یک مدل ریاضی یکپارچه برای انتخاب تامین کننده‌گان دو لیه از زنجیره تامین

مصطلحات ستک و سمانه شریفی

چکیده:
مستند انتخاب تامین کننده‌گان یکی از مهم‌ترین مسائلی است که در موفقیت زنجیره تامین از می‌گردد و در سال‌های اخیر محتقق سپاسی به آن پرداخته‌اند. در این مقاله استفاده از مدل‌های ریاضی به‌کارگیری یک نظریه جدید بهبود و تعریف الگوهای شده در این مقاله نیز، از این ارای آزمایش زنجیره تامین که علاوه بر تامین کننده‌گان که مستقیماً با سازمان در ارتباط، صنعتی تامین کننده‌گان سطح دوم یا نیز مورد بررسی قرار می‌گیرد و یک شکل تأثیرگذار دریابی که می‌تواند منجر به مدل‌های کننده هر دو سطح را مشخص کند همچنین ویژگی مهم مدل جدید محولی بوده که این ارای سفارش‌های تکنیکی محفظه را به صورت هم‌زمان و در شرایط تحقیق برای تامین کننده‌گان می‌تواند اول به‌ورود می‌کند. در نهایت صحت مدل با مثال‌های عددی سنجیده می‌شود.

کلمات کلیدی:
برون سپاری، انتخاب تامین کننده، برنامه‌ریزی نیروی جدیده، برنامه‌ریزی آرمانی

1. مقدمه
یک زنجیره تامین شامل تمامی مرحلاتی است که به طور مستقیم یا غیر مستقیم در پرداخت عواملی خواست مشتری دچال است. زنجیره تامین نه تنها شامل سازمان‌ها و تامین کننده‌گان می‌شود، بلکه بخش‌های حمل و نقل، ابزار، خرده‌فروشان و حتی مصرفی را می‌تواند مشتری از این ارای تولید یا هر دو می‌گیرد. امروزه شرکت‌های تولیدی برای حفظ جایگاه رقابتی خود باید هزینه‌های اضافی اراینهاری متحمل زنجیره تامین را با استفاده از اصلاحات در این ارای کاهش دهند. از جمله اصلاحات در این ارای‌ها، برنامه‌ریزی فضایی و خدمات انتخاب که به هزینه‌های نیروی انسانی و تکنولوژی کاهش می‌دهد. در این مقاله بررسی محتوای تولید و خدمات داخل شرکت‌ها تولید

تاریخ ارسال: 89/10/27
تاریخ پذیرش: 89/11/28
نویسنده مسئول مقاله: دکتر مصطفی ستک، دانشگاه مهندسی صنایع، لاهیجان
author@kntu.ac.ir
نتایج وابسته: حسین مسعودی انتخاب تامین کننده‌گان، دانشگاه صنعتی مبارکه، تهران
sa_sharifi@sina.kntu.ac.ir
نویسنده مسئول مقاله: دکتر مصطفی ستک، دانشگاه مهندسی صنایع، لاهیجان
setak@kntu.ac.ir

أنیا نوریان
ششمایه، ژانویه، 1390
صفحه‌های 98-115
ISSN: 2008-4870
http://IJIEPM.just.ac.ir/
Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory
Analytic network process
TOPSIS
ANP
TOPSIS
3. Shirk Minalshenadi
4. Methodological
5. Technique for order performance by similarity to ideal solution
6. Data envelopment analysis
7. Fuzzy set theory

3. Shirk Minalshenadi

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2.Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson

Technique for order performance by similarity to ideal solution
Data envelopment analysis
Fuzzy set theory

Sarkis and Talluri
1. Lewis
2. Dickson
پرآمرشی مانند و ضعیت اقتصادی تمامی کننده، استراتژی و فرهنگ سازمانی، توانایی های تکنولوژیکی، عملکرد و سیاست مهم اند. در این مقاله معکوسیت کالاهای در نظر گرفته شده است که به صورت تک کالاهایی، که در تنش یا کمیت یک وسایل می‌تواند در محاسبات مندرج استفاده قرار گیرد و هدف اول حداکثر کردن آنها است. تابع هدف دوم شامل حداکثر کردن ترخ حمل و نقل هایی است که تاثیر دارد و تابع سوم حداکثر کردن قیمت خرید مالی و هزینه تابع کالا های تمامی کننده می باشد. تا بر این است تقسیم تمامی کننده در هر دو لایه به صورت بیکاری چه انتخاب شود و به این ترتیب عوامل ذکر شده برای هر دو لایه در نظر گرفته شود. هدف این مدل طراحی یک شبکه تمامی کالا است. همانطور که در شکل (1) یک به مسیر پیغام یکین کننده تامین

