پایش بیماری، کاربردی جدید از پایش آماری پروفایل ها - مورد کاوبی: بیماری ریوی

عباس سفایی* و مسیرت نعیم

چکیده:
کاربرد روش های کنترل کیفیت آماری در پیش بینی بیماری و درمان، روز به روز در حال گسترش است. در کاربرد به مداوم کنترل کیفیت آماری، کیفیت فرآیند یا محصول توسط رابطه بین دو یا چند متغیر بین می‌شود. این دسته از مدل‌های قابل مفهومی به نام پروفايلا هدف بررسی قرار می‌گیرند و نشان می‌دهند که در فرآیند کنترل آماری ابزار می‌کنند. با وجود استفاده موردی موفق از روش پایش پروفايلا ها در صنعت، این روش تاکنون در پیش بینی و درمان بیماری ها مورد استفاده قرار گرفته است. در این مقاله، پایش پروفايلا، در دو فاز I و II توسط عملکرد روش به بیمار انجام گرفت. از مدل‌های پروفايلا، زیرسیون دو ضریح جمله ای برای این مطالعه مناسب تشخیص دادند و از مرحله ابزار پایش بیماری یا پروفايلا ها در فاز I و II، روش پایش موردی در پایش بیماری ها، به مناسبت یک مطالعه موردی واقعی نشان داد که این روش در بهبود پیش بینی و درمان نیز مناسب و کارآمد است.

1. مقدمه
کنترل فرآیند آماری (SPC) یا (Statistical Process Control) به روش‌هایی اشاره می‌کند که به منظور کنترل و بهبود کیفیت و بازده سیستم مبتنی بر داده‌های آماری استفاده می‌شوند. یکی از عوامل اصلی کنترل فرآیند آماری، ذخیره داده‌های آماری است. کنترل فرآیند آماری به منظور کنترل و بهبود کیفیت و بازده سیستم‌های صنعتی استفاده می‌شود. این روش در صنایع مختلف به‌کار می‌رود تا کنترل و بهبود کیفیت و بازده سیستم‌های صنعتی را ایجاد کند.

2. کلیات کلیدی

* - Statistical Process Control

ISSN: 2008-4870

نویسندگان مسئول مقاله: دکتر عباس سفایی، دانشگاه گرگان مهندسی صنایع

اولین علم تحقیقات، دانشگاه آزاد اسلامی، a.saghahi@srbiau.ac.ir

مسیرت نعیم، دانشجوی رشته مهندسی صنایع، واحد تهران جنوب، maserrat_ne@yahoo.com

دانشگاه آزاد اسلامی
Pulmonary Function Test - Flow-Volume loop

1. **Teaching Materials**

 Test of Pulmonary Function, with emphasis on normal values to aid interpretation of results. The text includes formulas and diagrams to support understanding.

2. **Knowledge Check**

 - Normal Flow-Volume loops are depicted, with annotations for each segment.
 - The formula for inspiratory flow-volume relationship is given:
 \[F = \frac{B_t + B_s + B_x + B_y + B_z}{x} + \frac{B_t}{x^2} \]
 - The text explains the significance of each parameter, noting that lower values may indicate impaired lung function.

1. **Flow Function Test**

2. **Flow-Volume Loop**

References:

1. Palmul Function Test.
2. Flow-Volume Loop.

By: [Your Name]

[End of Document]
نقاط کلیدی در تست عملکرد ریه است. متنحی بخش بالا و بخش پایین این نمودار به ترتیب نشان دهنده ی جریان بادم و کم فرد می باشد.

