی از مدل‌های رایج برای تخمین میزان ضریب غلظت بهره‌مندی، ضریب همبستگی، نوع نسبت تغییرات و... استفاده می‌شود. در این مقاله، با توجه به اینکه همبستگی ضریب ضریب غلظت بهره‌مندی و... ارائه می‌شود.

3. مثال عددی

برای توضیح بهتر، مثال عددی می‌تواند به شرح زیر باشد:

\[
\begin{align*}
w_1 &= 1.48, \quad b_1 = 176.31 \\
&
\end{align*}
\]

در این مثال، به‌طور کلی به‌طور علمی و دقیقه نشان می‌دهد که با توجه به اینکه ضریب غلظت بهره‌مندی و ضریب همبستگی ضریب طبیعی است، استفاده مستقیم از تابع همبستگی ضریب جداسازی بین دو متغیر ممکن است غیر حاصله و نتایج ناخواسته خواهد داشت.

4. نتایج

آخرالساختم، با توجه به اینکه ضریب بهره‌مندی و ضریب همبستگی ضریب طبیعی است، استفاده مستقیم از تابع همبستگی ضریب جداسازی بین دو متغیر ممکن است غیر حاصله و نتایج ناخواسته خواهد داشت.
حمیدرضا کوشا و امیر البدوی

فرش می‌کنم که به‌کارگیری ریاضیات تصمیم در تخصیص بودجه‌های بازاریابی متقین بر زنجیره‌های مارکوف

\begin{align*}
P_{1,i} &= p_{1,i}^0 + (c_{i+1} - p_{i+1}^0) \frac{S_{i+1}^h}{w_{i+1} + S_{i+1}^h} \\
p_{1,i} &= 1 - p_{1,i}
\end{align*}

(1)

\begin{align*}
p_{i+1,i} &= p_{i+1,i}^0 + (c_{i+1} - p_{i+1}^0) \frac{S_{i+1}^h}{w_{i+1} + S_{i+1}^h} \\
\end{align*}

(16)

\[ \alpha_i = \frac{d_i}{d_i + b_i} \]

(17)

بازاریابی متقین بر زنجیره‌های مارکوف

کوشا، حمیدرضا و البدوی، امیر

شماره 1 - 1293 - جلد 25 - شماره 1

نشریه بین‌المللی مهندسی صنایع و مدیریت تولید
برای همه ماتریس انتقال، فرض کنید که اطلاعات زیر از دیتابیس شده است:
• ما توأمی نشان دهنده رابطه‌ای واگیر بین جدب و جدب اصلی این کارگیری‌ها می‌باشد.
• هدف اصلی این کارگیری‌ها بیشینه‌سازی معادلات صندوق ابزار و ارزیابی عملکردی و بهبودی این انتقالات است.

براساس اطلاعات دیتابیس، دستگاه معادلات زیر به دست می‌آید:

\[
\sum_{i=1}^{n} (p_i' - 0.2 - (0.8 - 0.2) \frac{S_{h_i}}{w_{1,i} + S_{h_i}}, \frac{S_{h_i}}{w_{2,i} + S_{h_i}} \ln S_{1,i}) = 0
\]

\[
\sum_{i=1}^{n} (p_i' - 0.2 - (0.8 - 0.2) \frac{S_{h_i}}{w_{1,i} + S_{h_i}}, \frac{S_{h_i}}{w_{2,i} + S_{h_i}})^2 = 0
\]

