Credit Risk Management Under Uncertainty Using a Fuzzy VIKOR Method

M.J. Tarokh*, M. B.Gh. Aryanezhad, M. Ekhtiari & M. Yazdani

Mohammad Jafar Tarokh, Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran, mjtarokh@kntu.ac.ir
Mir Bahador Gholi Aryanezhad, Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran, mirarya@iust.ac.ir
Mostafa Ekhtiari, Department of Industrial Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran, m_ektiari@yahoo.com
Mehdi Yazdani, Department of Industrial Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran, m_yazdani@qiau.ac.ir

Credit risk management, Multi-attribute decision making, VIKOR method, Fuzzy theory

ABSTRACT

In today's conditions that many domestic banks of country are experiencing a kind of credit risk, establishing a credit risk management system is necessary to reduce banks' outstanding claims and resolve the failure to repay loans problem of central bank. Creating a proper customers' credit ranking system is one of the fundamental issues and requirements of establishing a credit risk management system. Five C's of credit system is one of the reliable systems for customers ranking which can be used for this purpose. On the other hand, effort to achieve a suitable tool for implementing and executing this system is an important and inevitable issue. VIKOR method is one of the capable multi-attribute decision making methods which can be applied for executing five C's of credit system and solving the customers' credit ranking problem. In this paper, a VIKOR method is presented which not only is capable of determining the optimum values of importance weights of criteria but also could take into consideration fuzzy importance weights of decision makers' judgments during the process of customers' credit ranking. The proposed method is adopted to solve a numerical example about credit ranking of banks' customers and thereby, the best alternative for giving loan facilities is selected in uncertain conditions.

© 2014 IUST Publication, IJIEPM. Vol. 25, No. 1, All Rights Reserved

* Corresponding author, Mohammad Jafar Tarokh
Email: mjtarokh@kntu.ac.ir
مدیریت ریسک اعتباری تحت عدم قطعیت با استفاده از یک روش ویکور فازی

محمدرضا تارخ، میر بهادر قلی آریا نژاد، مصطفی اختیاری و مهدی یزدانی

چکیده:

در شرایط امروزی که بیشتر از بانک‌های داخلی کشور نوعی ریسک اعتباری را تجربه می‌کنند، استقرار یک سیستم مدیریت ریسک اعتباری به منظور کاهش مطالبات معوقه بانک‌ها و حفظ مالکیت عمده بانک‌ها با ابزارهای مختلفی از این راه دور گرفته شده است. کیفیت از شرایط و مزایای اصلی استفاده از استقرار یک سیستم مدیریت ریسک اعتباری به منظور کاهش مالکیت عمده بانک‌ها و حفظ مالکیت عمده بانک‌ها از این راه دور گرفته شده است.

توصیه گیری چند شاخص، روش ویکور، نشریه مهندسی صنایع و مدیریت تولید، خرداد 1393، جلد 25، شماره 1

کلمات کلیدی:

مدیریت ریسک اعتباری، توصیه گیری چند شاخص، روش ویکور

1. مقدمه

ریسک اعتباری یکی از ریسک‌های اصلی که برآورده و خریده به دلایل مانند عدم تمایل و یا عدم توان مالی، قدر به پرداخت اصل و فرام

تاریخ وصول: 94/11/6
تاریخ تصویب: 94/5/17

© پژوهش‌ها متعلق به دانشگاه صنعتی خواجه نصیرالدین طوسی می‌باشند.
مديريت ريسك اعتبار تحت عدم قطعيت با استفاده از AHP

محمد حمید فأخت، میر پریس، فریبرز شاه‌زاده

1. Five C’s of Credit
2. Character
3. Capital
4. Capacity
5. Collateral

6. Cycle Condition
7. Business Cycle

نشريه بين الملل مهندسي صناعي و مديريت توليد، خرداد 1393- جلد 25- شماره 2
مديريت ريسك اعتباری تحت عدم قطعیت با استفاده از محمد جعفر تارخ، میر بهادر قلی اریا نژاد، مصطفی انتخابی و مهدی یزدانی

برخی از کاربردهای مفید تکنیک‌های تصمیم‌گیری سه‌بعدی شامل:

1. VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)
2. Regret theory

Downloaded from ijiepm.iust.ac.ir at 19:55 IRST on Sunday March 15th 2020
مديريت ريسك اعتباري تحت عدم قطعيت با استفاده از...

محمد جعفر تارخ، مير بهادر قلي آريا نژاد، مصطفي اختياري و مهدي يزداني

به دست دادن برخی اطلاعات و کاهش دقت جواب نهایی منجر شود.