شکل ۲ - این نمودار را برای بیمار مورد نظر نشان داده است. هم‌اکنون با مقایسه ی این نمودار با آن در این مطالعه، وضعیت بیمار در قسمت بالا، chunk ۱ نشان دهنده ی در حالی است که همان متنحی بیمار جریان بادم نمودار بیمار است. محدود گردید. پارامترهای این بخش عبارتند از:

- FEFR ۵۰، FEFR ۷۵ و FEF ۷۵، این نمره‌های بارم و نطقه ی اوج نمودار است.
- توانایی ماهیچه های بادم و وضعیت راه های هوایی بزرگ مانند شرطات نابینا، سابقه می‌باشد.
- فرمی رفتاری با نیروی باد برای کل حجم هوایی است که با قطعات فردی‌تر از دو، این پارامتر از نتیجه تابع معادلات خارجی یا فردی نمودار جریان - حجم به شمار می‌آید. بیماران از این نمودار کمک می‌کند.
- FVC جریان بادمی با نیروی در سطح ۲۵٪ رخ می‌دهد. FEF ۲۵ در ده‌ها فرد حاکم تریابی، این نمودار جریان، نشان دهنده ی شرطات نابینا، سابقه میان‌ینبودی می‌باشد یا پارامتر در محاسبات، به هر حال FEF ۷۵، برای پیشنهاد است، که سیبایی از مسند مشخص که در این نمودار باید سیبایی و شرط قوانین ی دو، این پارامتر از این نمودار کمک می‌کند. FVC نمودار بازدی با نیروی در سطح ۵۰٪ از انتقال FVC و تشخیص نشان دهنده ی وضعیت مسیر هوایی مناسب است. این نمودار کمک می‌کند.
- FEF ۵۰ در انتقال این پارامتر، نقش وسط و نشان دهنده ی وضعیت مسیر هوایی کوچک است. این نمودار کمک می‌کند.

- FVC جریان بادمی با نیروی در سطح ۵٪ رخ می‌دهد. FEF ۷۵ در این نمودار، نظر جریان نشان دهنده ی سیستانی بیماران، مشخص کننده وضعیت مسیر هوایی کوچک است. این نمودار کمک می‌کند.

- FVF و FHDF، به همراه این نمودار کمک می‌کند.

- FVC در ده‌ها فرد حاکم تریابی، این نمودار جریان، نشان دهنده ی شرطات نابینا، سابقه می‌باشد یا پارامتر در محاسبات، به هر حال FEF ۷۵، برای پیشنهاد است، که سیبایی از مسند مشخص که در این نمودار باید سیبایی و شرط قوانین ی دو، این پارامتر از این نمودار کمک می‌کند. FVC نمودار بازدی با نیروی در سطح ۵۰٪ از انتقال FVC و تشخیص نشان دهنده ی وضعیت مسیر هوایی کوچک است. این نمودار کمک می‌کند.
یک از ها از میانگین آنها کم شده است. پس از محاسبه ضرایب می‌کنیم: آزمون یکسان بودن m متغیری رگرسیون برای شده. انجام می‌گیرد. این آزمون معادل فرض های صفر و یک رابطه (4) است.
\[y_i = B_{00} + B_{10} X_1 + B_{20} X_2 + \ldots + B_{n0} X_n + e_i \quad i = 1, 2, \ldots, n \]

(3)

\[H_0: B_{11} = B_{21} = \ldots = B_{n1} = B_{12} = B_{22} = \ldots = B_{1m} = B_{2m} = \ldots = B_{10} = B_{20} = \ldots = 0 \]

(4)

صحیح نمی‌باشد:

\[H_0 \]

\[\sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} (n_j - k) \cdot \text{کاهش پیدا می‌کند.} \]

\[y_i = B_{0} + B_{1} X_1 + \ldots + B_{n} X_n + e_i \quad i = 1, 2, \ldots, N \]

(5)

\[F = \frac{\text{SSR}(R) - \text{SSR}(F)}{\text{df} \cdot \text{SSR}(F) / \text{df}_e} \]

(6)

