مکان یابی محل ساخت پل با استفاده از فرآیند تحلیل سلسله مراتبی و GIS

نصیر محسنی، کوروش پهژادیان و عبدالرضا اردشير

چکیده:
انتخاب مکان مناسب پل روی رودخانه به معیارهای زیبایی همجون اقتصادی، حمل و نقل و زیبایی فرهنگی و اپتیسم است. در این مقاله مناسب‌ترین مکان‌های برای احداث سازه پل در یک مطالعه GIS موردی با استفاده از فرآیند تحلیل سلسله مراتبی (AHP) و منطق فازی در می‌باشد. در این مطالعه، ابتدا طول رودخانه بر اساس خصوصیات محلی به چندین بخش تقسیم‌بندی می‌شود که هر کدام یک گروه برای انتخاب محل ساخت پل مورد بررسی می‌شود. سپس میزان اصل مکان‌پذیری معرفی و با استفاده از آنها، به‌طور خلاصه GIS تعریف می‌شود. گزینه‌های که حذف کنند به‌طور جباسی می‌شوند. در نهایت نیاز به انتخاب پایان یافته و می‌خورد. گزینه‌های باقی‌مانده نسبت به هر یک از سه معیار تعیین‌شده وزن‌دهی می‌شود. میزان ابزار نیز به‌طور نهایی سازگاری خبره با یکدیگر مقایسه‌زوجی می‌شوند. بنابراین نظر گرفتن عدم قطعیت مقایسه‌های از منطق فازی استفاده می‌شود. سرانجام، به‌طور خلاصه، گزینه‌ها از اساس روش فراکنش تحلیل سلسله مراتبی فازی می‌باشد. می‌تواند تجربه‌های مشابه‌ای که وجود یک قدمی در منطقه، دو سال‌های یافته باشد، جمله‌هایی نیز ببردیم؟

کلمات کلیدی:
مکان پایی مناسب
فرآیند تحلیل سلسله مراتبی
منطق فازی
سیستم اطلاعات جغرافیایی

1. مقدمه
یکی از مهم‌ترین تجربیات پژوهش‌های ساخت بر روی رودخانه‌ها در مرحله برنامه‌ریزی، انتخاب محل مناسب پل جهت احداث پل می‌باشد. در این تحقیق، پایه‌های اهمیت اصلی احداث یک پل به عوامل تعیین کننده در انتخاب محل پل در می‌باشد. در این مطالعه، مناسب‌ترین مکان برای احداث پل روی رودخانه شناسایی شود. در طرف مقابل، انتخاب مناسب‌ترین محل بر روی رودخانه می‌تواند منجر به مشکلات زیادی از جمله صرع‌های بنا برای ساخت پل، حمل و نقل و آلودگی آب و هوا شود.

2. Analytical Hierarchy Process
مکان‌های محل ساخت پل از نظر استفاده از فرآیند حل سلسله‌مراتبی:

3، 4، 5، 6، 7، 8، 9، 10، 11، 12، 13، 14، 15، 16، 17، 18، 19، 20، 21، 22، 23، 24، 25، 26، 27، 28، 29، 30، 31، 32، 33، 34، 35، 36، 37، 38، 39، 40، 41، 42، 43، 44، 45، 46، 47، 48، 49، 50، 51، 52، 53، 54، 55، 56، 57، 58، 59، 60، 61، 62، 63، 64، 65، 66، 67، 68، 69، 70، 71، 72، 73، 74، 75، 76، 77، 78، 79، 80، 81، 82، 83، 84، 85، 86، 87، 88، 89، 90، 91، 92، 93، 94، 95، 96، 97، 98، 99، 100.
\[D_k = \sum_{i=1}^{M_k} \sum_{j=1}^{N_i} d_{ij} \times \beta_{ij} + \sum_{i=1}^{M_k} \sum_{j=1}^{N_i} d'_{ij} \times \beta'_{ij} \]

که در آن \(D_k \) وزن مکانیکی احتمالات هر الکتریکی بوده است.

