ارزیابی و رتبه‌بندی ریسک در پروژه‌های تونل‌سازی با استفاده از روش تخصص خشی

امحمدضاوی صبایی، محمد حیاتی و عادل آذر

چکیده:

رتبه‌بندی ریسک‌های پروژه به ویژه زماني که تعداد عوامل ریسک‌زا افزایش می‌یابد به عنوان یکی از قواعدی پیچیده در روش‌های مدیریت ریسک محسوب می‌شود. در این تحقیق نخست ساختار جامعی از ریسک‌های اصلی پروژه‌های تونل‌سازی در قالب 17 دسته اصلی و 164 زیر سطح تهیه شده و سپس این ریسک‌ها در عامل‌های تونل‌سازی در ایران ترتیب‌بندی شده. است. بدين منظور از روش تخصص خشی گروهی و میانگین وزن جهت جمع‌آوری و تجميع نظر خبرگان و از روش تخصص خشی به‌عنوان یکی از روش‌های تخصص خشی جدید شاخه‌های تخصص خشی تعریب رتبه ریسک‌ها استفاده شده است. شاخه‌های تخصصی در دو دسته اولیه و ثانویه تفسیر شده‌اند. شاخه اولیه برابر احتمال و میزان اثرگذاری ریسک‌ها برابر اهداف اصلی پروژه (زمان، هزینه، کیفیت و عملکرد) با وزن‌های مناسب تعین شده است. دسته دوم شاخه‌های شغلی ارزاد اقتصادی، اتات و جمع‌آوری، نوین و روسک مستقل و میزان مربوط به ریسک‌ها بر اساس نتایج بدست آمده، عوامل اقتصادی و شرایط حقوقی به ترتیب بیشترین و کمترین رتبه ریسک را به خود اختصاص می‌دهند.

کلمات کلیدی:

تونل‌سازی، ارزیابی ریسک، ساختار شکست ریسک، رتبه‌بندی، تخصص خشی

1. مقدمه

پروژه‌های تونل‌سازی به‌دلیل عدم قطعیت‌های متعدد با این همواره در دسترس برای آن یک ریسک همراه می‌باشد. روش‌های درست و موفقیت‌مند برای ارزیابی و مقابله‌کردن با این ریسک‌های مربوط به هزینه و زمان بایستی به پیشنهاد می‌گردد. در این شرایط خشی گروهی، ارزیابی ریسک‌ها که در پروژه‌های تونل‌سازی استفاده می‌گردد 30 تا 50 درصد از زمان و هزینه‌ها به علت مدیریت ناقص و اشتباه گزارش‌شده است [1].

پژوهش‌های تونل‌سازی به‌دلیل عدم قطعیت‌های متعدد با این همواره در دسترس برای آن یک ریسک همراه می‌باشد. روش‌های درست و موفقیت‌مند برای ارزیابی و مقابله‌کردن با این ریسک‌های مربوط به هزینه و زمان بایستی به پیشنهاد می‌گردد. در این شرایط خشی گروهی، ارزیابی ریسک‌ها که در پروژه‌های تونل‌سازی استفاده می‌گردد 30 تا 50 درصد از زمان و هزینه‌ها به علت مدیریت ناقص و اشتباه گزارش‌شده است [1].

ناریج مول: 87/189
ناریج ضبی: 87/189
محمدم حیاتی، دانشکده فیزیک و مهندسی، دانشگاه تربیت مدرس
Mohammad_Hayat@yahoo.com
دکتر عادل آذر، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس
Azar@modares.ac.ir

کتابخانه اسلامی مهندسی صنایع و مدیریت تولید

شماره 1، جلد 1390

صفحه 29

http://IJIFPM.iust.ac.ir/
1- Multi Attribute Decision Making
2- Linear Assignment
مهم کم رساند زیر ازار موثری جهت شناسایی هدفگر و طبقه بندی شده ریسک ارزیابی می‌گردد. مطالعات موردی دیگر در محوریت این روش در پژوهش‌های تولیدسازی با استفاده از روش است. این بررسی‌ها را در مورد تئوری افزایش و کاهش شیوع ریسک در سازمان‌ها و سازمان‌های غیرانتفاعی و ایجاد درون‌پژوهش‌ها با استفاده از روش‌های تحلیلی و تحقیق در این تجربیات تحلیل شده است.