یکی از باجگیران ایجاد شده، که در پیگیری بهبود و توسعه مدل‌های ریسک‌شناسی می‌باشد.

gام‌های اجرایی الگوریتم ویکور به صورت زیر خواهد بود:[25]

1) انتخاب بهترین (f_i, f_j) (باید از سه گروه اولیه انتخاب شود).
2) نشانه‌گذاری f_i = min{a_i} و f_j = max{b_j}.
3) محاسبه مقادیر S_i و R_j برای همه گروه‌ها.
4) اگر مربع آم از نوع سود باشد، آنگاه مقادیر زیر باشد.
5) بهطوری که به برندهای انتخاب مطلوب است انتخاب شود.

به طوری که S_i و R_j، انتخاب مطلوبی را باشد.

روش ویکور برای بهبود سازی سیستم‌های پیچیده یک فصل است[19]. این روش یک مجموعه رتبه‌بندی شده است که به پیچیدگی متفاوت‌ترین تغییرات مربوط به جواب‌های الگوریتم اضافه می‌نماید.

gام‌های اجرایی الگوریتم ویکور به صورت زیر خواهد بود:[25]

1) انتخاب بهترین (f_i, f_j) (باید از سه گروه اولیه انتخاب شود).
2) نشانه‌گذاری f_i = min{a_i} و f_j = max{b_j}.
3) محاسبه مقادیر S_i و R_j برای همه گروه‌ها.
4) اگر مربع آم از نوع سود باشد، آنگاه مقادیر زیر باشد.
5) بهطوری که به برندهای انتخاب مطلوب است انتخاب شود.

به طوری که S_i و R_j، انتخاب مطلوبی را باشد.

روش ویکور برای بهبود سازی سیستم‌های پیچیده یک فصل است[19]. این روش یک مجموعه رتبه‌بندی شده است که به پیچیدگی متفاوت‌ترین تغییرات مربوط به جواب‌های الگوریتم اضافه می‌نماید.

gام‌های اجرایی الگوریتم ویکور به صورت زیر خواهد بود:[25]

1) انتخاب بهترین (f_i, f_j) (باید از سه گروه اولیه انتخاب شود).
2) نشانه‌گذاری f_i = min{a_i} و f_j = max{b_j}.
3) محاسبه مقادیر S_i و R_j برای همه گروه‌ها.
4) اگر مربع آم از نوع سود باشد، آنگاه مقادیر زیر باشد.
5) بهطوری که به برندهای انتخاب مطلوب است انتخاب شود.

به طوری که S_i و R_j، انتخاب مطلوبی را باشد.

روش ویکور برای بهبود سازی سیستم‌های پیچیده یک فصل است[19]. این روش یک مجموعه رتبه‌بندی شده است که به پیچیدگی متفاوت‌ترین تغییرات مربوط به جواب‌های الگوریتم اضافه می‌نماید.

1. Individual Regret
2. Utility measure
3. Regret measure

\[L_{ij} = \sum_{i=1}^{n} \left(w_i f_i - a_i \right) / \left(f_i - f_j \right)^2 \quad 1 \leq P \leq \infty \]
شماره ۱-۵

\[Q(A^{(2)}) - Q(A^{(1)}) \geq DQ \]

\[DQ = I/n - I \]

به طوری که از نظر ریزه یا نزدیک برای مقدار معیار یا طبقه‌بندی گزینه‌ای در موافقت‌با یا تفاوت‌دوی است. به‌طوری که اگر \(A^{(2)} \) و \(A^{(1)} \) در محدوده ای باشد، انتخاب \(n \) و \(Q \) مقدار برای \(DQ \) مقدار نمایانگر باشد.

3. عمليات استاندارد فيزي در مجموعه فازي

روابط زیر عملیات استاندارد پایه برای اعداد فازی است. به طوری که \(\tilde{A} = [a_1, a_2, a_3] \) و \(\tilde{B} = [b_1, b_2, b_3] \) ممکن است در \(n = [n, n, n] \) باشد.

\[\tilde{A} + \tilde{B} = [a_1 + b_1, a_2 + b_2, a_3 + b_3] \]

\[\tilde{A} - \tilde{B} = [a_1 - b_1, a_2 - b_2, a_3 - b_3] \]

\[\tilde{A} \times \tilde{B} = [a_1 b_1, a_2 b_2, a_3 b_3] \]

\[\tilde{A} \div \tilde{B} = \frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3} \]

به طوری که \(A^{(2)} \) و \(A^{(1)} \) در محدوده ای باشد.