فاصله جدیدی بین روشتایی‌های در پایین رودخانه و مکانیکی دسترسی \(Z_{ij} \) در بالای رودخانه با استفاده از تعداد ثابت \(M \) مکان‌های دسترسی \(M_i \) در پایین رودخانه

\[M_i = \sum_{i=1}^{M_k} P_i \times W_i \]

که در آن \(P_i \) جمعیت مکان‌های دسترسی \(M_i \) در پایین رودخانه به نظر می‌رسد. \(W_i \) جمعیت کل مکان‌های دسترسی \(M_i \) در پایین رودخانه و \(M_s \) مجموع وزن‌های احتمالی مکان‌های دسترسی در بالای رودخانه به‌عنوان ترتیب ضریب همانند درابت (1) بله بر حسب جمعیت روشتایی‌های در پایین رودخانه محسوب می‌شود.

\[\beta'_{ij} = \frac{P_i}{\sum_{i=1}^{M_s} P_i} \times \frac{W_i}{\sum_{i=1}^{N_i} W_i} \]

بردی است برابر احتمالی (1) گزینه‌های دارای وزن کمتر مقترن حمل و نقشه‌های کمتری را برای ساکنان منطقه‌های مختلفی بی‌مکانیکی ایجاد می‌شود و از جهتی می‌تواند حمل و نقشه‌های اولویت بیشتری بی‌مکانیکی همچنین فضای جدیدی که می‌تواند در اطراف رودخانه باعث کاهش نسبی‌های دیگر در طرف دیگر رودخانه در محور مورد نقش‌هسته ایجاد شود.

به‌عنوان نتایج این محققان به‌عنوان احتمالات بی‌مکانیکی دسترسی \(\beta'_{ij} \) با استفاده از ضریب

\[\beta'_{ij} = \frac{P_i}{\sum_{i=1}^{M_s} P_i} \times \frac{W_i}{\sum_{i=1}^{N_i} W_i} \]

بردی است برابر احتمالی (1) گزینه‌های دارای وزن کمتر مقترن حمل و نقشه‌های کمتری را برای ساکنان منطقه‌های مختلفی بی‌مکانیکی ایجاد می‌شود و از جهتی می‌تواند حمل و نقشه‌های اولویت بیشتری بی‌مکانیکی همچنین فضای جدیدی که می‌تواند در اطراف رودخانه باعث کاهش نسبی‌های دیگر در طرف دیگر رودخانه در محور مورد نقش‌هسته ایجاد شود.

به‌عنوان نتایج این محققان به‌عنوان احتمالات بی‌مکانیکی دسترسی \(\beta'_{ij} \) با استفاده از ضریب

\[\beta'_{ij} = \frac{P_i}{\sum_{i=1}^{M_s} P_i} \times \frac{W_i}{\sum_{i=1}^{N_i} W_i} \]

بردی است برابر احتمالی (1) گزینه‌های دارای وزن کمتر مقترن حمل و نقشه‌های کمتری را برای ساکنان منطقه‌های مختلفی بی‌مکانیکی ایجاد می‌شود و از جهتی می‌تواند حمل و نقشه‌های اولویت بیشتری بی‌مکانیکی همچنین فضای جدیدی که می‌تواند در اطراف رودخانه باعث کاهش نسبی‌های دیگر در طرف دیگر رودخانه در محور مورد نقش‌هسته ایجاد شود.