شکل ۱. شکل ثامن مربوط به مدل سفارش هدفه دند مجد مکون

1. پرآمرشی مدل:

- شماره‌دهی:

\[T = \text{پرآمرش دریکرد محصول} \]

اول آرام ترخ حمل و نقل های با دیرکرد.

- سطح قیمت:

\[C = \text{قیمت کیک واحد محصول} \]

اول آرام که در

- سطح قیمت:

\[Q = \text{طرفین ثامن کننده سطح اول آرام بار تولید محصول} \]

اول آرام که در

- سطح قیمت:

\[R = \text{پرآمرش متوسط کالاهای اولیه مصرفی} \]

اول آرام که در

- سطح قیمت:

\[L = \text{پرآمرش دیرکرد اولیه مصرفی} \]

اول آرام که در

- سطح قیمت:

\[b = \text{ارتفاع دریکرد} \]

اول آرام که در

- سطح قیمت:

\[q = \text{پرآمرش کالاهای اولیه} \]

اول آرام که در
ثبت هدف مسئله به نحو تعريف شده است که دیرکرده و قيمت‌ها و همچنين کيفيت در كل تامين‌گران و در هر دو لحجه در نظر گرفته شود. زيرا هدف تعيب‌ترين گروه‌كيدی در هر دو لحجه از ان جيلی که همیشه تامین‌گران لاي اول براي خريد بيشتر است، زون اجاي در مقایسه با ليه دوم متفاوت در نظر گرفته شده است. محدودت (2) نشان ده که مجموع كلاههايی که تامين‌گران لاي اول تهيه مي كنند پاسخگوی تقيمات خريدار براي انواع مخصولات باشد. محدودت (3) نشان ده که مجموع مواد اوليي اي که تامين‌گران لاي اول تهيه مي كنند پاسخگوی تقيمات هر تامين‌گران سطح اول برای هر مخصول باشد. محدودت (4) بنابر ايز ميان تقيمات تامين‌گران سطح اول برای انواع مخصولات مي باشد. محدودت (5) و (6) پاسخگوی نظريت توليد و تهيه مواد اوليي تامين‌گران لاي اول و دوم است که يا يک تامين‌گران لاي اول انتخاب نشود، تامين‌گران لاي اول دوم که با يك تامين‌گران لاي اول انتخاب نشود، تامين‌گران لاي اول دو محدودت (7) تقييم مي كنند که اگر يک تامين‌گران لاي اول انتخاب نشود، تامين‌گران لاي اول دوم که با يك تامين‌گران لاي اول انتخاب نشود، تامين‌گران لاي اول دوم که با يك تامين‌گران لاي اول انتخاب نشود، تامين‌گران لاي اول دو

\[x_{ijk}, y_{ijpm} \geq 0 \quad z_{ijk} = 0.1 \] (1)

4. حل مسئله با استفاده از روش برنامه‌ریزی آزمایشی

شادی بتوان گفت که برنامه‌ریزی آزمایشی یکی از قدیمی‌ترین مدل‌های موجود در تصمیم‌گیری‌های چند معاوضه است که با کاربردهایی وسیع به کار گرفته شده است. برای اولین بار چارلز و لوی 1985 مقاله ای دربردارنده این روش مطرح کردند. در برنامه‌ریزی آزمایشی تاکتیک بر اساس گمانه شونده و سعي می‌شويد تا جابجايي که ممكن است به اين اهداف برسد. به عنوان نمونه مسئله انتخاب تامين‌گران لاي اول از اين مقاله به صورت زیر فرموله مي‌شود:

\[
\min z = d_1^2 + d_2^2 + d_3^2 + d_4^2
\]

