A Model for Spare parts' Demand Forecasting Based on Reliability, Operational Environment and Failure Interaction of Parts

Ebrahim Teimoury & Mina Mazra'eh Farahani

Ebrahim teimoury, Industrial Engineering Department, Iran University of Science and Technology
Mina Mazra'eh Farahani, Industrial Engineering Department, Iran University of Science and Technology

Keywords
Spare parts, Demand forecasting, Proportional hazard model, Competing risk model, Failure rate, Renewal process

ABSTRACT

Product support and after sales services are among the important areas which have attracted the attention of managers and decision makers, especially in the field of supply chain and logistics management. Supplying the spare parts of products to guarantee the desired operation of product during its life time is in the focus of attention of logistics and supply chain managers. What makes the demand forecasting possible and real is the correct identification of demand affecting factors and their relation. So, the best model of spare parts' demand forecasting is one which incorporates all factors influencing the failure rate of the parts. This article presents a model which incorporates the environmental covariates influencing the failure rate as well as the reliability characteristics of parts. In addition, a portion of spare parts demand is due to the interaction of different parts in a system which is known as failure interaction. This factor is regarded in the model as another factor affecting the failure rate of the parts and, the demand estimation as a result. This model uses the reliability models and renewal process to forecast spare parts demand, based on reliability, operational environment and failure interaction.

Keywords
Spare parts, Demand forecasting, Proportional hazard model, Competing risk model, Failure rate, Renewal process

ABSTRACT

Product support and after sales services are among the important areas which have attracted the attention of managers and decision makers, especially in the field of supply chain and logistics management. Supplying the spare parts of products to guarantee the desired operation of product during its life time is in the focus of attention of logistics and supply chain managers. What makes the demand forecasting possible and real is the correct identification of demand affecting factors and their relation. So, the best model of spare parts' demand forecasting is one which incorporates all factors influencing the failure rate of the parts. This article presents a model which incorporates the environmental covariates influencing the failure rate as well as the reliability characteristics of parts. In addition, a portion of spare parts demand is due to the interaction of different parts in a system which is known as failure interaction. This factor is regarded in the model as another factor affecting the failure rate of the parts and, the demand estimation as a result. This model uses the reliability models and renewal process to forecast spare parts demand, based on reliability, operational environment and failure interaction.

Keywords
Spare parts, Demand forecasting, Proportional hazard model, Competing risk model, Failure rate, Renewal process

ABSTRACT

Product support and after sales services are among the important areas which have attracted the attention of managers and decision makers, especially in the field of supply chain and logistics management. Supplying the spare parts of products to guarantee the desired operation of product during its life time is in the focus of attention of logistics and supply chain managers. What makes the demand forecasting possible and real is the correct identification of demand affecting factors and their relation. So, the best model of spare parts' demand forecasting is one which incorporates all factors influencing the failure rate of the parts. This article presents a model which incorporates the environmental covariates influencing the failure rate as well as the reliability characteristics of parts. In addition, a portion of spare parts demand is due to the interaction of different parts in a system which is known as failure interaction. This factor is regarded in the model as another factor affecting the failure rate of the parts and, the demand estimation as a result. This model uses the reliability models and renewal process to forecast spare parts demand, based on reliability, operational environment and failure interaction.

Keywords
Spare parts, Demand forecasting, Proportional hazard model, Competing risk model, Failure rate, Renewal process

ABSTRACT

Product support and after sales services are among the important areas which have attracted the attention of managers and decision makers, especially in the field of supply chain and logistics management. Supplying the spare parts of products to guarantee the desired operation of product during its life time is in the focus of attention of logistics and supply chain managers. What makes the demand forecasting possible and real is the correct identification of demand affecting factors and their relation. So, the best model of spare parts' demand forecasting is one which incorporates all factors influencing the failure rate of the parts. This article presents a model which incorporates the environmental covariates influencing the failure rate as well as the reliability characteristics of parts. In addition, a portion of spare parts demand is due to the interaction of different parts in a system which is known as failure interaction. This factor is regarded in the model as another factor affecting the failure rate of the parts and, the demand estimation as a result. This model uses the reliability models and renewal process to forecast spare parts demand, based on reliability, operational environment and failure interaction.