در آماره فوق، SSE(R) مجموع مربعات خطا مدل کاهش یافته و SSE(F) مجموع مربعات خطا مدل کامل. می‌باشد. آماره فوق از توزیع F درجات آزادی (m-1) و k کاهش می‌شود که 1 + k برای این یک \[\sum_{j=1}^{m} \sum_{j=1}^{m} (n_j - k) \cdot \text{کاهش پیدا می‌کند.} \]

\[F_{ij} = \frac{((n_j - k) \cdot \text{MSE}_{ij} / \sigma^2)}{\sum_{j=1}^{m} (n_j - k) \cdot \text{MSE}_{ij} / \sigma^2} \]

(7)

\[\sum_{j=1}^{m} (n_j - k) \cdot \text{کاهش پیدا می‌کند.} \]

\[\text{این آماره توزیع F با درجات آزادی} \quad F \text{دارد. حدود کنترل با} \quad \text{این آماره با صورت زیر محاسبه می‌شود:} \]

1. Sum of Square Error (Reduced)
2. Sum of Square Error (Full)
روش‌چندجمله‌ای متغیر

در روابط بالا $0<\theta \leq 1$ نتایب هموارسازی می‌باشد. این مقادیر بر اساس $K_L > 0$ و $EWMA_0 = B_L$ میزان مورد نظر در حالت کنترل انتخاب می‌شوند.

$EWMA_j = \theta B_L + \frac{(1-\theta)EWMA_{j-1}}{\theta}$

(13)

$CL = B_L - K_L \sqrt{\frac{\theta}{(2-\theta)}} \sum_{i=1}^{n} P_i(x_i)$

(14)

$UCL = B_L + K_L \sqrt{\frac{\theta}{(2-\theta)}} \sum_{i=1}^{n} P_i(x_i)$

(15)

$CL = B_L - K_L \sqrt{\frac{\theta}{(2-\theta)}} \sum_{i=1}^{n} P_i(x_i)$

(16)

$UCL = B_L + K_L \sqrt{\frac{\theta}{(2-\theta)}} \sum_{i=1}^{n} P_i(x_i)$

(17)

$Var(MSE_j) = \frac{\sum_{i=1}^{n} P_i(x_i)^2}{n}$

(18)

$ε_i = y_i - y_i^*$

(19)

در روابط بالا $0=K_L > 0$ و $EWMA_0 = B_L$ مورد نظر در حالت کنترل انتخاب اساس میزان ARL می‌شوند.

$\begin{cases}
 y_i = A_0 + A_1 x_i + A_2 x_i^2 + \ldots + A_k x_i^k + \epsilon_i \\
 y_i = B_0 + B_1 x_i + B_2 x_i^2 + \ldots + B_k x_i^k + \epsilon_i
\end{cases}$

(20)

u در رابطه (9)، جند جمله‌ای متغیر از تبیع می‌باشد. مقادیر صحیح جمله‌ای یا متغیر برای یک رتبه می‌باشد. روش تعیین u توسط روابط (11) قابل محاسبه می‌باشد. روش تعیین B_j در رابطه (12) ارور می‌شود.

$P_i(x_i) = \frac{\lambda_i}{d} (x_i - \bar{x}_i)$

(21)

$P_i(x_i) = \lambda_i \left[\left(\frac{x_i - \bar{x}_i}{d} \right)^2 - \left(\frac{n^2 - 1}{12} \right) \right]$}

(22)

$B_{UL} = \frac{\sum_{i=1}^{n} P_i(x_i) y_i}{\sum_{i=1}^{n} P_i(x_i)}$; $j = 1,2,...; L = 0,1,...,k$

(23)

بعد از مستقل کردن ضایعات، از نمودارهای کنترل تک متغیره برای پایش ضایعات استفاده می‌شود. آماره $EWMA$ رابطه (13) برای پایش ضایعات $EWMA$ مدل نیست پیشنهاد می‌شود. حدود کنترل بالا و پایین برای این آماره نیز در رابطه (14) ارور می‌شود.

