بررسی تأثیر فرسایش ابزار بر روی نمودار کنترل نسبت اقلام میعوب

رضا نوروزیان و احمد صادقی

چکیده:
نمونه‌های کنترل عموماً با فرض استقلال مشاهدات و یکسان بودن توزیع آن در طول زمان (هنگامی که فرآیند تحت کنترل است) طراحی می‌شوند. هرچند زمانی که یک فرآیند به طور داینامیک مشاهدات خودهمی‌سته ایجاد می‌کند، این فرض به راحتی نقض می‌گردد. هنگامی که نمونه‌های کنترل نسبت اقلام میعوب شورت منبع کنترل مشاهده شده، نشان می‌دهد که فرآیند دور از مراحل ساده‌تر می‌باشد و دلیل وجود این فرسایش ابزار در آن، معنای مشاهدات خودهمی‌سته ایجاد می‌کند. در صورتی که این وضعیت بر طراحی نشان دهنده کنترل میزان باشد، نشان می‌دهد که در این موقعیت کاربرد رگرسیون لجستیکی مناسب‌تر است. در این مقاله، کاربرد رگرسیون لجستیکی در مدل‌سازی و حذف روندی که نشان دهنده فرسایش ابزار در نمودار کنترل نسبت اقلام میعوب پدیدار می‌شود، مورد بررسی قرار می‌گیرد. نتایج عدی در این خصوص به‌پیشنهاد قابل ملاحظه‌ای را نشان می‌دهد.

کلمات کلیدی:
فرسایش ابزار، رگرسیون لجستیکی، نمودار کنترل نسبت اقلام میعوب

استناد:
R. Noorossana, Ahmad Sadeghi, Department of Industrial Engineering, Islamic Azad University of Qazvin

ABSTRACT
Statistical process control charts are generally designed assuming that when the process is in control the observations are independent and identically distributed (i.i.d.) over time. However, the assumption of independence is easily violated when a process inherently generates auto correlated observations. When traditional control charts are applied to such processes then the false alarm rate experienced would be higher than what is expected. Machining process, due to the tool wear out, usually generates auto correlated observations. If such phenomenon is not incorporated in the chart design then one should expect a pattern in the plotted observations that will eventually lead to false alarms from time to time. This paper discusses the application of logistic regression to model and eliminate patterns that appear on fraction nonconforming items chart because of too well. Numerical results indicate significant improvements.

یافته‌ها:
Numerical results indicate significant improvements.
یک مقدمه

سه‌سیمیه‌ها، البته به‌صورت دقیق‌تر، به‌صورت ایرانی‌هایی در فهرست فراسایش ایران با روش نظارتی و نظارت نسبي کنترل کننده‌ی اقلام معیوب

1. مقدمه

سه‌سیمیه‌ها، البته به‌صورت دقیق‌تر، به‌صورت ایرانی‌هایی در فهرست فراسایش ایران با روش نظارتی و نظارت نسبي کنترل کننده‌ی اقلام معیوب

2. مطالعه فراسایش ایران و نمودار کنترل نسبي اقلام

معیوب

فرایندی را در نظر گرفتیم که با فراسایش ایران ادامه می‌یابد. در این فراورد عامل فراسایش باعث افزایش روند معیوبی در نسبت اقلام معیوب می‌شود. سندایی که کمک مطرح می‌شود نحوه عملکرد ایران از یک نظر فراورد ماهیان کاری است و یک‌اش نمی‌باشد.

3. مطالعه فراسایش ایران و نمودار کنترل نسبي اقلام

معیوب

فرایندی را در نظر گرفته‌ایم که با فراسایش ایران ادامه می‌یابد. در این فراورد عامل فراسایش باعث افزایش روند معیوبی در نسبت اقلام معیوب می‌شود. سندایی که کمک مطرح می‌شود نحوه عملکرد ایران از یک نظر فراورد ماهیان کاری است و یک‌اش نمی‌باشد.
بررسی تأثیر فرسایش ایران بر روی نمودار کانترل نسبت اقلام معیوب

فرسایش ایران اتفاقی نیست که فرسایش ایران چگونه منجر به بروز روند در نمودار کنترل می‌گردد اما عملکرد نمودار کنترل نسبت اقلام معیوب چگونه در اثر عامل فرسایش ایران تحت تأثیر قرار می‌گیرد؟ این بخش به این سوالات پاسخ داده می‌شود.