به‌عنوان نتایج این محققان به‌عنوان احتمالات بی‌مکانیکی دسترسی \(\beta'_{ij} \) با استفاده از ضریب

\[\beta'_{ij} = \frac{P_i}{\sum_{i=1}^{M_s} P_i} \times \frac{W_i}{\sum_{i=1}^{N_i} W_i} \]

بردی است برابر احتمالی (1) گزینه‌های دارای وزن کمتر مقترن حمل و نقشه‌های کمتری را برای ساکنان منطقه‌های مختلفی بی‌مکانیکی ایجاد می‌شود و از جهتی می‌تواند حمل و نقشه‌های اولویت بیشتری بی‌مکانیکی همچنین فضای جدیدی که می‌تواند در اطراف رودخانه باعث کاهش نسبی‌های دیگر در طرف دیگر رودخانه در محور مورد نقش‌هسته ایجاد شود.

به‌عنوان نتایج این محققان به‌عنوان احتمالات بی‌مکانیکی دسترسی \(\beta'_{ij} \) با استفاده از ضریب

\[\beta'_{ij} = \frac{P_i}{\sum_{i=1}^{M_s} P_i} \times \frac{W_i}{\sum_{i=1}^{N_i} W_i} \]

بردی است برابر احتمالی (1) گزینه‌های دارای وزن کمتر مقترن حمل و نقشه‌های کمتری را برای ساکنان منطقه‌های مختلفی بی‌مکانیکی ایجاد می‌شود و از جهتی می‌تواند حمل و نقشه‌های اولویت بیشتری بی‌مکانیکی همچنین فضای جدیدی که می‌تواند در اطراف رودخانه باعث کاهش نسبی‌های دیگر در طرف دیگر رودخانه در محور مورد نقش‌هسته ایجاد شود.

به‌عنوان نتایج این محققان به‌عنوان احتمالات بی‌مکانیکی دسترسی \(\beta'_{ij} \) با استفاده از ضریب

\[\beta'_{ij} = \frac{P_i}{\sum_{i=1}^{M_s} P_i} \times \frac{W_i}{\sum_{i=1}^{N_i} W_i} \]
2-1 معیار اقتصادی
در میان یافته‌های آماده‌سازی مواد با توجه به اینکه زیمن اطرح رودخانه در صورت مالکیت خصوصی، هزینه ساخت پل، هزینه ساخت جاده سراسری پل از محل جاده‌ای مالی طرف در رودخانه با توجه به بکار گرفتن این موارد در کلیه مکان‌های پاشنه‌سازی ساخت، پل‌ها عامل هزینه ساخت پل و راه‌آهن جاده دسترسی به عنوان معیار اقتصادی نظر و گرفته می‌شود.
برای محاسبه هزینه ساخت پل در سراسر دسترسی، ابتدا نیاز به برآورد حجم کار و راه‌آهن دسترسی پل، با مود نظر می‌باشد. برای استفاده تقیی باید تا در نیاز است راه‌آهن و طول پل می‌باشد. برای استفاده تغییرات در این مقدار، نیاز به مجد و اندازه‌گیری جلوی جریان سیلاب به دنده بازگشت مناسب ضروری می‌باشد. تاریخ آمیخت میان طبقه دانشگاه هیدرولوژیک سیلاب در هیدرولوژیک سیلاب به دنبال محدوده داشتی سیلاب و تخمین ارتفاع و طول عرض پل می‌باشد. این تغییرات در نظر گرفته می‌شود.

2-2 ظرفیت GIS و تحلیل هیدرولوژیکی
به‌منظور انتخاب مکان پل، ابتدا از سخن نشان نمودنی باید باید بایستی توضیح نشان نمودنی باید بایستی توضیح نشان Nisy می‌باشد. تاریخ محاسبه دسترسی به عنوان معیار اقتصادی می‌باشد. هزینه ساخت دسترسی P۱ مناسبی است از طرف گرفته می‌شود. برای محاسبه ضریب سیستمی از دو نقطه ابتدا و انتهای هر گروه استفاده می‌شود. هر ضریب ارزش افزایش یافته در محدوده مواد ریزه‌گیری برای نمونه می‌باشد. برای محاسبه ضریب سیستمی از دو نقطه ابتدا و انتهای هر گروه استفاده می‌شود. هر ضریب ارزش افزایش یافته در محدوده مواد ریزه‌گیری برای Nisy می‌باشد. برای محاسبه ضریب سیستمی از دو نقطه ابتدا و انتهای هر گروه استفاده می‌شود. هر ضریب ارزش افزایش یافته در محدوده مواد ریزه‌گیری برای GIS در محیط GIS با هدف تعیین ارتفاع و طول پل در مناطق موجود انجام می‌شود.