Keywords
Spare parts, Demand forecasting, Proportional hazard model, Competing risk model, Failure rate, Renewal process

ABSTRACT

Product support and after sales services are among the important areas which have attracted the attention of managers and decision makers, especially in the field of supply chain and logistics management. Supplying the spare parts of products to guarantee the desired operation of product during its life time is in the focus of attention of logistics and supply chain managers. What makes the demand forecasting possible and real is the correct identification of demand affecting factors and their relation. So, the best model of spare parts' demand forecasting is one which incorporates all factors influencing the failure rate of the parts. This article presents a model which incorporates the environmental covariates influencing the failure rate as well as the reliability characteristics of parts. In addition, a portion of spare parts demand is due to the interaction of different parts in a system which is known as failure interaction. This factor is regarded in the model as another factor affecting the failure rate of the parts and, the demand estimation as a result. This model uses the reliability models and renewal process to forecast spare parts demand, based on reliability, operational environment and failure interaction.

Keywords
Spare parts, Demand forecasting, Proportional hazard model, Competing risk model, Failure rate, Renewal process

ABSTRACT

Product support and after sales services are among the important areas which have attracted the attention of managers and decision makers, especially in the field of supply chain and logistics management. Supplying the spare parts of products to guarantee the desired operation of product during its life time is in the focus of attention of logistics and supply chain managers. What makes the demand forecasting possible and real is the correct identification of demand affecting factors and their relation. So, the best model of spare parts' demand forecasting is one which incorporates all factors influencing the failure rate of the parts. This article presents a model which incorporates the environmental covariates influencing the failure rate as well as the reliability characteristics of parts. In addition, a portion of spare parts demand is due to the interaction of different parts in a system which is known as failure interaction. This factor is regarded in the model as another factor affecting the failure rate of the parts and, the demand estimation as a result. This model uses the reliability models and renewal process to forecast spare parts demand, based on reliability, operational environment and failure interaction.
1. مقدمه

آقای میرحسین موسوی، صرف پیشی مصرف و مصرف مبتنی بر دنیای گرفتنی قابلیت اطمنان، محیط عملیاتی و...
هدار: ملاحظه می‌شود، \(h(t) \) در طول تاریخ معادله قرار دارد و همین‌طور که مدل RA است، دارای ابزاری است که هنگامی که \(h(t) \) با مدل ما به‌دست می‌آید، که فقط نشان‌دهنده‌ی یکنواختی است. مدل RA شاید بسیار معلوم باشد. این مدل‌ها قابلیت‌های محدودیت‌های محاسباتی را می‌باشد. این مدل‌ها از مدل‌های تحلیل‌های فاصله زمانی می‌باشند.

\(R = P[X > Y] \)

\(R = 1 - F_X(t) \)

\(R = \frac{\lambda_0}{\lambda_0 + \lambda_1} \)

از اینجا که اگر فاصله در سطحی نگرفته که می‌شود که همه آنها مشابه شده‌اند و در آزمایشگاه یا روش‌های استفاده می‌شود.

\(h(t) = h_0(t) \Psi(z(t)) \)

\(z = \sum_{i=1}^{k} \alpha_i t_i \)

\(h(t, z) = h_0(t) \Psi(z \alpha) \)

\(h(t, z) = h_0(t) \Psi[\Psi(h(t, z))] \)

1. Proportional Hazard Model
2. Proportional Covariates Model
شامل متغیرها و عوامل متریک) است که در هر جریان تعادل است خرابی $h(t)$ مدل PHM مدل $h(t)= (\beta_1 \eta(t))^{1-\beta}$ $\beta=1$

یکی از برترونهای اصلی مدل توزیع-ازاد بودن این هستند: با این حال

بسیاری از برترونهای این نوع توزیع طول عمر م финوکست این به

واقع و اب nije نیست. این نکته بیضاء در حالی که همی داده

مقداری و جدول نمونه نشان می‌دهد، با این حال جدول زیر مقایسه

نهایی سیاست نرم. سیستم که تأثیر عوامل مبینی نیست پایین، به شکل زیر که

اوف داده می‌شود.