2-1 فرسایش ایران و گچیزینی آن

در یک فرآیند مالی کاری نظیر فرآیندهای برخی، سنگ زنی سوراخکاری و... ایران بر موردن زمان فرسوده می‌شود. عوامل زدایی است از استحکام ایران در یک فرآیند مالی کاری چنین بوده‌است. این عوامل در چهار طبقه زیر جای گیرند: برآوردهای اولیه بر پری نظیر سرعت و پر عرض و مشخصات ابتدایی جنس گر که در اسف و کمتری بخشی از است. استحکام ایران را نشان می‌دهد (و متغیر تصادفی است). ترکیب مالی آت و معیوب و انجام خواند چگونه که معمولاً ثابت است.

استحکام ایران در نتیجه جدا شدن قطعات بسیار از سطح ایران در اثر پیاده‌برداری رنگ می‌گردد. این روند را می‌توان به عنوان وسیله‌ای به شماره 1.9 پایه‌ای استحکام از میانش استفاده کرد. در نظر گرفته از این بوده که تعداد اندیسی تصادفی استحکام ایران را نشان می‌دهد. به این ترتیب ابتدایی اثرات ویرانی که در نیمی از افزایش معیوب در شرایط از آزمایشی اجاع می‌گردد. در این شرایط تغییراتی که در نتیجه تغییر مشخصات فنی فقط در فرآیند ایجاد می‌شود که تغییر معیوب و استحکام به شکلی که در نتیجه نشان می‌دهد که در این عامل تمامی استحکامهای آزمایشی در نظر گرفته نشده است. این بوده که می‌تواند به تغییر نسبت اقلام معیوب در اثر استحکام ایران باعث شود که عامل افزایش معیوب در این روند واجب باشد. در نتیجه این استحکام می‌تواند در شرایط از این باعث استحکام کند.

2-2 تأثیر فرسایش ایران بر نمودار کنترل نسبت اقلام معیوب

گچیزینی پیشتر بانک کراید می‌تواند منجر به اتفاقات در استحکام نمودار کنترل شود. است. بست شاخص بر نتایج حاقک در نمودار کنترل نشان‌گذاری می‌شود. این بست بدون پاسخ داده می‌شود و باعث خواهد شد نمودار با انتکاس هشدارهای نادرست و یا اصطلاحاً زنگ

شکل 1. روند صعودی در نمودار کنترل نسبت اقلام معیوب

(د) بدلیل فرسایش ایران

توضیح است در زیر نشانه شماره 11 و 12 از گذشته ساخته‌اند که کرکد ایران جوان بوده و کمی از این باعث شده باشد. در نتیجه این نتیجه گرفته ان نیز از کنترل خارج باشد و از فرسایش ایران برای خود است. استحکام ایران نیز به کمیت از حالت داخل اثرات ویرانی که در نتیجه نشان می‌دهد که در این عامل تمامی استحکامهای آزمایشی در نظر گرفته نشده است. این بوده که می‌تواند به تغییر نسبت اقلام معیوب در اثر استحکام ایران باعث شود که عامل افزایش معیوب در این روند واجب باشد. در نتیجه این استحکام می‌تواند در شرایط از این باعث استحکام کند.
بررسی تأثیر فرسایش ابراز بر روی نمودار کنترل نسبت اقلام معیوب

+ فرسایش ابراز (عمل) 2- انحرافات اساسی فرایند موجود میانگین‌دار

سایر انحرافات اساسی نظیر جنس قطعات (عمل) 1

عمل 2 در رابطه (1) باعث روز روند در شکل (1) شده با انعکاس

بنگ‌های استثنائی مانع از کنترل عمل 1 در رابطه فردو گردیده است. به‌نین‌راز مشاهده شده است. اثر نمودار کنترل در

شناختی انحرافات اساسی فرایند، لازم است تأثیر عمل (3) از آن حذف گردد.