4.2 تحقیق در این تحقیق ابتدای یک سیستم جامع شکست ریسک باید پژوهش‌های تولیدسازی تهیه شده است. این ایده ریسک‌های عملیاتی تولیدسازی سه منبع را در قالب چهار محله زیر ارزیابی و تربیت‌دهی شده است.

مرحله اول: این مرحله با توجه به ساختار شکست سیستم کاربرد پژوهش جامع طراحی شده سیستم‌های نظارت بر هر گونه از خطرگیری جمع آوری گردید.

مرحله دوم: ابتدای یک شاخه اولیه ریسک (PIR) به مبنای (PIR) تحلیل احتمال وقوع ریسک و مزایا و معاینریکت ریسک به اهداف پژوهش‌های تولید‌سازی تهیه شده است. این اهداف شامل زمان، هزینه، کیفیت و عملکرد پروژه می‌باشد (رطبه کریچر).

5 Deddieck
6 Yogaranpan
7 Wagner
8 Primary Index Risk

1 Risk Breakdown Structure
PIR = \sum [W_1 (P \times I_1) + W_2 (P \times I_2) + W_3 (P \times I_3) + W_4 (P \times I_4)]

PIR = P

\text{استفاده از روش PIR} = \sum_{j=1}^{n} (n_j \times PIR_j) / N

APIR = SIR

\text{بررسی مجموعه ریسک‌های پروژه‌های پژوهشی در دو دسته کلی ریسک‌های داخلی و خارجی و در قالب هفت سطح و 169 زیرسطح بر اساس روش پیر بشر (ABRS) به شرح زیر استدلال شدهاند (شکل (1)).}

\text{در تنظیم براساس اصل مشابه شکست کار (BWS) و یک ساخار جمع سلسله مراتبی از ریسک‌های پروژه‌های پژوهشی تولید سازی از ریسک‌ها به سه دسته (ASIR) می‌شود.}

\text{این روش بر اساس تنها یک شکست کار در مجموعه تعیین جامع فاقد نظر خارجی می‌باشد.}

\text{برای ارزیابی و رتبه‌بندی ریسک در پروژه‌های پژوهشی در دو دسته کلی ریسک‌های داخلی و خارجی و در قالب هفت سطح و 169 زیرسطح بر اساس روش پیر بشر (ABRS) به شرح زیر استدلال شدهاند (شکل (1)).}

\text{در تنظیم براساس اصل مشابه شکست کار (BWS) و یک ساخار جمع سلسله مراتبی از ریسک‌های پروژه‌های پژوهشی تولید سازی از ریسک‌ها به سه دسته (ASIR) می‌شود.}

\text{این روش بر اساس تنها یک شکست کار در مجموعه تعیین جامع فاقد نظر خارجی می‌باشد.}
6 مطالعه موردن

سد سیمربندی ۶ کیلومتری جنوب شرقی شهرستان اسلام‌آباد در زون زاگرس چین وارد شده و در بخش جنوب غربی این قبیل یک سیستم برای پیمایش برقی از نوع سیستم‌های اهکی سازند آبیاری شیبانی می‌باشد. مجموعه ابزارهای تولیدی در این برخی شرکت‌ها در مجموعه تولید برقی از ۱ تا ۶ تولید انرژی انرژی می‌باشد. این برخی شرکت‌ها در مجموعه تولید برقی از ۱ تا ۶ تولید انرژی

شکل ۱. ساختار شکست ریسک پروبوزه‌های تولیدی سی‌پی‌بیک (۱۷ ریسک اصلی)