4. روش رأس یک

\[f_{\tilde{A}}(x) = \begin{cases}
(x-a_1)/(a_1-a_2), & a_1 \leq x \leq a_2 \\
(x-a_2)/(a_2-a_3), & a_2 \leq x \leq a_3 \\
0, & \text{در غیر اینصورت}
\end{cases} \]

\[Q(A^{(2)}) < Q(A^{(1)}) < DQ \]

به طوری که از نظر ریزه یا نزدیک برای مقدار معیار یا طبقه‌بندی گزینه‌ای در موافقت‌با یا تفاوت‌دوی است.

3. تئوری فازی

در فکریندینگ تئوری فازی، اغلب مدل‌گرگان از تبریز، مسائل و غیره قطعیت های روابط‌های روابط‌های یا تشکیل‌هایی را به صورت حسابی، طبعی برای یکی از اعداد فازی موافقت به صورت جمعی، قطعیت با توجه به Ｘ و Ｙ باشد.

\[Q(A^{(2)}) - Q(A^{(1)}) \geq DQ \]

\[DQ = I/n - I \]

به طوری که از نظر ریزه یا نزدیک برای مقدار معیار یا طبقه‌بندی گزینه‌ای در موافقت‌با یا تفاوت‌دوی است. به‌طوری که اگر \(A^{(2)} \) و \(A^{(1)} \) در محدوده ای باشد، انتخاب \(n \) و \(Q \) مقدار برای \(DQ \) مقدار نمایانگر باشد.

3.2. اعداد فازی

\[A = [a_1, a_2, a_3] \]

\[f_{\tilde{A}}(x) = \begin{cases}
(x-a_1)/(a_1-a_2), & a_1 \leq x \leq a_2 \\
(x-a_2)/(a_2-a_3), & a_2 \leq x \leq a_3 \\
0, & \text{در غیر اینصورت}
\end{cases} \]

\[Q(A^{(2)}) < Q(A^{(1)}) < DQ \]

به طوری که از نظر ریزه یا نزدیک برای مقدار معیار یا طبقه‌بندی گزینه‌ای در موافقت‌با یا تفاوت‌دوی است.
رون ویکر ویپشنهاوی
در این بخش رون ویکر ویپشنهاوی
سیشان که بر اساس ان می‌توان مقداری به‌هم‌های از اهداف شاخه‌ها را در حالی تعیین کرد که از اهمیتی فازی نظرات تصمیم گیرنده‌گان در فراکی وظیفه منظور شود. متاسفانه، تصمیم گیرنده گریزی را در حالت کلی برای

گزینه

در نظر گرفته بوده طوری که در

تعداد

 در عرضه فازی

به عله فاصله

میانی بانگش. این

به عله فاصله

است و اگر و تهیه برای

فاصله مثبت باشد. فاصله مثبت این دو عدد با استفاده از روش

وک در صورت زیر است

متون این روش دو عدد فاصله میانی

به عله فاصله

جدول 1. امتیازدهی افراد تصمیم گیرنده به گزینه ها با جهت به هر شاخه

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>...</th>
<th>An</th>
<th>wij</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>(a_{111},...,a_{11k})</td>
<td>(a_{121},...,a_{12k})</td>
<td>...</td>
<td>(a_{1nk},...,a_{1nk})</td>
</tr>
<tr>
<td>C2</td>
<td>(a_{211},...,a_{21k})</td>
<td>(a_{221},...,a_{22k})</td>
<td>...</td>
<td>(a_{2nk},...,a_{2nk})</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Cm</td>
<td>(a_{m11},...,a_{m1k})</td>
<td>(a_{m21},...,a_{m2k})</td>
<td>...</td>
<td>(a_{mn1},...,a_{mnk})</td>
</tr>
</tbody>
</table>

از این چنین شاخه برای وزن اهمیتی نظرات

تصمیم گیرنده گان در فراکی تصمیم گیری

به عنوان مثال در شکل 1 (1) متغیرهای کلاسی خیلی حکم (P) و ضعیف (VG) و تریفیتی می‌توانند بصورت (1/2 و 1/3) و (2/3 و 1/4) تعریف شوند. متاسفانه، تصمیم گیرنده

ظرفیتی به عله فاصله

به عله فاصله

باید رون ویکر ویپشنهاوی

به توجه به شکل 1 (1) متغیرهای کلاسی خیلی حکم (P) و ضعیف (VG) و تریفیتی می‌توانند بصورت (1/2 و 1/3) و (2/3 و 1/4) تعریف شوند. متاسفانه، تصمیم گیرنده