مدل رگرسیون یکی از ابزارهای مناسب برای حذف روند در نمودار

کنترل است. با استفاده از این مدل حذف کنترل روند را باید در

منشا با ترک فرسایش ابراز طراحی می‌گردد و در نتیجه تاثیر روند

در نمودار کنترل حذف شده و به این اثر دایل سایر انحرافات اساسی

تکیه کنترل می‌گیرد. شکل (2) حذف کنترل روند را نشان می‌دهد.

شکل 2. نمودار کنترل نسبت اقلام معیوب با حدود کنترل

روندهار

در شکل (2) تأثیر عمل 2 رابطه (1) به صورت شیب حدود کنترل

نمایند است و در نتیجه نسبت اقلام معیوب که از این یک باید

روی نمودار نشان داده می‌شود، بایستی تأثیر عمل 1 در رابطه

بوده و از این رو آن اساسی غیر از فرسایش ابراز تحت کنترل قرار

می‌گیرد. منحنی اینچنی در شکل (3) منحنی است با نظرگاه

عمل اقلام معیوب از دلیل نمایش آنها در نمودار کنترل

(1) از حالات حذف کنترل خارج شده نشان داده نشده زیرگروه شماره 12

وضعیت خارج از کنترل را نشان می‌ده که فرایند با شناسایی

عمل معیوب و انجام اقدام اصلاحی مجددا تحت کنترل در می‌آید.

شکل 3. مدل رگرسیون لجستیک

-2.4. آزمون برآیندگی مدل

یکی از موضوعاتی که با‌دید در استفاده از مدل رگرسیون لجستیک

در حذف روند در نمودار کنترل نسبت اقلام معیوب مورد توجه قرار

گرفت، میزان انطباقات مدل با داده‌های بدست‌آمده از کنترل است و

اینکه آیا مدل‌های رگرسیون لجستیک می‌توانند مدل‌های ملاحظه ای

نسبت اقلام معیوب را مدل‌سازی کند؟ از این رو، زیبدینگ مدل

 به وسیله آماره مربع کای که در Bain به وسیله رابطه (3) مناسب

شده است، مورد آزمون قرار می‌گیرد.

شکل 4. مدل رگرسیون لجستیک

-3.4. مدل رگرسیون لجستیک

چنانچه در بخش 2.3 بیان شد یکی از مسائلی که در نمودار کنترل نسبت اقلام معیوب ساخته شده از این یکی

فرایند و روند کنترل محاسباتی که در شکل (2) صورت شدی دار

نشان داده است. با استفاده از مدل رگرسیون به‌دست آمده این

آنچه می‌دانیم نسبت اقلام معیوب همان‌طور که یک
tعیینی می‌کند و به غرار بی‌پره این نسبت در شکل (3) برای هیچ
\[\text{CL} = P(\hat{\theta} + t_{\alpha/2} \cdot s) \\
\text{UCL} = P(\hat{\theta} + t_{\alpha} \cdot s) \]

\[P = P(0) + P(1) \]

\[Z_n = \frac{\beta}{\sigma_n} \]

\[e_i = \exp(-\sigma_i - \beta) \]

\[\chi^2 = \sum (e_i - f_i)^2 \]

\[P = \chi^2 \text{ (Wald test)} \]
مثال عددی ارائه می‌گردد. برای این منظور فراورده تراشکاری پیستون را در نظر گرفته، در این فراورده تعداد منفی‌هایی که توسط هر ابراز تراشکاری می‌شود نشان می‌دهد در این فراورده تعداد منفی‌هایی که با همدیگر کنار قرار گیرند، براساس محاسباتی که توسط بخش هندسی کیفیت و با توجه به حاویت مشخصاتی که وارد آمده به این فراورده است، نسبت این تعداد شوهرای این اقلام معیوب برای این فراورده به صورت زیر بدست خواهد رسید.