$\lambda(t, z) = \lambda_0(t). \exp(z \alpha) = \lambda_0(t). \exp(\sum_{i=1}^{k} \alpha_i z_i) \quad (8)$

که درآن $h_{0}(t)$ شکست سیستم، α_i و α در عوامل $z_{i} = 1, 2, ..., n$

و مقدار متغیر α مدل هستند $\alpha_i, i = 1, 2, ..., n$

که تاثیر هر یک از عوامل را بر خروج شکست مشخص می‌کند.

عمل ضریبی $\exp(\alpha_i z_i)$ را می‌توان ریسک نسبی شکست به دلیل

حضور یا عدم حضور یک از عوامل نامی.

در یک سیستم تحمل‌پذیری معیار شکست و اسپیورادیک یک

قلم بینی از عوامل مهم موتور بر طول عمر و شکست‌ساز قطعات

است. Mrsthy & Nguyen (1985) این مقایسه می‌باشد و به میاد

$\phi,$ یک نمونه و سپس نوع منفی (نمونه-1) به این پایان.

برای این نوع

در بهترین شکست نوع هر مربی از گرداگان یک قطعه

ϕ توانا شکست و از بازگردانی گیک یا چنده قطعه دیگر در سیستم

به این توانا. در بهترین شکست نوع 2 هرگاه قطعه از کار

می‌آید. این شکست مدل به طول عمر M_i هر رژیم برای بازی شکست

عمل می‌کند و در شکست سایر قطعات تغییر ایجاد می‌کند.

بیشترین نرخ شکست در نهایت عملیات آلیکه تابع عمر این را تاثیب

تعداد ضرایب دریافت شده از بازی شکست این

β ترکیبی از انواع I و II. در

این حالت، زمانی که قطعه‌های از کار می‌آیند در بازی شکست

شکست اتفاقیکن/ایا شکست سایر قطعات را دچار تغییر کند.

1 Failure interaction
است. بدهی است که مدل‌های مختلین باید مدل‌های مختلین در مورد
متغیرهای موثر، یافتن آنها حتی از خود آنها می‌شود، بنابراین این مدل‌های مختلین که در زیر شرح داده شدند، در مدل‌های لحظه‌ای شناخته می‌شوند:

1- مدل آزمون شده در حالی است که برای فرضیه‌های غیرقابل تعمیر
توسعه‌افته‌ای است. چراکه اساساً تا زمانیکه فرضیه قابل تعمیر
است، تغییرات برای این آیا نمی‌شود و زمان بهینه تجویز در
حضور سیستم‌های مختلف با استفاده از مدل‌های دیگر
قابل بررسی است.

2- مدل بیشتر مصرف بروز دو قطعه بر روش نویسی نویسی
پایه‌ای است. اما به‌وکته قابل تعمیر به یک سیستم عاملی است.
که به‌رونه مدل تحقیق آن از نوع 1 است.

3- فرض و لازم‌پذیری‌ای این مدل آن است که 4. زمان
پیش‌بینی؛ آنقدر بزرگ باشد که در این مدت تغییرات، متغیر
نیاز.

4- از آنجا که بیشتر مصرف قطعات با استفاده از نظریه تجدید
اجاقم و لازم‌پذیری را برای بررسی یک ترکیب مدل‌های بروز
یکسان بودن بروز زمان رخ داده، در این مدل نیز فرض بر آن
است که زمان‌های بین دو شکست قطعه دارای توزیع یکسان و
میانگین مقدار آن‌ها در دو قطعه می‌تواند به‌عنوان یک عامل تغییر نیست. چراکه
هرباره قطعه‌ی عوامل تبدیل یک عوامل نوبه‌ای یا جایگذاری آن می‌شود
که شکست آن در اثر از قطعات باعمال موثر بر عمل قطعه قابلیت، اما
در زمانی کاملاً مستقل از زمان قطعه قابلیت رخ می‌دهد.