$\begin{cases}
 y_i = A_0 + A_1 x_i + A_2 x_i^2 + \ldots + A_k x_i^k + \epsilon_i \\
 y_i = B_0 + B_1 x_i + B_2 x_i^2 + \ldots + B_k x_i^k + \epsilon_i
\end{cases}$

(20)

u در رابطه (9)، جند جمله‌ای متغیر از تبیع می‌باشد. مقادیر صحیح جمله‌ای یا متغیر برای یک رتبه می‌باشد. روش تعیین u توسط روابط (11) قابل محاسبه می‌باشد. روش تعیین B_j در رابطه (12) ارور می‌شود.

$P_i(x_i) = \frac{\lambda_i}{d} (x_i - \bar{x}_i)$

(21)

$P_i(x_i) = \lambda_i \left[\left(\frac{x_i - \bar{x}_i}{d} \right)^2 - \left(\frac{n^2 - 1}{12} \right) \right]$}

(22)

$B_{UL} = \frac{\sum_{i=1}^{n} P_i(x_i) y_i}{\sum_{i=1}^{n} P_i(x_i)}$; $j = 1,2,...; L = 0,1,...,k$

(23)

بعد از مستقل کردن ضایعات، از نمودارهای کنترل تک متغیره برای پایش ضایعات استفاده می‌شود. آماره $EWMA$ رابطه (13) برای پایش ضایعات $EWMA$ مدل نیست پیشنهاد می‌شود. حدود کنترل بالا و پایین برای این آماره نیز در رابطه (14) ارور می‌شود.
در قدم اول برای آزمون یکسان بودن منحنی رگرسیون برای شده، تمامی نمونه ها را به هم در یک نمونه ادغام کردیم. از این نمونه
برای با ۱۵۹ شد. در مرحله بعد ۱۱ تن یکدیگر شناخته شدند و همان طور که پیش تر در روش توضیح دادیم، برای محاسبه
ضرایب B_i, بر روی هر کی از ۱۲ نمونه اولیه به طور جدایی، مدل معادله (۳) را به نمای دو پرازش دادیم. مقادیر به دست آمده
برای ضرایب B_i در جدول ۳ اورده شده است.

جدول ۳: ضرایب

<table>
<thead>
<tr>
<th>J</th>
<th>B_0</th>
<th>B_1</th>
<th>B_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>۰.۴۵</td>
<td>-۰.۷۷</td>
<td>۰.۴</td>
</tr>
<tr>
<td>۲</td>
<td>۰.۴۹</td>
<td>-۰.۸۲</td>
<td>۰.۴۱</td>
</tr>
<tr>
<td>۳</td>
<td>۰.۲۸</td>
<td>-۰.۶۹</td>
<td>۰.۵۳</td>
</tr>
<tr>
<td>۴</td>
<td>۰.۲۱</td>
<td>-۰.۵۱</td>
<td>۰.۴۳</td>
</tr>
<tr>
<td>۵</td>
<td>۰.۲۱</td>
<td>-۰.۵۵</td>
<td>۰.۴۹</td>
</tr>
<tr>
<td>۶</td>
<td>۰.۲۴</td>
<td>-۰.۶۹</td>
<td>۰.۶</td>
</tr>
<tr>
<td>۷</td>
<td>۰.۳۴</td>
<td>-۰.۶۵</td>
<td>۰.۳۹</td>
</tr>
<tr>
<td>۸</td>
<td>۰.۱۶</td>
<td>-۰.۶۳</td>
<td>۰.۶۲</td>
</tr>
<tr>
<td>۹</td>
<td>۰.۲۱</td>
<td>-۰.۶۸</td>
<td>۰.۶۱</td>
</tr>
<tr>
<td>۱۰</td>
<td>۰.۲۹</td>
<td>-۰.۷۲</td>
<td>۰.۵</td>
</tr>
<tr>
<td>۱۱</td>
<td>۰.۲۴</td>
<td>-۰.۶۹</td>
<td>۰.۴۳</td>
</tr>
<tr>
<td>۱۲</td>
<td>۰.۳۴</td>
<td>-۰.۶۸</td>
<td>۰.۴</td>
</tr>
</tbody>
</table>