جدول ۱. اجزای ریسک‌های طراحی و اجرای

اجزای ریسک‌ها	توضیحات مربوط به
ارتباط ابزارهای برقی	صلاحیت پیمان‌کننده (تجهیزات ترکیبی)
نوی و انتزاع برخی	عدم دختم در اجرای
تکراری‌گونه با بردتیزی	سطح تغییر
وقته‌ای کاری	دوباره کاری
غیر اعداد محدود	تاکید بر اجراهای
تاخیر در اجرای	ارتباطات در تیم (نیازمندی و برق)
تاریک در اجرای	مشخصات منحنی
تاریک در اجرای	مشخصات اکتشافاتی
تاریک در اجرای	سیستم‌های اکتشافاتی
تاریک در اجرای	عدم دسترسی به تجهیزات اکتشافاتی

جدول ۲. طبقه‌بندی دهی به شاخص‌ها برای هر ریسک

شاخص‌ها	دهی
میزان شاخص	۱ (فیلترینگ)
امتیاز	۳ (متوسط زیاد)
خیلی زیاد	۹
خیلی کم	۰

نتیجه‌ی بین‌المللی مهندسی صنایع و مدیریت توسعه، بهار-۱۳۹۰، جلد ۱۲، شماره ۱
جدول ۳. میزان احتمال و ارگذاری ریسک بر فاکتورهای پروژه براساس استاندارد PMBOK و طبق امتیازدهی لیکرت

<table>
<thead>
<tr>
<th>لیستک های PMBOK</th>
<th>امتیاز</th>
<th>ریسک</th>
<th>هزینه</th>
<th>زمان</th>
<th>کیفیت</th>
<th>عملکرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل اثر</td>
<td>۰.۸</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
</tbody>
</table>

در این مرحله نخست نظرات خبرگان بدست آمده در خصوص میزان احتمال و ارگذاری ریسک بر زمان، هزینه و کیفیت و عملکرد پروژه بررسی شده است.

بر اساس نتایج نظرات خبرگان و بر اساس میزان احتمال و ارگذاری ریسک بر زمان، هزینه و کیفیت و عملکرد پروژه در هر کدام از این نظرات گزارش شده است.

جدول ۵. حاصلضرب احتمال در اثرات برای گروه اول

<table>
<thead>
<tr>
<th>ریسک</th>
<th>P×(X1)</th>
<th>P×(X2)</th>
<th>P×(X3)</th>
<th>P×(X4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ریسک ۱</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
<tr>
<td>ریسک ۲</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
<tr>
<td>ریسک ۳</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
<tr>
<td>ریسک ۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
</tbody>
</table>

شکل ۲. وزن اهمیت میزان

جدول ۴. نظرات خبرگان گروه اول بر اساس تصمیم‌گیری

<table>
<thead>
<tr>
<th>گروه اول</th>
<th>P</th>
<th>(I)</th>
<th>(I)</th>
<th>(I)</th>
<th>(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ریسک ۱</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
<tr>
<td>ریسک ۲</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
<tr>
<td>ریسک ۳</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
<tr>
<td>ریسک ۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
</tbody>
</table>

میزان احتمال اهمیت میزان از W₁ به اساس نظر سنجی از خبرگان تعیین شده که در شکل ۲ اورده شده است. بدن تریب می‌توان خبرگان را بر اساس رابطه ۴ را شاخص PIR بر اساس رابطه ۵ مشابه نمود (جدول ۴). در نهایت بر اساس PIR شاخص مجموعه ریسک‌ها به صورت مقدماتی رتبه‌بندی شده‌اند.
جدول ۶- رتبه بندی ریسک ها بر مبنای شاخص اولیه تجمیعی ریسک (APIR)