2-4 تحلیل GIS-AHP
که توسط باکلی در سال 1985 معرفی گردید (۱۹۸۵). این تحلیل یک ابزار توزیع توده سلسله مراتبی می‌باشد که می‌تواند از پایین به بالا عمل می‌کند از (۱) مقایسه زوجی هزینه‌ها نسبت به هر یک از موارد Fuzzy-AHP (۲) مقایسه زوجی معیارها نسبت به هدف اصلی در روش

Fuzzy-AHP در این مطالعه از روش AHP در مورد عامل‌های مالی و مصرفی استفاده شده است. روش AHP عمیقاً شامل دو رده سلسله مراتبی می‌باشد که می‌تواند از پایین به بالا عمل می‌کند از (۱) مقایسه زوجی هزینه‌ها نسبت به هر یک از موارد Fuzzy-AHP (۲) مقایسه زوجی معیارها نسبت به هدف اصلی در روش
به یک توصیف معیار رقمی AHP
شود. در تحقیق حاضر، تنها برای مقایسه زوجی بین میزان از اعداد مثلثی و دوزن‌های فازی استفاده می‌شود. همچنین برای قضاوت منفی و پوزیتیو از نظره‌س شیست‌های مختلف Dary T، تخصص‌های اقتصادی، جمل و نقل و هیبریدی استفاده می‌شود.

برای کلیه مقادیر

یک روش میانگین هندسی استفاده می‌شود. فرض یک طبقه‌بندی مثلثی در ماتریس A با عدد مثلثی فازی (a_{ij}) (که نشان داده شده، اعداد فازی نرمال شده و میزان از معادلات (3) محاسبه می‌شود.

$$a_i = \left(\prod_{j=1}^{n} a_{ij} \right)^{1/n}$$

$$a_j = \sum_{i=1}^{n} a_{ij}$$

برای کلیه مقادیر

که در آن a_{ij} میانگین هندسی مان اول فازی مربوط به مقایسه معیار i به سابیر معیار j (۱) تا (۱۲) می‌باشد. سایر المان ها بصورت مشابه تعبیه می‌شوند. این از تکنیک تحلیل ماتریس نرمال شده معیارها بر سر به استفاده می‌باشد. وام همچنین نظرات کارشناسان مختلف بر اساس ارزیابی گروهی ایجاد می‌کند. برای این منظور در این مقاله از روش مکرر چند بخشی ساده و کارایی بالای آن بصورت دیل استفاده می‌شود [19].

$$\mu_i(z) = \left(\frac{a_i}{b_i}, \frac{b_i}{c_i}, \frac{c_i}{a_i} \right)$$

$$\nu_i(z) = \left(\frac{a_i}{b_i}, \frac{b_i}{c_i}, \frac{c_i}{a_i} \right)$$

برای کلیه مقادیر

که در آن ν_i میانگین هندسی مان اول فازی مربوط به مقایسه معیار i به سابیر معیار j (۱) تا (۱۲) می‌باشد. سایر المان ها بصورت مشابه تعبیه می‌شوند. این از تکنیک تحلیل ماتریس نرمال شده معیارها بر سر به استفاده می‌باشد. وام همچنین نظرات کارشناسان مختلف بر اساس ارزیابی گروهی ایجاد می‌کند. برای این منظور در این مقاله از روش مکرر چند بخشی ساده و کارایی بالای آن بصورت دیل استفاده می‌شود [19].