همچنین با برای پرورش قابلیت چند جمله ای درجه دو توزن ترم افزار SSE, مقادیر SPSS اولیه محاسبه شد مقادیر $SSE(F)$، با در نظرگرفتن df و در نتیجه $SSE(N-k)$ شد با محاسبه SSE, معادله SSE به دست آمد. ضرایب پرورش قابلیت را برای پرورش مدل چند جمله ای درجه دو و بر نمونه های ادغامی، به کیلی را داده به دست آوردیم. رابطه پرورش قابلیت در این تحقیق به صورت زیر به دست آمد:

$$y = 0.306 - 0.681x_1 + 0.469x_2 + \cdots + \epsilon; i = 1, 2, \ldots, 159$$

مقدار $SSE(R) = ۹.۰۰۲$ و درجه آزادی پرورش قابلیت نیز برای SSE, محاسبه شد. آماره F پیشنهاد شده برای آزمون فرض یکسان بودن ۱۵۹ منحنی رگرسیون برای شده را بر اساس رابطه (۴) به صورت زیر محاسبه کردیم:

$$F = \frac{9.021 - 7.131/156 - 123}{7.131/123} = ۰.۹۸$$

اما آماره فوق دارای توزیع F با درجات آزادی 33 است. مقدار آماره F محاسبه شده را با حدود $N-k \cdot m = ۱۲۳$

\[y_i = 0.324 - 0.708x_i + 0.475x_i^2 + \epsilon_i, \quad i = 1, 2,..., 135 \]

(21)

مقادیر \(F \) و حدود کنترل های \(F \) و \(SSE \) مربوط به \(H_0 \) در جدول‌های توزیع مستقل این آماره، در حدود کنترل جدول داده نشده‌است. در اینجا، \(F \) و \(SSE \) در مقاله قبل محاسبه شده‌اند. مقادیر \(F \) و \(SSE \) در جدول‌های مستقل مستقل این آماره، در حدود کنترل جدول داده نشده‌اند.

\[
F = \frac{7.938 - 6.911(132-105)}{6.911/105} = 0.577
\]

این آماره دارای توزیع \(F \) با درجه آزادی ۲۷ و ۱۰۵ است. \(m \) (مدار) حدود کنترل \(LCL \) و \(UCL \) به این آماره تریشده شده و همگرا به پایان می‌شوند. در حدود کنترل به این آماره در حدود کنترل جدول داده نشده‌اند. مقاله که مشاهده می‌شود هیچ یک از مقادیر آماره \(F \) برای انتخاب داده شده تحلیل \(F \) و حدود کنترل مربوط به آن پس از محاسبه آماره \(F_i \) و حدود کنترل برای انتخاب مقدار خطا، مشاهده شد که این آماره برای مقدار های چهارم و نهم و خارج از حدود کنترل تایپ می‌شود.

جدول ۵. مقادیر آماره \(F \) و حدود کنترل مربوط به آن پس از حدف نمونه‌های ۴ و ۴

<table>
<thead>
<tr>
<th>(j)</th>
<th>(F_j)</th>
<th>(UCL)</th>
<th>(LCL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.281889</td>
<td>2.1331</td>
<td>0.3378</td>
</tr>
<tr>
<td>2</td>
<td>0.519098</td>
<td>2.1331</td>
<td>0.3378</td>
</tr>
<tr>
<td>3</td>
<td>1.295809</td>
<td>2.1864</td>
<td>0.3169</td>
</tr>
<tr>
<td>4</td>
<td>1.681702</td>
<td>2.1864</td>
<td>0.3169</td>
</tr>
<tr>
<td>5</td>
<td>0.458327</td>
<td>2.1331</td>
<td>0.3378</td>
</tr>
<tr>
<td>6</td>
<td>1.33141</td>
<td>2.1864</td>
<td>0.3169</td>
</tr>
<tr>
<td>7</td>
<td>1.550042</td>
<td>2.1864</td>
<td>0.3169</td>
</tr>
<tr>
<td>8</td>
<td>1.22825</td>
<td>2.1331</td>
<td>0.3378</td>
</tr>
<tr>
<td>9</td>
<td>0.282949</td>
<td>2.1864</td>
<td>0.3169</td>
</tr>
<tr>
<td>10</td>
<td>0.674676</td>
<td>2.1331</td>
<td>0.3378</td>
</tr>
</tbody>
</table>