ظرفیتی به عله فاصله

به عله فاصله

نارنجی بين المللی مهندسی صنایع و مدیریت تولید، خرداد 1392- جلد 25- شماره 1
مديريت ريسك اعتباري تحت عدم قطعيت با استفاده از
محمد جعفر تارخ، مير بهادر قلي آريا نژاد، مصطفي اختياري و مهدي يزداني

22
نشريه بين الملي مهندسی صنایع و مديريت تولید. خرداد 1392 - جلد 25 - شماره 1

(براي همه آها و [زاها])

در فرايند تصميم گيبر است، بنابراین می توان گفت:

\[\tilde{a}_k = (\tilde{a}_{1k}, \tilde{a}_{2k}, \ldots, \tilde{a}_{mk}) = (x_{1k}^L, x_{1k}^R, \ldots, x_{1k}^L, x_{1k}^R, \ldots, x_{mk}^L, x_{mk}^R) \] (17)

گام 2: اگر \(a_{ijk} \) به جای \(\tilde{a}_k \) انتخاب اختصاص یافته توسط فرد \(k \) به گرایش ایم باشد، آن گاه می توان انتخاب کلی های گرایش \(k \) را با شایسته آن (با توجه به نظرات کلیه تصمیم گیرندگان) را از طریق رابطه زیر به دست آورد:

\[\tilde{a}_j = \sum_{k=1}^{K} \tilde{a}_{ijk} \Rightarrow (a^1_j, a^m_j, a^m_j) = \sum_{k=1}^{K} \tilde{a}^1_{ijk}, \sum_{k=1}^{K} \tilde{a}^m_{ijk}, \sum_{k=1}^{K} \tilde{a}^m_{ijk} \] (18)

جدول 2. امتياز به افراد تصميم گيبر به صورت متغيرهاي كلامي بر اساس شاخص های تعیین شده

<table>
<thead>
<tr>
<th>(C'_1)</th>
<th>(C'_{2})</th>
<th>(\ldots)</th>
<th>(C'_{m})</th>
<th>(\tilde{\pi}_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{x}_{11})</td>
<td>(\tilde{x}_{12})</td>
<td>(\ldots)</td>
<td>(\tilde{x}_{1l})</td>
<td>(\tilde{\pi}_1)</td>
</tr>
<tr>
<td>(\tilde{x}_{21})</td>
<td>(\tilde{x}_{22})</td>
<td>(\ldots)</td>
<td>(\tilde{x}_{2l})</td>
<td>(\tilde{\pi}_2)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\ldots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(\tilde{x}_{k1})</td>
<td>(\tilde{x}_{k2})</td>
<td>(\ldots)</td>
<td>(\tilde{x}_{kl})</td>
<td>(\tilde{\pi}_k)</td>
</tr>
</tbody>
</table>

جدول 3. امتياز اختصاص یافته به گزينه ها با توجه به اوزان اهميت فازي نظرات تصميم گيبران

<table>
<thead>
<tr>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(\ldots)</th>
<th>(A_n)</th>
<th>(w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{a}_{11})</td>
<td>(\tilde{a}_{12})</td>
<td>(\ldots)</td>
<td>(\tilde{a}_{ln})</td>
<td>(w_1)</td>
</tr>
<tr>
<td>(\tilde{a}_{21})</td>
<td>(\tilde{a}_{22})</td>
<td>(\ldots)</td>
<td>(\tilde{a}_{2n})</td>
<td>(w_2)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\ldots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(\tilde{a}_{ml})</td>
<td>(\tilde{a}_{m2})</td>
<td>(\ldots)</td>
<td>(\tilde{a}_{mn})</td>
<td>(w_m)</td>
</tr>
</tbody>
</table>

نماده شده است که هدف ماکزیمم سازی آن است. در واقع بیشتر شدن \(Z_i(w) \), بهتر بودن گرایش \(i \) را دقیقا دارد.

\[Z_i(w) = Z_i(w)^m - Z_i(w)^L \]