جدول 1. داده‌های بدست آمده از فراورده مشابه گرایی پیستون

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>تعداد اقلام معیوب</th>
<th>تعداد اقلام تولیدی</th>
<th>نسبت</th>
<th>شماره نمونه</th>
<th>تعداد اقلام معیوب</th>
<th>تعداد اقلام تولیدی</th>
<th>نسبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>11</td>
<td>2</td>
<td>0.08</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>0.08</td>
<td>2</td>
<td>13</td>
<td>3</td>
<td>0.08</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>0.08</td>
<td>3</td>
<td>15</td>
<td>4</td>
<td>0.08</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>0.08</td>
<td>4</td>
<td>17</td>
<td>5</td>
<td>0.08</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>0.08</td>
<td>5</td>
<td>19</td>
<td>6</td>
<td>0.08</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0.08</td>
<td>6</td>
<td>21</td>
<td>7</td>
<td>0.08</td>
<td>7</td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td>0.08</td>
<td>7</td>
<td>23</td>
<td>8</td>
<td>0.08</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>0.08</td>
<td>8</td>
<td>25</td>
<td>9</td>
<td>0.08</td>
<td>9</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>0.08</td>
<td>9</td>
<td>27</td>
<td>10</td>
<td>0.08</td>
<td>10</td>
</tr>
</tbody>
</table>

نمودار کنترل شوهرات نسبت اقلام معیوب برای این فراورده به صورت زیر بدست می‌آید:

\[
\bar{p} = \frac{\sum_{m=1}^{n} y_m}{mn} = \frac{217}{30 \times 25} = 0.29
\]

\[
\sigma_p = \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = \sqrt{\frac{0.29 \times 0.71}{25}} = 0.09
\]

\[
UCL = \bar{p} + 3\sigma_p = 0.29 + 3 \times 0.09 = 0.56
\]

\[
CL = \bar{p} = 0.29
\]

\[
LCL = \bar{p} - 3\sigma_p = 0.29 - 3 \times 0.09 = 0.02
\]
پرسی تأثیر فرسایش ابزار بر روی نمودار کنترل نسبت اقلام معموب

در مرحله بعد لازم است نسبت وجود روند انجام شود. برای مدل فوق

\[Z = \frac{\text{آماره Walde}}{0.001} \]

سطح پیوسته معادل 5 درصد است. برای خارج شده و جدول (1) صبور بررسی نشان داده شده است، هیچ نسبت زیرا در مقابل، در زیر گروه شماره 3 که به نظر می‌رسد ویژه برای روند در محاسبات میانگین

از حد پایین کنترل خارج شده و نیز در گروه‌های شماره 27 و 28 و 30 که به نظر می‌رسد فرسایش ابزار (در ادامه روندی) از افرا در نمونه مشاهده گردیده، بزرگتر از نسبت نسبت

به ابزار و عدم تعیین انقباض از کارکرد بهینه (4000 گیگوه) و نیز کنترل سایر انحرافات اساسی ابزار، روند اجرا شده حذف گردید.

در مرحله نخست اینکه به محاسبات که در واقع ایجاد مدل رگرسیون لجستیک

SPSS مربوط به داده های تخمین زده شود. با استفاده از نرم افزار

\[\text{UCL} = p(x) + 3.09 \times 0.09 = p(x) + 0.27 \]

\[CL = p(x) \]

\[LCL = p(x) - 3.09 \times 0.09 = p(x) - 0.27 \]

شکل (6) نمودار کنترل مربوط به روند می‌گردد. جهت ملاحظه

\[\alpha = 3.43 \]

\[\beta = 0.001 \]

\[\sigma_0 = 0.308 \]

\[\sigma_0 = 0.0001 \]

به این ترتیب مدل رگرسیون لجستیک برای مسئله فوق به صورت

\[p(x) = \frac{1}{1 + \exp(3.43 - 0.001x)} \]

یک آزمون تامکاتی که در شکل (5) وضعيت خارج از کنترل را نشان می‌دهد،

\[\chi^2 = 32.671 \]

\[0.031 < \chi^2 < 0.05 \]

به نظر می‌رسد که با اینکه

\[x = 0.031 \]

\[\chi^2 < 0.05 \]

با استفاده از نرم افزار ابزار معکوس بودن مشاهده شده، ادغام مدل‌های معیار در ادامه آماره مربع کای برای

\[0.21 \]

خواهش بود.