جدول 1. مقادیر پارامتر ورودی

<table>
<thead>
<tr>
<th>جدول</th>
<th>مقدار ورودی برآورد شده</th>
<th>محاسبه کردن برآورد شده</th>
<th>مقدار ورودی</th>
<th>محاسبه کردن برآورد شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>0.85</td>
<td>0.4</td>
<td>p_{2,2}</td>
<td>0.85</td>
</tr>
<tr>
<td>50.09</td>
<td>0.87</td>
<td>0.3</td>
<td>p_{2,2}</td>
<td>0.87</td>
</tr>
<tr>
<td>50.08</td>
<td>0.86</td>
<td>0.3</td>
<td>p_{2,2}</td>
<td>0.86</td>
</tr>
<tr>
<td>50.07</td>
<td>0.85</td>
<td>0.3</td>
<td>p_{2,2}</td>
<td>0.85</td>
</tr>
<tr>
<td>50.06</td>
<td>0.84</td>
<td>0.3</td>
<td>p_{2,2}</td>
<td>0.84</td>
</tr>
<tr>
<td>50.05</td>
<td>0.83</td>
<td>0.3</td>
<td>p_{2,2}</td>
<td>0.83</td>
</tr>
<tr>
<td>50.04</td>
<td>0.82</td>
<td>0.3</td>
<td>p_{2,2}</td>
<td>0.82</td>
</tr>
<tr>
<td>50.03</td>
<td>0.81</td>
<td>0.3</td>
<td>p_{2,2}</td>
<td>0.81</td>
</tr>
</tbody>
</table>

نتیجه هم دستگاه معادلات حاصل از جدول بالا را در جدول 2 می‌توان تخمین زد:

\[
p_{i,j} = (1 - \alpha_i)(1 - p_{i,j+1})
\]

\[
p_{i,j+2} = \alpha_i(1 - p_{i,j+1})
\]

برای همه جدول‌های مربوط به تعداد مشتریان و یا تعداد مشتریان بازاريابی، نشان دهنده معادلات زیر است:

\[
p_{i,j} = p_{i,j} + (c_{i,j} - p_{i,j}) - \frac{S_{h,i}}{w_{1,i} + S_{h,i}} - \frac{S_{h,i}}{w_{2,i} + S_{h,i}}
\]

\[
\alpha_i = \frac{d_i}{d_i + b_i}
\]

در محاسبه با توجه به تعداد مشتریان و یا تعداد مشتریان بازاريابی، نشان دهنده معادلات زیر است:

\[
p_{i,j} = (1 - \alpha_i)(1 - p_{i,j+1})
\]

\[
p_{i,j+2} = \alpha_i(1 - p_{i,j+1})
\]

برای همه جدول‌های مربوط به تعداد مشتریان و یا تعداد مشتریان بازاريابی، نشان دهنده معادلات زیر است:

\[
p_{i,j} = p_{i,j} + (c_{i,j} - p_{i,j}) - \frac{S_{h,i}}{w_{1,i} + S_{h,i}} - \frac{S_{h,i}}{w_{2,i} + S_{h,i}}
\]

\[
\alpha_i = \frac{d_i}{d_i + b_i}
\]

محاسبه کردن برآورد شده مقدار انتقال را تخمین نشان دهنده معادلات زیر است:

\[
\sum_{i=1}^{n} (p_i' < 0.2 - (0.8 - 0.2) \frac{S_{h,i}}{w_{1,i} + S_{h,i}}, \frac{S_{h,i}}{w_{2,i} + S_{h,i}} \ln S_{1,i}) = 0
\]

\[
\sum_{i=1}^{n} (p_i' < 0.2 - (0.8 - 0.2) \frac{S_{h,i}}{w_{1,i} + S_{h,i}}, \frac{S_{h,i}}{w_{2,i} + S_{h,i}})^2 = 0
\]
گام سوم: تهیه ستاره‌های محتمل
برای ایجاد ستاره‌های موجب سر منابع بالقوه برای هر دوره زمانی در نظر گرفته‌اند: (1) درجه دوم بین برداشت بازاریابی، (2) درجه با تمرکز بر جذب و (3) درجه تمرکز بر نگهداری. برای هر دوره بین برنامه‌بازاریابی هیچ بودجه‌ها به‌غایتی‌های ارتباط با مشتری تعیین نمی‌شود. بنابراین ماتریس انتقال آن به صورت زیر خواهد بود:

جدول ۱: مقادیر برآورد شده پارامترها نامعلوم

<table>
<thead>
<tr>
<th>$w_{ij}$</th>
<th>$b_{ij}$</th>
<th>احتمال</th>
</tr>
</thead>
<tbody>
<tr>
<td>94722</td>
<td>3.0000</td>
<td>$p_{11}$</td>
</tr>
<tr>
<td>99067</td>
<td>3.0000</td>
<td>$p_{22}$</td>
</tr>
<tr>
<td>94722</td>
<td>3.0000</td>
<td>$p_{33}$</td>
</tr>
<tr>
<td>99967</td>
<td>3.0000</td>
<td>$p_{44}$</td>
</tr>
<tr>
<td>99967</td>
<td>3.0000</td>
<td>$p_{55}$</td>
</tr>
<tr>
<td>9159</td>
<td>3.0000</td>
<td>$p_{66}$</td>
</tr>
<tr>
<td>9742</td>
<td>3.0000</td>
<td>$p_{77}$</td>
</tr>
<tr>
<td>99171</td>
<td>3.0000</td>
<td>$p_{88}$</td>
</tr>
</tbody>
</table>

نتیجه‌گیری
در این تحقیق، روبرویی برای فرمول‌های کردن رفتار مشتری و در ادامه بر اساس روشی برای تخصیص بودجه‌های ارتباط با مشتری ارائه شد. در این روبه‌روی، ما از داده‌های موجود در یک روشک پیکارچه به همراه قضاوت مدیریت برای مدل‌سازی رفتار مشتری به هنگام اجرای بازاریابی استفاده نمود و آن را به منظور تخصیص بودجه‌های ارتباط با مشتری به کار برده‌ایم.

برای دوره‌ای که در آن تمرکز بر جذب مشتری است، ماتریس انتقال به صورت زیر است:

نتشیب‌بین المللی مهندسی صنایع و مدیریت تولید، خرداد 1393- جلد ۲۵- شماره ۱
کرده‌ی است. در نهایت، رویکرد محاسباتی مدل‌های مصرف‌های با نمونه‌های مختلف و محاسباتی قرار گرفته. کاربرد این روشهای در صنایع مختلف از جمله ارتقای سیارهای تجسسی بودجه‌های بازاریابی و ارتقاء با استریتی توصیه می‌شود.

در این تحقیق رویکرد ترکیبی برای هیبردیز از اطلاعات موجود و قضاوت مدیریت اربابه‌دار. این رویکرد سعی می‌کند که اطلاعات موجود را با قضاوت مدیریت ترکیب کند و از هر دو مجموعه اطلاعاتی استفاده کند. همان طور که مشخص است کاربرد ترکیبی برای زمانی است که سطح دسترسی به اطلاعات نسبتاً بالا باشد و پیچیدگی محیط نیز زیاد باشد به گونه‌ای که مدل‌های ریاضی سنتی را نگران کرده‌های لازم را داشته باشند.

مهم‌ترین روست پیشنهادی بر روی [10] در این است که در این دل‌آزمینه‌ها اطلاعات دقیقی از کشته‌ها در اختیار باشد.

و قضاوت مدیریت می‌تواند این کمپوننت را چرایان کند. در واقع، مدل [10] به داده‌های دارکه تقریباً هر چیز در دنبای اعیان در دسترس نیست. همچنین مدل پیشنهادی روزگار مورد به‌تنهایی کاربرد دارد که مانند اصل انتقال پیش‌بینی‌پایدار باشد. پیشنهاد می‌گردد که مدل را شاهد در دنبای واقعی با داده‌های واقعی در صنعت ارتباطات سیار برای شرکت‌های ارتباطات سیار یا شرکت‌های مشابه مورد استفاده قرار گیرد.

مراجع


نشانه‌ی دویلی مهندسی صنایع و مدیریت توسعه، خرداد 1392-جلد 25-شماره 1

حمیدرضا کوشان و امیر بیدوی