به گزینه \(i \) دارد که \(\tilde{Z}_i(w) = Z_i(w)^m - Z_i(w)^L \) و \(\tilde{Z}_i(\tilde{w}) = Z_i(w)^m - Z_i(w)^L \) کرد \[44 \] به افزایش از ارزش ماکس از معرفی شده توسط زیموری و زیموری [45] ارزش سطح دسترسی به همه

\[w_i^* (برای همه آها) \]

\[Z_i(w) = \sum_{w_{ij}} \tilde{a}_{ij} w_{ij} \] (20)

\[\tilde{Z}_i(w) = \sum_{w_{ij}} \tilde{a}_{ij} w_{ij} \] (برای همه آها)
مديريت ريسك اعتباري تحت عدم قطعيت با استفاده از...
محمد جعفر تارخ، مير بهادر قلي آريا نژاد، مصطفي اختياري و مهدي يزداني

\[Z_{j(3)} = \max_{j=1,\ldots,n} Z_{j(3)}(w), \quad j=1,\ldots,n \]
\[\text{s.t.:} \quad \sum_{i=1}^{m} w_i = 1, w_i \geq 0 \]
\[Z_{j(3)} = \min_{j=1,\ldots,n} Z_{j(3)}(w), \quad j=1,\ldots,n \]
\[\text{s.t.:} \quad \sum_{i=1}^{m} w_i = 1, w_i \geq 0 \]

رویکرد‌های تبعیض حدود متغیر \(w_i \) را می‌توان به صورت زیر در نظر گرفت [6] [7] [8] و [9]:

\[\begin{align*} &\text{برای} \; \delta_i > 1 \; \text{ربت} \; \text{به} \; \delta_i \leq \delta_1 \; \text{ربت} \; \text{به} \; \delta_i \leq \delta_1 + \delta_2 \quad \text{ربت} \; \text{به} \; \delta_i \leq \delta_1 + \delta_2 + \delta_3 \quad \text{ربت} \; \text{به} \; \delta_i \leq \delta_1 + \delta_2 + \delta_3 + \delta_4 \end{align*} \]

به طوری که \(\alpha \in [0,1] \)

\[Z_{j(1)} = \min_{j=1,\ldots,n} Z_{j(1)}(w), \quad j=1,\ldots,n \]
\[\text{s.t.:} \quad \sum_{i=1}^{m} w_i = 1, w_i \geq 0 \]

\[Z_{j(2)} = \max_{j=1,\ldots,n} Z_{j(2)}(w), \quad j=1,\ldots,n \]
\[\text{s.t.:} \quad \sum_{i=1}^{m} w_i = 1, w_i \geq 0 \]

\[Z_{j(3)} = \min_{j=1,\ldots,n} Z_{j(3)}(w), \quad j=1,\ldots,n \]
\[\text{s.t.:} \quad \sum_{i=1}^{m} w_i = 1, w_i \geq 0 \]

\[Z_{j(4)} = \max_{j=1,\ldots,n} Z_{j(4)}(w), \quad j=1,\ldots,n \]
\[\text{s.t.:} \quad \sum_{i=1}^{m} w_i = 1, w_i \geq 0 \]
مديريت ريسك اعتباري تحت عدم قطعيت با استفاده از... محمد جعفر تارخ، مير بهادر قلي آريا نژاد، مصطفى اختياري و مهدي يزداني

5. مثال عددی

برای تشریح روش ویکر فرایز پیشنهادی یک مثال عددی در ارتباط با مسئله ریزی بندی اعتباری مشتریان در یک بانک را در نظر می‌گیریم. برای این مسئله فرض می‌کنیم که چهار مشتری (A، B، C، D) و بانک (S) از جمله شرکت‌های مختلف تسهیلات از بانک هستند که هدف تبعیض ریزه این مشتریان و اولویت بنده در ارائه تسهیلات به انتهای است. از این رو چهار شاخص از شاخص‌های پنج C اعتباری تحت عنوان شرکت و شرایط امتیازگیری، (C1(C2، C3، C4(C5) برای (C) انتخاب شده است که همگی این شاخص‌ها از نظر مشتبه هستند.

امتحان‌های اختصاص یافته به هر گزینه با توجه به هر شاخص از یک بانک، 1-2 و 3- انتخاب می‌شود. به طوری که عبارات کلاسی مربوط به هر واحد به صورت ذیل خوب (10)، نبی‌ای خوب (102)، نسبتاً ضعیف (10)، و خیلی ضعیف (103) است.

برای آزمایش مشتریان، سه فرم تضمین گیرنده (D1، D2، D3) وجود دارد که زیر مهندسی نظارت بر این گیرنده‌ها مهم بوده و فازی در نظر گرفته می‌شود. برای آزمایش اقدام تضمین گیرنده محاسبه شاخص‌های ارزشی از دسترس (C3، C4(C5) تجدید و سوابق کارهای در حسن اعتماد (C4(C5) در نظر گرفته می‌شوند.