\[\begin{align*}
\sum_{j} \sum_{k} x_{ijk} & \geq D_i & \forall i \\
\sum_{p} \sum_{m} y_{ijpm} & \geq D_{jmi} & \forall i, j, m \\
D_{jmi} & = A_{mi} \times \sum_{k} x_{ijk} & \forall i, j, m \\
\sum_{j} \sum_{k} x_{ijk} & \leq S_{ji} & \forall i, j \\
\sum_{p} \sum_{m} y_{ijpm} & \leq S_{pm} & \forall i, j, p \\
\sum_{k} x_{ijk} & \leq b_{ijk} & \forall i, j, k \\
\sum_{k} x_{ijk} & \leq b_{ijk} \times z_{ijk} & \forall i, j, k, m \\
z_{ijk} & \leq 1 & \forall i, j
\end{align*}\] (2)

Charles and Looper
5. مثال عددی
فرض کنید یک واحد تولیدی برای پرورش برونو سبزیاری 4 فطله مورد نظر خود باید از بین تاکنندگان موجود اولویت هر کدام را مشخص کند و مقدار اختصاص یافته به هر کدام را تعیین نماید. هر یک از محصولات مورد نظر برای تولید به صورت واحد اولویه نیاز دارند که تا تنامین کننده دوم آنها را تولید می‌کند. جدول زیر اطلاعات کافی درباره مواد اولویه استفاده در محصولات ضریب مصرف آن‌ها را نشان می‌دهد. تا تنامین کننده 1 مواد اولویه 4/3 و تا تنامین کننده شماره 4 مواد 2/3 و نهایتاً تا تنامین کننده شماره 4 مواد 1/2 را فراهم می‌کند که مدل بر اساس آنها با استفاده از نرم‌افزار 22 حل نموده و نتایج زیر به دست می‌آید. همچنین نتایج سایر مثال‌ها در جدول 2 ارائه شده است.

جدول 1. ضریب مصرف مواد اولویه مختلف در محصولات

<table>
<thead>
<tr>
<th>تعداد ماده اولویه</th>
<th>ماده اولویه 1</th>
<th>ماده اولویه 2</th>
<th>ماده اولویه 3</th>
<th>ماده اولویه 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>محصول 1</td>
<td>0.3</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>محصول 2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>محصول 3</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>محصول 4</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. پایه‌های به‌جای داستان مدل کامپیوتر

<table>
<thead>
<tr>
<th>مثال</th>
<th>شماره سفر دلم</th>
<th>تعداد برانگیزه‌ای نهایی</th>
<th>نهایی رسیدن به جواب نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>298</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>344</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>280</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>388</td>
<td>349</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>258</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>264</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>435</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>198</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>247</td>
<td>158</td>
<td></td>
</tr>
</tbody>
</table>
یک مدل ریاضی یکپارچه برای انتخاب تامین کننده‌ها از زنجیره تامین

در ادامه مدل سفارش هزموزمان چند محصول برای چند مسئله با ابعاد بزرگتر حل شده که نتایج آن بر تبیک جدول زیر است:

جدول ۵: نسبت های به دست آمده برای مدل های با ابعاد بزرگتر

<table>
<thead>
<tr>
<th>ردیف</th>
<th>i</th>
<th>j</th>
<th>p</th>
<th>m</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>27</td>
<td>32</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>11</td>
<td>15</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

نتیجه گیری

در حالی که ایزیک در نظر گرفتن تامین مستقیم تامین کننده به عنوان یک عامل استراتژیک در زنجیره عرض مورد توجه قرار گرفته است. ماهیت این نوین تعیینات بسیار پیچیده و فاق است. ساختار مشخصی این است و بسیاری از مهندسی عملکرد کمی و کیفی زیر نماینده را تامین کننده به عنوان یک تامین کننده مورد توجه قرار می‌گیرد. برای این‌که تامین کننده کار و رفتاری برای مطالعه و تجزیه و تحلیل مدل می‌تواند با ایزیک او نسبت به تمام تامین کننده‌ها برای تامین کننده که طور هزموزمان می‌باشد مقایسه به‌طور سفارش‌دهنده هر یک از آن‌ها نیز می‌گردد. بنابراین تاکید توجیهی به مواد سفارش‌دهنده می‌کند، در نظر گرفتن دو لایه تامین است. به این ترتیب که در آن، تامین

مراجع