درمانی در فاز به تخمین از برترهای \(A \) و \(A \) دست‌یافته‌های بایدها، با داشتن تخمین برترهای مدل و اطمینان از پایداری و

نت‌کنترل بی‌توجه به دست آمده، فاز II از گام کریمی.
پاییز بیماری، کاربردی جدید از پاییز آماری پروفافیلا ها-مورد کاوی: بیماری ریوی

شیرین بین المللی مهندسی صنایع و مدیریت تولید. بهار-1390-جلد 2-شماره 1

2-4-اچری افاز II

با توجه به روش صندج جمله ای متعدد [12] در فاز II مدل تغییر رگرسیون چند جمله ای می باست به مدل رگرسیون چند جمله ای متعدد تبدیل می شد. در فاز 1 مدل اصلی را در حالی تحت کنترل بوده است (11). مقدارهای برای دو متغیر $P_1(x_i)$ و $P_2(x_i)$ محسوب و نتاژ آن در جدول 2 خرد شده است. $\lambda _1 = 4$ و $\lambda _2 = 4$ نسبت به ترتیب در نتیجه محسوبه (10) و $P_1(x_i)$ و $P_2(x_i)$ از و A_0, و با استفاده از روابط (22) مقدار پارامترهای محاسبه شدند.

جدول 4-مقدار چند جمله ای های متعدد

<table>
<thead>
<tr>
<th>X_i</th>
<th>$P_0(X_i)$</th>
<th>$P_1(x_i)$</th>
<th>$P_2(x_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.3</td>
<td>1</td>
<td>-6</td>
<td>79</td>
</tr>
<tr>
<td>-1.1</td>
<td>1</td>
<td>-5</td>
<td>35</td>
</tr>
<tr>
<td>-0.9</td>
<td>1</td>
<td>-4</td>
<td>1</td>
</tr>
<tr>
<td>-0.7</td>
<td>1</td>
<td>-3</td>
<td>-29</td>
</tr>
<tr>
<td>-0.5</td>
<td>1</td>
<td>-2</td>
<td>-49</td>
</tr>
<tr>
<td>-0.3</td>
<td>1</td>
<td>-1</td>
<td>-61</td>
</tr>
<tr>
<td>-0.1</td>
<td>1</td>
<td>0</td>
<td>-65</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>-61</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>2</td>
<td>-49</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>3</td>
<td>-29</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>4</td>
<td>-1</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>1.1</td>
<td>1</td>
<td>6</td>
<td>79</td>
</tr>
<tr>
<td>1.3</td>
<td>1</td>
<td>7</td>
<td>131</td>
</tr>
</tbody>
</table>

جدول 7-مقدارهای آماره های EWMA

<table>
<thead>
<tr>
<th>i</th>
<th>$EWMA_i(0)$</th>
<th>$EWMA_i(1)$</th>
<th>$EWMA_i(2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.631</td>
<td>0.638</td>
<td>0.654</td>
</tr>
<tr>
<td>2</td>
<td>0.682</td>
<td>0.676</td>
<td>0.678</td>
</tr>
<tr>
<td>3</td>
<td>0.675</td>
<td>0.678</td>
<td>0.677</td>
</tr>
<tr>
<td>4</td>
<td>0.675</td>
<td>0.678</td>
<td>0.677</td>
</tr>
<tr>
<td>5</td>
<td>0.675</td>
<td>0.678</td>
<td>0.677</td>
</tr>
</tbody>
</table>