گام نخست: به منظور پیشنهادی به ویکر پیشنهادی به صورت زیر است:

گام اول: تضمین گیرنده با توجه به باره 1-2 و 3- ارزیابی خود را در حوزه هریک از مشتریان طبق حدود (5) بیابد می‌دارند.

گام دوم: در حوزه (6) بانوان به شاخص‌های ارزیابی تضمین گیرنده، امتیازهای نسبی به هر یک تضمین گیرنده‌ها در نظر گرفته عبارات کلاسی شکل (1) ارائه شده است.

سپس:

\[
S_i = \sum_{j=1}^n w_j d_j \left(\hat{f}_{ij}, \tilde{a}_{ij} \right)
\]

\[
R_i = \max \left[\frac{w_j d_j \left(\hat{f}_{ij}, \tilde{a}_{ij} \right)}{d_j \left(\hat{f}_{ij}, \tilde{a}_{ij} \right)} \right]
\]
کام سوم: در جدول (7)، وزن اهمیت فاصله نظرات تصمیم گیرندگان با نرخ به رابطه (18) ارائه شده است.

جدول 4. وزن اهمیت بهینه و مقادیر ایده آل و علی نظیر اهل فزای شاخه

$$A_i \quad A_2 \quad \ldots \quad A_n \quad W_i \quad \tilde{f}_1^- \quad \tilde{f}_1^+$$

$$c_1 \quad \tilde{a}_{11} \quad \tilde{a}_{12} \quad \ldots \quad \tilde{a}_{1m} \quad w_1^* \quad \tilde{f}_1^- \quad \tilde{f}_1^+$$

$$c_2 \quad \tilde{a}_{21} \quad \tilde{a}_{22} \quad \ldots \quad \tilde{a}_{2m} \quad w_2^* \quad \tilde{f}_2^- \quad \tilde{f}_2^+$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$c_m \quad \tilde{a}_{m1} \quad \tilde{a}_{m2} \quad \ldots \quad \tilde{a}_{mn} \quad w_m^* \quad \tilde{f}_m^- \quad \tilde{f}_m^+$$

جدول 5. امتیازدهی افراد تصمیم گیرنده به گزینه‌ها در بازه [2+ و 2-]

$$A_1 \quad A_2 \quad A_3 \quad A_4$$

$$C_1 \quad \left(\begin{array}{c}
1/2 \quad 0.5 & 0.5 \\
\end{array}\right)$$

$$C_2 \quad \left(\begin{array}{c}
0.5 & 0.5 \quad 0.5 \\
\end{array}\right)$$

$$C_3 \quad \left(\begin{array}{c}
0.5 \quad 0.5 \quad 0.5 \\
\end{array}\right)$$

$$C_4 \quad \left(\begin{array}{c}
0.5 \quad 0.5 \quad 0.5 \\
\end{array}\right)$$

جدول 6. عبارات کلامی اختصاص یافته به تصمیم گیرندگان براساس شاخص‌های ارزیابی آنها

$$C_i' \quad C_i'' \quad C_i''' \quad C_i'$$

$$D_1 \quad P \quad P \quad M \quad VG$$

$$D_2 \quad VG \quad M \quad M \quad G$$

$$D_3 \quad M \quad P \quad VG \quad M$$

جدول 7. وزن اهمیت فازی افراد تصمیم گیرندگان

$$k = 1, 2, 3, 4$$

جدول 8. میانگین امتیازدهی اخذی اختصاص یافته به گزینه‌ها براساس وزن اهمیت فازی نظرات تصمیم‌گیرندگان

$$A_1 \quad A_2 \quad A_3 \quad A_4$$

$$C_1 \quad \left(\begin{array}{c}
0.5 \quad 0.5 \quad 0.5 \\
\end{array}\right)$$

$$C_2 \quad \left(\begin{array}{c}
0.5 \quad 0.5 \quad 0.5 \\
\end{array}\right)$$

$$C_3 \quad \left(\begin{array}{c}
0.5 \quad 0.5 \quad 0.5 \\
\end{array}\right)$$

$$C_4 \quad \left(\begin{array}{c}
0.5 \quad 0.5 \quad 0.5 \\
\end{array}\right)$$

گام چهارم: با ویژه به رابطه (18)، در جدول (8) میانگین وزنی هر دیده از جدول (5) با ویژه به ارزان اهمیت فازی نظرات تصمیم گیرندگان با نرخ به رابطه (17) ارائه شده است.