<table>
<thead>
<tr>
<th>شاخص اولیه ریسک (APIR) در ۴ گروه خبره</th>
<th>گروه شماره ۱</th>
<th>گروه شماره ۲</th>
<th>گروه شماره ۳</th>
<th>گروه شماره ۴</th>
<th>میانگین</th>
<th>میانگین</th>
<th>میانگین</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱ ۲ ۳ ۴</td>
</tr>
<tr>
<td>۲</td>
<td>۱ ۲ ۳ ۴</td>
</tr>
<tr>
<td>۳</td>
<td>۱ ۲ ۳ ۴</td>
</tr>
<tr>
<td>۴</td>
<td>۱ ۲ ۳ ۴</td>
</tr>
</tbody>
</table>

افزایش میزان شاخص‌های مدیریت‌پذیری (ASIR) و عدم اطمینان میزان شاخص‌های مدیریت‌پذیری (ASIR) برای هر ریسک موجب کاهش رتبه ریسک می‌گردد. ولی، افزایش میزان سایر شاخص‌ها موجب افزایش رتبه ریسک می‌شود.

جدول ۷- ماتریس حاصل از تلفیق نظرات خبرگان

<table>
<thead>
<tr>
<th>شماره ریسک</th>
<th>ASIR۱</th>
<th>ASIR۲</th>
<th>ASIR۳</th>
<th>ASIR۴</th>
<th>ASIR۵</th>
<th>ASIR۶</th>
<th>ASIR۷</th>
<th>ASIR۸</th>
<th>APIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ریسک ۱ (R1)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۲ (R2)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۳ (R3)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۴ (R4)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۵ (R5)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۶ (R6)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۷ (R7)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۸ (R8)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۹ (R9)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۱۰ (R10)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۱۱ (R11)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۱۲ (R12)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۱۳ (R13)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۱۴ (R14)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۱۵ (R15)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۱۶ (R16)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
<tr>
<td>ریسک ۱۷ (R17)</td>
<td>۰.۲۴۷</td>
<td>۰.۱۳۷</td>
<td>۰.۸۷۴</td>
<td>۰.۸۸۸</td>
<td>۰.۸۷۳</td>
<td>۰.۸۷۰</td>
<td>۰.۸۷۹</td>
<td>۰.۸۷۴</td>
<td>۰.۳۹۲</td>
</tr>
</tbody>
</table>
از روش پردازشی خصیب کمک مدل زیر:

\[
\begin{align*}
\text{Max } Z &= \sum_{i=1}^{17} \sum_{k=1}^{3} a_{ik} h_{ik} \\
\sum_{i=1}^{17} h_{ik} &= 1, \quad i=1,2,\ldots,17 \\
\sum_{k=1}^{3} h_{ik} &= 1, \quad k=1,2,\ldots,17 \\
\end{align*}
\]