1 Competing Risk Model
تعویض قطاعی را در نظر گیری کرد که متوسط زمان شکست آنها \bar{T} و احراز استفاده زمان شکست شان (است). نتیجه یا $\xi = \sigma(T)/\bar{T}$ است. اگر کارکرد (یا زمان پیشنهادی) سیستمی که قطعه روی این تغییرات در داده شده است، به‌منظور تعیین متوسط شکست‌ها $E[N(t)]=M(t)$ با مقدار مجاني تابع تجدید برای است:

$$N_t = M(t) = E[N(t)] = \frac{t + \sigma^2 - 1}{\sigma^2} \left(\frac{\sigma^2 (T) - T^2}{T^2}\right)$$ \hspace{1cm} (16)

و تابع شدت شکست یا تابع ترک تجدیداز رابطه زیر حاصل می‌شود:

$$m(t) = \frac{dM(t)}{dt} = \frac{dE[N(t)]}{dt} = \frac{1}{T} $$ \hspace{1cm} (17)

انحراف استاندارد تعداد شکست‌ها تا زمان λ به‌صورت ردی:

$$\sigma[N(t)] = \sqrt{T} \sqrt{\frac{t + \sigma^2 - 1}{\sigma^2}} \left(\frac{\sigma^2 (T) - T^2}{T^2}\right)$$ \hspace{1cm} (18)

چنانچه λ که نشان می‌دهد افزایش برای بهبود (طقع قطعه) به واسطه ای از آنها به نظر می‌رسد. دارای توزیع تقریبی می‌باشد. با مشاهده $N(t)$، زمان λ با استفاده از کمربود Φ برای استفاده از مطالعاتی بیشتری به محصول:

$$N_t = \frac{t + \sigma^2 - 1}{\sigma^2} + \frac{T}{\sigma^2} \Phi^{-1}(p)$$ \hspace{1cm} (19)

که در آن (p) تابع توزیع=N معکوس است و مقدار آن از جدول‌های امضا با استخراج است.\[9\]

3-4. مدل برآورد تعداد قطعات برج‌پر کرده برای سیستم و

مولفه‌ای برج‌پر کرده محیط عملیاتی و برهم کشش نوع

با توجه به اینکه زمان در شکست قطعات خودرو و با

دنبال این مدل تزیین ویل در زمان شکست، امکان توزیع مدلی

جامعی فراهم می‌شود، بایستی در نظر گرفت که سیستم

دنباله‌ای قطعات (می‌تواند). که در آن هر یک از مولفه‌های دارای توزیع

زمان شکست با پارامترهای معین هستند، علائم زیر که در مدل

بکار رفته‌اند، جمعیتی می‌کنند:

توزیع زمان شکست قطعات، می‌تواند دارای محیطی و

برهم کشش شکست با سایر قطعات (که آن را توزیع زمان شکست

$$F_{X}(t) = F(\lambda t) + \int_{0}^{t} \lambda(t-x) f(x) dx$$ \hspace{1cm} (15)

شکل 2. بک سیستم و مواضع آن در روشی عمومی و

برهم کشش شکست

$$F_{X}(t) = 1 - \left[1 - F_{Y}(t) \right] \left[1 - F_{Z}(t) \right]$$ \hspace{1cm} (10)

و نرخ شکست آن رابطه زیر به‌دست می‌آید:

$$\lambda_{i}(t) = \lambda(t) + \lambda_{c}(t)$$ \hspace{1cm} (11)

نیازمند از سیستم توصیف شده را در شکل 2 نشان داده‌های محیطی یکمو حضور قطعه 2 و Z_e در این سیستم دهانه عمومی محیطی یکمو ترک شکست قطعه 1 است.
اهواه میتوانیم این توزیع و مشخصات داده‌ای با دانستن قطعاتی اطمینان، محیط عملیاتی و...