کرده:
مديريت ريسك اعتبارى تحت عدم قطعيت با استفاده از

محمد جعفر تارخ، مير بهادر قلي آريا نژاد، مصطفي اختياري و مهدي يزداني

\[
Z_1(w) = (0.02, 0.055, 0.2, 0.431, 0.348, 0.23) \w_1 + (0.17, 0.648, 1.1) \w_2 + (0.28, 1.07, 1.8) \w_4 + (0.63, 2.588, 4.5) \w_5 + (0.02, 0.435, 0.17) \w_6 + (0.65, 0.655, 0.1) \w_7 + (0.348, 2.8 + 1.064, 0.658) \w_3 + 1.07w_2 + 2.588w_5 + 2.0w_1 + 1.3w_3 + 1.8w_4 + 1.2w_5)
\]

\[
Z_2(w) = (0.73, 2.108, 3.7) \w_1 + (0.77, 2.753, 7) \w_2 + (0.05, 0.713, 1.5) \w_3 + (0.33, 0.325, -0.3) \w_4 + (0.17, 4.533, 7) \w_5 = (0.73, w_2 + 0.05w_3 + 0.33w_4 + 0.17w_5, 2.108w_1 + 2.753w_2 + 0.713w_3 - 0.325w_4 + 4.533w_5, 7w_5)
\]

\[
Z_3(w) = (0.15, 0.338, 0.5) \w_1 + (0.29, 0.618, 0.9) \w_2 + (0.25, 0.583, 0.9) \w_3 + (0.11, 0.488, 0.9) \w_4 + (0.59, 2.8, 1.9) \w_5 = (0.15w_1 + 0.25w_2 + 0.583w_3 + 0.11w_4 + 0.488w_5, 2.8w_2 + 1.9w_5, 0.338w_1 + 0.618w_2 + 0.583w_3 + 0.488w_5, 1.5w_1 + 0.9w_2 + 0.9w_3 + 0.9w_4 + 1.9w_5)
\]

\[
Z_4(w) = (0.34, 2.02, 0.26) \w_1 + (0.4, 0.02, 0.6) \w_2 + (0.44, 0.472, 4) \w_3 + (0.19, 0.373, 5) \w_4 + (0.24, 0.725, 1.2) \w_5 = (0.34w_1 + 0.4w_2 + 0.44w_3 + 0.19w_4 + 0.373w_5, 2.02w_2 + 4w_3 + 0.24w_4 + 2.02w_5 + 1.47w_4 + 0.725w_5
\]

حالا توجه به مدل (2) می توان مقادیر بهینه وزن اهمیت هر شرط را مطابق با مدل زیر بدست آورد:

\[
\max \ (\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4),
\]

\[
s.t : \quad \begin{cases}
0.55395 - (0.055 - 0.02)w_1 + (1.348 - 0.43)w_2 + (0.648 - 0.17)w_3 + (1.07 - 0.28)w_4 + (2.588 - 0.65)w_5 & \geq \lambda_1, \\
0.55395 - 0.2385 & \geq \lambda_1, \\
(0.02 - 0.055)w_1 + (2.3 - 1.348)w_2 + (1.1 - 0.648)w_3 + (1.8 - 1.07)w_4 + (4.5 - 2.588)w_5 & \geq \lambda_1,
\end{cases}
\]

\[
1.2957 - (2.108 - 0.73)w_1 + (2.753 - 0.77)w_2 + (0.713 - 0.05)w_3 + (-0.323 + 0.33)w_4 + (0.453 - 0.17)w_5 & \geq \lambda_2,
\]

\[
1.2957 - 1.07305 & \geq \lambda_2,
\]

\[
(3.3 - 2.108)w_1 + (4.7 - 2.753)w_2 + (1.5 - 0.713)w_3 + (0.3 + 0.323)w_4 + (0.7 - 0.453)w_5 & \geq \lambda_2,
\]

\[
1.2957 - 1.07305 & \geq \lambda_2,
\]

\[
0.3130625 - (0.338 - 0.15)w_1 + (0.618 - 0.29)w_2 + (0.583 - 0.25)w_3 + (0.488 - 0.11)w_4 + (1.298 - 0.59)w_5 & \geq \lambda_3,
\]

\[
0.3130625 - 0.233125 & \geq \lambda_3,
\]

\[
(0.338 + 0.618 + 0.583 + 0.488 + 1.298)w_5 & \geq 0.40925
\]

\[
0.5410625 - 0.40925 & \geq \lambda_3,
\]