برای حل این مسئله با توجه به برزگی حجم ان (289) متغیر (7) تصمیم از نرم افزار LINGO استفاده شد. با توجه به بیانگر متغیرهای تصمیم دارای مقادیر مطلوب این برندام فقط به سه مقادیر بعد گذارده گردد. در جدول (10) نشان داده شده است. به عوامل اصلی (1.8) برای ریسک 1 می‌باشد. برای ریسک 2 ریسک‌ها بر اساس این روش در جدول (11) ارائه شده است. برای ریسک‌های این روش محسوب می‌شوند. این روش در جدول نشان داده شده است. همانطور که مشاهده می‌شود رتبه‌ها در برخی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>ASIR_1</th>
<th>ASIR_2</th>
<th>ASIR_3</th>
<th>ASIR_4</th>
<th>ASIR_5</th>
<th>ASIR_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>رتبه 1</td>
<td>R13</td>
<td>R5</td>
<td>R11</td>
<td>R1</td>
<td>R2</td>
<td>R10</td>
</tr>
<tr>
<td>رتبه 2</td>
<td>R3</td>
<td>R13</td>
<td>R1</td>
<td>R5</td>
<td>R5</td>
<td>R5</td>
</tr>
<tr>
<td>رتبه 3</td>
<td>R10</td>
<td>R6</td>
<td>R5</td>
<td>R7</td>
<td>R7</td>
<td>R1</td>
</tr>
<tr>
<td>رتبه 4</td>
<td>R2</td>
<td>R12</td>
<td>R9</td>
<td>R10</td>
<td>R9</td>
<td>R3</td>
</tr>
<tr>
<td>رتبه 5</td>
<td>R17</td>
<td>R3</td>
<td>R7</td>
<td>R9</td>
<td>R11</td>
<td>R6</td>
</tr>
<tr>
<td>رتبه 6</td>
<td>R15</td>
<td>R7</td>
<td>R2</td>
<td>R11</td>
<td>R13</td>
<td>R4</td>
</tr>
<tr>
<td>رتبه 7</td>
<td>R9</td>
<td>R10</td>
<td>R3</td>
<td>R2</td>
<td>R10</td>
<td>R4</td>
</tr>
<tr>
<td>رتبه 8</td>
<td>R7</td>
<td>R9</td>
<td>R10</td>
<td>R13</td>
<td>R1</td>
<td>R9</td>
</tr>
<tr>
<td>رتبه 9</td>
<td>R11</td>
<td>R11</td>
<td>R13</td>
<td>R16</td>
<td>R4</td>
<td>R15</td>
</tr>
<tr>
<td>رتبه 10</td>
<td>R14</td>
<td>R15</td>
<td>R15</td>
<td>R17</td>
<td>R17</td>
<td>R8</td>
</tr>
<tr>
<td>رتبه 11</td>
<td>R12</td>
<td>R16</td>
<td>R17</td>
<td>R3</td>
<td>R16</td>
<td>R1</td>
</tr>
<tr>
<td>رتبه 12</td>
<td>R6</td>
<td>R1</td>
<td>R14</td>
<td>R3</td>
<td>R6</td>
<td>R7</td>
</tr>
<tr>
<td>رتبه 13</td>
<td>R8</td>
<td>R2</td>
<td>R16</td>
<td>R14</td>
<td>R8</td>
<td>R17</td>
</tr>
<tr>
<td>رتبه 14</td>
<td>R16</td>
<td>R8</td>
<td>R6</td>
<td>R15</td>
<td>R2</td>
<td>R16</td>
</tr>
<tr>
<td>رتبه 15</td>
<td>R1</td>
<td>R4</td>
<td>R8</td>
<td>R12</td>
<td>R12</td>
<td>R14</td>
</tr>
<tr>
<td>رتبه 16</td>
<td>R4</td>
<td>R14</td>
<td>R12</td>
<td>R8</td>
<td>R16</td>
<td>R11</td>
</tr>
<tr>
<td>رتبه 17</td>
<td>R5</td>
<td>R17</td>
<td>R4</td>
<td>R8</td>
<td>R3</td>
<td>R14</td>
</tr>
</tbody>
</table>

6-2-3-1: گام دوم: تشکیل ماتریس تصمیم یا ماتریس گاما (\(G\)) که یک ماتریس 2x3 (به وسیله که مترکی از ریسک سه مسئول ان رتبه و سنتون) را بررسی می‌کند. برای مثال زمانی که رتبه 1 می‌باشد. مولفه‌های ماتریس 7 (\(G_i\)) عبارت است از مجموع وزن شاخص‌ها که ریسک 1 ام در آن‌ها دارای رتبه \(k\) می‌باشد. وزن هر کدام از شاخص‌های \(W_i\) بر اساس نظرسنجی خبرگان سطح قابل پذیر شکل (3) می‌باشد. نتایج این مرحله در جدول (9) ارائه شده است.

6-2-3-1: گام چهارم: در آخرین مرحله به منظور رتبه‌بندی نهایی ریسک‌ها از روش تخصصی خطی استفاده شده است. مراحل کاربردی این تکنیک برای مثال مورد نظر به شرح زیر می‌باشد:

\[APIR = \sum_{i=1}^{17} a_{ik} h_{ik} \]

شکل 3: وزن شاخص‌های (\(A_i\)\) و (\(APIR\)\) و (\(ASIR_i\)\)\) ماتریس گاما یک ماتریس تصمیم‌گیری است و همانطور که ذکر شد می‌توان با هر یک از روش‌های تخصصی جواب بهینه را بدست آورد.