\[
\begin{aligned}
\beta_{\text{ext}} &= \beta_0^* \\
\eta_{\text{ext}} &= \eta_0^* \left[\exp\left(\sum_{i=1}^{n} \alpha_i z_i \right) \right] \beta_0^*
\end{aligned}
\] \hspace{1cm} (25)

و با نتایج زمان شکست در نظر توجه شکست منا و محفظه عملیاتی دارای توزیع ویبول با پارامتر شکست \(\beta_{\text{ext}} \) و پارامتر مقیاس \(\eta_{\text{ext}} \) است.

\[F_{t}^i (t) \] تابع توزیع تجمعی ارگانیزم می‌باشد. برای وارد گردیدن اثر برهم کنش شکست قطعات در مدلهای نمد خطرات در حال رقابت و با فرض آن که برهم کنش شکست قطعه 1 و 2 از نظر برهم کنش 1 است، یعنی هر افراد از قطعات اول مدل، \(\lambda^0 \) (ویلی از توزیع قطعه 1، چراکه قطعات غیرقابل تعیین هستند) را موجب می‌گوید. برای قطعه 2 که در معرض هوای بروئن نیست و برهم کنش شکست قطعه 1 فاصله دارد، داریم:

\[F_{2t} (t) = F_{10} (t) + F_{2e} (t) - F_{10} (t) \times F_{2e} (t) \] \hspace{1cm} (26)

و با توجه به روابط (27) و (28) و برای های توزیع ویبول، داریم:

\[F_{2t} (t) = \\
1 - \exp \left[-\left(\frac{t}{\eta_0^*} \right) \beta_0^* \left(-\frac{t}{\eta_0^*} \right) \beta_0^* \right] \] \hspace{1cm} (27)

و که با تابع چگالی زمان شکست است از زبدهای زیر به دست می‌آید:

\[f_{2t} (t) = \\
\left(\frac{\beta_0^*}{\eta_0^*} \beta_0^* \right) \times \exp \left[-\left(\frac{t}{\eta_0^*} \right) \beta_0^* \left(-\frac{t}{\eta_0^*} \right) \beta_0^* \right] \] \hspace{1cm} (28)

و تابع فرضیه زمان شکست قطعه 2 با دانستن کلیه عوامل (عوامل محیطی و برهم کنش شکست قطعه) 1 عبارت است از:

\[\lambda^2 (t) = \lambda^1 (t) + \lambda^2_{\text{ext}} (t) \] \hspace{1cm} (29)

و با نتایج:

\[\lambda^2 (t) = \\
\left(\frac{\beta_0^*}{\eta_0^*} \beta_0^* \right) \times \exp \left[-\left(\frac{t}{\eta_0^*} \right) \beta_0^* \left(-\frac{t}{\eta_0^*} \right) \beta_0^* \right] \] \hspace{1cm} (30)

بنابراین حاصله نتایج زمان شکست قطعه 2 با دانستن کلیه عوامل (عوامل محیطی و برهم کنش شکست قطعه) 1 عبارت است از:

\[\lambda^2 (t) = \lambda^1 (t) + \lambda^2_{\text{ext}} (t) \] \hspace{1cm} (29)

و با نتایج:

\[\lambda^2 (t) = \\
\left(\frac{\beta_0^*}{\eta_0^*} \beta_0^* \right) \times \exp \left[-\left(\frac{t}{\eta_0^*} \right) \beta_0^* \left(-\frac{t}{\eta_0^*} \right) \beta_0^* \right] \] \hspace{1cm} (30)

این عبارت در واقع نشان دهنده تابع توزیع ویبول با پارامترهای زیر است:

\[\lambda^2 (t) = \lambda^1 (t) + \lambda^2_{\text{ext}} (t) \] \hspace{1cm} (29)