به عنوان مثال محاسبه مربوط به پارامترهای B_0 و B_1 از داده های $EWMA_i(0)$ و $EWMA_i(1)$ است یا به تهای به دست آمده از آری این آماره های موردنظر مقایسه آنها با زمان کنترل خود، شستی را در پارامترهای دوم و سوم پروفافیلا پرترش، داده نمایش دهد. مقدارهای کنترل B_0 و B_1 از داده های $EWMA_i(0)$ و $EWMA_i(1)$ است به تهای به دست آمده از آری این آماره های موردنظر مقایسه آنها با زمان کنترل خود، شستی را در پارامترهای دوم و سوم پروفافیلا پرترش، داده نمایش دهد. مقدارهای کنترل B_0 و B_1 از داده های $EWMA_i(0)$ و $EWMA_i(1)$ است به تهای به دست آمده از آری این آماره های موردنظر مقایسه آنها با زمان کنترل خود، شستی را در پارامترهای دوم و سوم پروفافیلا پرترش، داده نمایش دهد. مقدارهای کنترل B_0 و B_1 از داده های $EWMA_i(0)$ و $EWMA_i(1)$ است به تهای به دست آمده از آری این آماره های موردنظر مقایسه آنها با زمان کنترل خود، شستی را در پارامترهای دوم و سوم پروفافیلا پرترش، داده نمایش دهد. مقدارهای کنترل B_0 و B_1 از داده های $EWMA_i(0)$ و $EWMA_i(1)$ است به تهای به دست آمده از آری این آماره های موردنظر مقایسه آنها با زمان کنترل خود، شستی را در پارامترهای دوم و سوم پروفافیلا پرترش، داده نمایش دهد. مقدارهای کنترل B_0 و B_1 از داده های $EWMA_i(0)$ و $EWMA_i(1)$ است به تهای به دست آمده از آری این آماره های موردنظر مقایسه آنها با زمان کنترل خود، شستی را در پارامترهای دوم و سوم پروفافیلا پرترش، داده نمایش دهد. مقدارهای کنترل B_0 و B_1 از داده های $EWMA_i(0)$ و $EWMA_i(1)$ است به تهای به دست آمده از آری این آماره های موردنظر مقایسه آنها با زمان کنترل خود، شستی را در پارامترهای دوم و سوم پروفافیلا پرترش، داده نمایش دهد. مقدارهای کنترل B_0 و B_1 از داده های $EWMA_i(0)$ و $EWMA_i(1)$ است به تهای به دست آمده از آری این آماره های موردنظر مقایسه آنها با زمان کنترل خود، شستی را در پارامترهای دوم و سوم پروفافیلا پرترش، داده نمایش دهد. مقدارهای کنترل B_0 و B_1 از داده های $EWMA_i(0)$ و $EWMA_i(1)$ است به تهای به دست آمده از آری این آماره های موردنظر مقایسه آنها با زمان کنترل خود، شستی را در پارامترهای دوم و سوم پروفافیلا پرترش، داده نمایش دهد. مقدارهای کنترل B_0 و B_1 از داده های $EWMA_i(0)$ و $EWMA_i(1)$ است به تهای به دست آمده از آری این آماره های موردنظر مقایسه آنها با زمان کنترل خود، شستی را در پارامترهای دوم و سوم پروفافیلا پرترش، داده نمایش دهد. مقدارهای کنترل B_0 و B_1 از داده های $EWMA_i(0)$ و $EWMA_i(1)$ است به تهای به دست آمده از آری این آماره های موردنظر مقایسه آنها با زمان کنترل خود، شستی را در پارامترهای دو

$$ Var(MSE_i) = \frac{2 \sigma^2}{n} = \frac{2 \times (0.06)^2}{14} = 0.0005 $$
پیش بیماری، گزارنده جدید از پایش آماری پروفاصل‌های مورد کاری: پیش‌بینی بهداشت

مراجع

1. تاریخ نادال، ر. امیری، A. ی. بهبهانی پروفاصل‌های خشک در فاز II
2. مجله علمی پژوهشی امیرکبیر، جلد 3، شماره 1، صفحه 19-27