شکل 2: وزن شاخص‌های (\(A_i\)\) و (\(APIR\)\)\) و (\(ASIR_i\)\)\)
واقع‌گرایانه نیست. ۲- در این روش امکان پذیرش فاصلات پیش‌بینی شده و در نتیجه به صورت افزایش نیاز به نتایج. روش‌های پیش‌بینی از روش‌های پیش‌بینی امکان مشابه در نظر گرفته و در این روش امکان پذیرش فاصلات در نتایج وجود دارد. ۳- با توجه به خصوصیات روش پیش‌بینی، تصویب خاصی نظیر امکان در نظر گرفتن همزمان چندین ناحیه نموده و با ارائه مقدماتی نسبت به روش مرسوم (استفاده از حاضرگر احتکار و اثر) بسیار می‌پذیرفته است. در دلیل اعتراضات از ۱-۰ روش کلاسیک، نتایج مشابهی در نتایج بیشتری را دارند یا به روش کلاسیک مهم نادیده گرفته شده‌اند. بنابراین نتایج از دیدگاه شده در این روش کلاسیک

جدول ۹. ماتریس تخصیص

<table>
<thead>
<tr>
<th>شماره ریسک</th>
<th>LA</th>
<th>I & P Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>R2</td>
<td>2</td>
<td>0.15</td>
</tr>
<tr>
<td>R3</td>
<td>3</td>
<td>0.15</td>
</tr>
<tr>
<td>R4</td>
<td>4</td>
<td>0.15</td>
</tr>
<tr>
<td>R5</td>
<td>5</td>
<td>0.15</td>
</tr>
<tr>
<td>R6</td>
<td>6</td>
<td>0.15</td>
</tr>
<tr>
<td>R7</td>
<td>7</td>
<td>0.15</td>
</tr>
<tr>
<td>R8</td>
<td>8</td>
<td>0.15</td>
</tr>
<tr>
<td>R9</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>R10</td>
<td>10</td>
<td>0.15</td>
</tr>
<tr>
<td>R11</td>
<td>11</td>
<td>0.15</td>
</tr>
<tr>
<td>R12</td>
<td>12</td>
<td>0.15</td>
</tr>
<tr>
<td>R13</td>
<td>13</td>
<td>0.15</td>
</tr>
<tr>
<td>R14</td>
<td>14</td>
<td>0.15</td>
</tr>
<tr>
<td>R15</td>
<td>15</td>
<td>0.15</td>
</tr>
<tr>
<td>R16</td>
<td>16</td>
<td>0.15</td>
</tr>
<tr>
<td>R17</td>
<td>17</td>
<td>0.15</td>
</tr>
</tbody>
</table>

جدول ۱۰. مقایسه رتبه ریسک در دو روش

<table>
<thead>
<tr>
<th>شماره ریسک</th>
<th>LA</th>
<th>I & P Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۸</td>
<td>۶</td>
</tr>
<tr>
<td>۲</td>
<td>۳</td>
<td>۳</td>
</tr>
<tr>
<td>۳</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۴</td>
<td>۳</td>
<td>۶</td>
</tr>
<tr>
<td>۵</td>
<td>۶</td>
<td>۱۲</td>
</tr>
<tr>
<td>۶</td>
<td>۲</td>
<td>۱۶</td>
</tr>
<tr>
<td>۷</td>
<td>۴</td>
<td>۱۰</td>
</tr>
<tr>
<td>۸</td>
<td>۹</td>
<td>۴</td>
</tr>
<tr>
<td>۹</td>
<td>۱۰</td>
<td>۹</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۲</td>
<td>۵</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۵</td>
<td>۳</td>
</tr>
<tr>
<td>۱۳</td>
<td>۳</td>
<td>۱۳</td>
</tr>
<tr>
<td>۱۴</td>
<td>۷</td>
<td>۷</td>
</tr>
<tr>
<td>۱۵</td>
<td>۱۲</td>
<td>۲</td>
</tr>
<tr>
<td>۱۶</td>
<td>۲</td>
<td>۹</td>
</tr>
<tr>
<td>۱۷</td>
<td>۱۱</td>
<td>۱۷</td>
</tr>
</tbody>
</table>