و با نتایج:

\[\lambda^2 (t) = \\
\left(\frac{\beta_0^*}{\eta_0^*} \beta_0^* \right) \times \exp \left[-\left(\frac{t}{\eta_0^*} \right) \beta_0^* \left(-\frac{t}{\eta_0^*} \right) \beta_0^* \right] \] \hspace{1cm} (30)

این عبارت در واقع نشان دهنده تابع توزیع ویبول با پارامترهای زیر است:

\[\lambda^2 (t) = \lambda^1 (t) + \lambda^2_{\text{ext}} (t) \] \hspace{1cm} (29)

و با نتایج:

\[\lambda^2 (t) = \\
\left(\frac{\beta_0^*}{\eta_0^*} \beta_0^* \right) \times \exp \left[-\left(\frac{t}{\eta_0^*} \right) \beta_0^* \left(-\frac{t}{\eta_0^*} \right) \beta_0^* \right] \] \hspace{1cm} (30)
5. مطالعه موردي در شرکت ايساكو

(توزیع کننده قطعات یکی شرکت ایران خودرو)

در این بخش نتایج از اجرای مدل بریتی بینی برای دو قطعه منطبق که در معرض عوامل محيطی و هرکدام شکست نوی اول قرار دارند ارائه شده است.

5.1 آماده‌سازی

مرحله آماده‌سازی با هدف استخراج داده‌های مربوط به نرخ شکست می‌باشد. برای این منظور مدل نیز سرستیندر استفاده انجام گرفته است. واشر سرستیندر استاندارد لمسا پس از بهره‌برداری تعویض سرستیندر باید تعویض گردید. بنابراین، دو قطعه منطبق دارای برهمکنش نوی 1 هستند. (شکل 3)

شکل 3. برهمکنش دو قطعه نوی با برهمکنش نوی اول (سرستیندر و واشر مربوطه)

رویکرد تونیکی که برای محاسبه نرخ شکست می‌باشد و برای توزیع می‌باشد. برای مناسب بودن استفاده از داده‌های گزارشی، ضریب طول عمر قطعات در دوره‌ای که نمی‌باشد، توزیع می‌باشد. برای نرخ گزارش‌ها، شکست یا گزارش‌ها نمی‌باشد از نکات است. نرخ توزیع ویبول یا این داده‌ها می‌باشد. به نظر مناسب از نکات شکست یا گزارش‌ها توزیع داده‌های مربوط به نرخ گزارش‌ها مشاهده شد که توزیع ویبول به برخی از نمودار برخی از نمودار خطا در سایر داده‌های آماده برای توزیع مورد نظر انتباه می‌باشد. چارچوب توزیع می‌باشد برای اجرای مدل توزیع داده‌های مربوط به نرخ گزارش‌ها مشاهده شد که نرخ توزیع ویبول به برخی از نمودار برخی از نمودار خطا در سایر داده‌های آماده برای توزیع مورد نظر انتباه می‌باشد. چارچوب توزیع می‌باشد برای اجرای مدل توزیع داده‌ها در سایر داده‌های آماده برای توزیع مورد نظر انتباه می‌باشد. چارچوب توزیع می‌باشد برای اجرای مدل توزیع داده‌ها در سایر داده‌های آماده برای توزیع مورد نظر انتباه می‌باشد. چارچوب توزیع می‌باشد برای اجرای مدل توزیع داده‌ها در سایر داده‌های آماده برای توزیع مورد نظر انتباه می‌باشد. چارچوب توزیع می‌باشد برای اجرای مدل توزیع داده‌ها در سایر داده‌های آماده برای توزیع مورد نظر انتباه می‌باشد. چارچوب توزیع می‌باشد برای اجرای مدل توزیع داده‌ها در سایر داده‌های آماده برای توزیع مورد نظر انتباه می‌باشد. چارچوب توزیع می‌باشد برای اجرای مدل توزیع داده‌ها در سایر داده‌های آماده برای توزیع مورد
یک هفتار در انتخاب خریدار شماره سه بک مدل سیستم شهری مطلع از عوامل مورد مسئولیت (رشته مدیریت و مهندسی حوزه) آشنایی به ساختار و برهمکنش قطعات و تعیین کارایی قرار گرفته مهندسین عوامل موزون بر شکست قطعه و نیز قطعات موزون بر یکدیگر با استفاده از نظارت خرکان شناسایی شدند. این پس از آن با انجام مطالعه میدانی و جمع‌آوری داده‌های آماری برای عوامل محاسبه شده، انتزاعی این عوامل در سطح اطلاعات مشخص شناسایی شد و رگرسیون COX برای آنها انجام یافت. به عنوان نمونه عوامل خارجی موزون بر تغییر شکست واشر سرسیدندر و داده‌های میدانی زمان شکست برای انجام رگرسیون COX در جدول 2 نشان داده شده است.