\[
(0.5 - 0.338)w_1 + (0.9 - 0.618)w_2 + (0.9 - 0.583)w_3 + (0.9 - 0.488)w_4 + (1.9 - 1.298)w_5 & \geq -0.208875
\]

\[
0.2864375 - 0.208875 & \geq \lambda_3,
\]

\[
1.0839 - (1.205 - 0.34)w_1 + (2.02 - 0.4)w_2 + (1.47 - 0.44)w_3 + (0.373 - 0.19)w_4 + (0.725 - 0.24)w_5 & \geq \lambda_4,
\]

\[
1.0839 - 0.910475 & \geq \lambda_4,
\]

\[
(1.205 + 2.02w_1 + 1.47w_2 + 0.373w_4 + 0.725w_5 - 1.2511 & \geq \lambda_4,
\]

\[
1.4604 - 1.2511 & \geq \lambda_4,
\]

\[
((2 - 1.205)w_1 + (3.6 - 2.02)w_4 + (2.4 - 1.47)w_5 + (0.5 - 0.373)w_4 + (1.2 - 0.725)w_5 - 0.84765 & \geq \lambda_4,
\]

\[
1.0164 - 0.84765 & \geq \lambda_4,
\]

\[
\lambda_j \geq \alpha, \quad 0 \leq \lambda_j \leq 1, \quad j = 1, ..., 4
\]

\[
w_1 + w_2 + w_3 + w_4 + w_5 = 1,
\]

\[
0.4 \leq w_i \leq 0.7,
\]

\[
w_2 = w_3,
\]

\[
w_2 \geq 0.05 + w_4,
\]

\[
w_4 \geq 0.05 + w_5,
\]

\[
w_1, ..., 5 \geq 0.
\]
مکانی بهبود یافته‌ای با استفاده از این مدل

جدول 9. مقادیر بهینه وزن اهمیت شاخص‌ها و بهترین و بدترین مقادیر فاکتور

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>W1</th>
<th>ñi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

جدول 10. مقادیر P', S', R', Q

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>S'</th>
<th>R'</th>
<th>Q'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

تقریب اولیه مشتریان در صورت اطمینان به صورت جدول

جدول 11. رتبه‌بندی مشتریان برای اعضا تسهیلات

<table>
<thead>
<tr>
<th>R1</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

جدول 12. مقادیر P', S', R', Q

<table>
<thead>
<tr>
<th>R1</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

تقریب اولیه مشتریان در صورت اطمینان به صورت جدول

جدول 13. رتبه‌بندی مشتریان برای اعضا تسهیلات

<table>
<thead>
<tr>
<th>R1</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
 مدیریت ریسک اعتباری تحت عدم قطعیت با استفاده از...

محمد جعفر تارخ، میر بهادر قلی آرای، مصطفی اخباری و مهدی یزداني

28

هج مورد استفاده قرار گرفت. فلاینت و انعطاف یافته روش با استفاده از محمد جعفر تارخ، میر بهادر قلی آرای، مصطفی اخباری و مهدی یزداني...

مراجع

1. فلاخم، م. ف. رشتو، م. "مدیریت ریسک اعتباری در بازکار
2. فلاینت و انعطاف یافته روش (مهاجرت و مدل ها) "، چاب اول، انواع استانداردی را مدل ارزیابی آماده با یک با استفاده از روش به همکاری، اولین AHP، کنفرانس بین المللی مهندسی صنایع، نهان، 1382.
3. رجح زاده قطبی، ح. بهرامی میرزایی، ع. احمدی، ب. طراحی سیستم هوشمند تریکن زیب ابداعی مشتریان این ها با استفاده از مدل های استاندارد فازی تریکی، نشریه پژوهشنامه بازرگانی، شهره 43 سال، 1382.
4. شوندنی، ج. "نظریه مجموعه های فازی و کاربرد آن در مهندسی صنایع و مدیریت"، چاب اول، انتشارات گستر غاوم پایه، نهان، 1385.
11. Leland, H., Toft, K., "Optimal Capital Structure, endogenous bankruptcy, and the term structure of

نشریه بین المللی مهندسی صنایع و مدیریت تولید، خرداد 1392- جلد 25- شماره 1

[47] Park, K.S., Kim, S.H., "Tools for Interactive Multi-

[34] Sayadi, M.K., Heydari, M., & Shahanaeghi, K.
Attribute Decision making with Incompletely
Identified Information", European Journal of

Fuzzy Multiple Attribute Group Decision Making",
Information Sciences, 2006 (in press).