LINGO

|
| --- |
| Variable |
| Value |
| h(1, 1) |
| 1 |
| h(2, 2) |
| 1 |
| h(3, 3) |
| 1 |
| h(4, 4) |
| 1 |
| h(5, 5) |
| 1 |
| h(6, 6) |
| 1 |
| h(7, 7) |
| 1 |
| h(8, 8) |
| 1 |
| h(9, 9) |
| 1 |
| h(10, 10) |
| 1 |
| h(11, 11) |
| 1 |
| h(12, 12) |
| 1 |
| h(13, 13) |
| 1 |
| h(14, 14) |
| 1 |
| h(15, 15) |
| 1 |
| h(16, 16) |
| 1 |
| h(17, 17) |
| 1 |

7. نتیجه‌گیری

رتبه‌بندی ریسک‌ها در پروژه‌های پیامبرانه نظر بررسی‌های مختلف آزمایشگرهای تونل‌سازی از جمله افراد معتبر با تجربه و مهارت بالا به ریسک‌های منفی و مثبت تعیین مجموعه عوامل ریسک‌سازی که در این تحقیق در قالب طریقه یک مدل ساختار جامع استفاده شده است. این مدل در عملکرد تونل‌سازی سه‌تیره در جنوب غرب ایران استفاده شده و با استفاده از تکنیک‌های نوین مبتنی بر توصیف گروهی و جمع‌آوری نظرات بی‌گمان و با استفاده از روش سیاست و دریافت در نظر گرفتن نظرات انسان برخاسته است. جهت رتبه‌بندی مقدماتی ریسک‌ها با استفاده از روش مرسوم مانیس اثر - احتیال ریسک، حوزه اثر ریسک از اهداف ارزیابی، اندازه‌گیری و ارزیابی اثرات و ریسک اثر ارزیابی، کیفیت و عملکرد پروژه با وزن‌های منفی (محاسبه شاخص اولیه ریسک) گسترش داده شده است. به‌منظور ارزیابی و ترتیب‌بندی واقعی‌گرایانه ریسک‌ها، شاخص‌های تکمیلی (تکمیلی) آثار اجتماعی اقتصادی اثرات زمین حیاتی، نت‌گذاری و نت‌گذاری عامل ریسک می‌باشد. این ترتیب‌بندی ریسک در نظر گرفته شده است. میزان میزان اثرات ورودی ریسک به‌منظور ارزیابی امتیازی اثرات انتها اولیه به روش تخصیص خلیج LA انتخاب گردید. روش این شده نتایج معمولی نسبت به روش مرسوم بدست دیده این بررسی به‌وسیله اثرات شایعه‌های تکمیلی ارزیابی، امکان در نظر گرفتن هزینه‌های جدیدی شایعه‌های تکمیلی ارزیابی، احتمال نمود می‌تواند منابع نیاز ارزیابی شایعه، بیشترین امتیاز‌های انتها و تحلیل‌بندی ریسک و تحلیل‌بندی آن می‌باشد.

مراجع

[2] فرخزاد رفیعی، "طریقه یک مدل رابطه برای انتداب گزارش کارکردهای مداوم". مدارک جامع کمپانی روش تصویری صنعتی داده‌ها. مدادهای برای رسانه دوکره مدیریت گرافیک رابطه تحقیق در عملیات دانشگاه علوم انسانی، دانشگاه تربیت مدرس تهران، 1384.