در این جدول ستون سمت چپ (T) شکست هر دهمدقيقة زمان شکست PHM نام داده می‌شود که می‌توان با استفاده از تقریب کار رفتار و داده‌های ۱۰ و ۴۰ تا که به معنی استفاده‌های مختلف TEMP و DPERF برای Improved مدل‌های تخمین‌یابی جدید در شرایط آب و هوایی مختلف به کار رفته و داده کننده ۱۰ و ۴۰ است که به مدل‌های عامل معنی‌دارهای مدل‌های متوسط و مدل‌های مطلوب هستند. رگرسیون در سطح اطلاعات ۰.۰۵ اوزان و مدل‌های معنی‌دارهای p-value به روابط DPERF TEMP به ترتیب DPERF TEMP دارنده اثر متغیرهای محیطی فرض شده معنادار است و فرض صفر یا این‌ها را رد می‌شود. تغییر شکست واشر سرسیدندر با توجه به تغییر زمان شکست واشر با دانستن عوامل محیطی و نخش شکست مینا عبارت است از:

\[F_{20.03}(t) = 1 - \exp\left(-\frac{t}{20.03}\right) \]

اما با توجه به پیروی کنش شکست مینا سرسیدندر و واشر سرسیدندر و با توجه به اینکه هر بر تعیین سرسیدندر لوما با تعیین واشر مرتبه هر آن همراه است، با تغییر زمان شکست واشر با دانستن عوامل محیطی، برای استفاده:

\[F_{20.03}(t) = F_{20.03}(t) + F_{20.03}(t) - \left[F_{20.03}(t) \times F_{20.03}(t) \right] \]

و با توجه به روابط (۲۷) و (۲۳) خواهان داشت:

\[F_{20.03}(t) = \exp\left(-\frac{t}{1.41}\right) \]

\[F_{20.03}(t) = \exp\left(-\frac{t}{20.03}\right) \]

نتایج تولید می‌تواند برای توزیع زمان شکست سرسیدندر TOLID ادامه یافته باشد. مدل‌های نمادین نگاه به اینکه هر بر تعیین سرسیدندر لوما با تعیین واشر مرتبه هر آن همراه است، با تغییر زمان شکست واشر با دانستن عوامل محیطی، برای استفاده:

\[F_{20.03}(t) = F_{20.03}(t) + F_{20.03}(t) - \left[F_{20.03}(t) \times F_{20.03}(t) \right] \]

اما با توجه به پیروی کنش شکست مینا سرسیدندر و واشر سرسیدندر و با توجه به اینکه هر بر تعیین سرسیدندر لوما با تعیین واشر مرتبه هر آن همراه است، با تغییر زمان شکست واشر با دانستن عوامل محیطی، برای استفاده:

\[F_{20.03}(t) = \exp\left(-\frac{t}{1.41}\right) \]

\[F_{20.03}(t) = \exp\left(-\frac{t}{20.03}\right) \]
شکست قطعه‌ی ۲، به‌عنوان یک عناوین مهندسی‌های مربوطه در این پژوهش کشیده گرفته شده‌است.

منابع

[10] "ساخت و کاربرد مدل‌های تحلیل پیشگیری شرکت‌های هلک"، انتشارات علمی و پژوهشی، تهران، ۱۳۸۳.