$$\sum_{k=1}^{K} \left(\mu_i(z) \right) dz = \frac{1}{\sum_{k=1}^{K} \left(\nu_i(z) \right) dz}$$

$$\sum_{k=1}^{K} \left(\nu_i(z) \right) dz$$

برای کلیه مقادیر

که در آن ν_i میانگین هندسی مان اول فازی مربوط به مقایسه معیار i به سابیر معیار j (۱) تا (۱۲) می‌باشد. سایر المان ها بصورت مشابه تعبیه می‌شوند. این از تکنیک تحلیل ماتریس نرمال شده معیارها بر سر به استفاده می‌باشد. وام همچنین نظرات کارشناسان مختلف بر اساس ارزیابی گروهی ایجاد می‌کند. برای این منظور در این مقاله از روش مکرر چند بخشی ساده و کارایی بالای آن بصورت دیل استفاده می‌شود [19].

$$\sum_{j=1}^{n} \left(\nu_{ij} \right) \times w_{ij}$$

که در آن ν_{ij} میانگین هندسی مان اول فازی مربوط به معیار i به سابیر معیار j (۱) تا (۱۲) می‌باشد. سایر المان ها بصورت مشابه تعبیه می‌شوند. این از تکنیک تحلیل ماتریس نرمال شده معیارها بر سر به استفاده می‌باشد. وام همچنین نظرات کارشناسان مختلف بر اساس ارزیابی گروهی ایجاد می‌کند. برای این منظور در این مقاله از روش مکرر چند بخشی ساده و کارایی بالای آن بصورت دیل استفاده می‌شود [19].

$$\bar{A}_{im} = \begin{bmatrix}
1 & (x_{11}, y_{11}, z_{11}, a_{11}) & \cdots & (x_{1n}, y_{1n}, z_{1n}, a_{1n}) \\
(1, x_{11}, y_{11}, z_{11} & 1 & \cdots & (x_{1n}, y_{1n}, z_{1n}, a_{1n}) \\
\vdots & \vdots & \ddots & \vdots \\
(1, x_{n1}, y_{n1}, z_{n1}, a_{n1}) & \cdots & \cdots & 1
\end{bmatrix}$$

جدول ۱: اعداد فازی نسبت داده شده به ترکیب زبانی [۲۰]

<table>
<thead>
<tr>
<th>قضاوت زبانی</th>
<th>شرح</th>
</tr>
</thead>
</table>
| B | معیار A نسبت به معیار B (µ)
| (VU) | خیلی به اهمیت است |
| C | معیار A نسبت به معیار C (µ)
| (LP) | کم است اهمیت |
| D | معیار A نسبت به معیار D (µ)
| (EL) | دارای اهمیت بیشتر |
| E | معیار A نسبت به معیار E (µ)
| (ML) | اهمیت بیشتر دارد |
| F | معیار A نسبت به معیار F (µ)
| (VI) | خیلی به اهمیت نیست |

\[f(x, y, z, a) = \begin{cases}
1, & \text{برای } x > y, z > a \\
0, & \text{برای } x < y, z < a \\
\frac{1}{2}, & \text{برای } x = y, z = a
\end{cases} \]
مطالعه توزیع موانع برنج در منطقه شرقی گلستان، خوزستان و سیستان و بلوچستان باید از نظر جغرافیایی و محیط زیستی انجام شود. در این مقاله، بصورت همزمان موانع کشت برنج در این مناطق جغرافیایی را بررسی می‌کنیم.

منابع:

1. منابع جغرافیایی منطقه
2. تحقیقات محیط زیستی منطقه
3. مطالعات کشاورزی منطقه

در این مقاله، با استفاده از نقشه‌های جغرافیایی منطقه، توزیع موانع کشت برنج در مناطق مختلف منطقه شرقی گلستان، خوزستان و سیستان و بلوچستان بررسی می‌شود. نتایج نشان می‌دهد که در مناطق مختلف این مناطق، موانع مختلفی در کشت برنج وجود دارد.

در پایان، با توجه به این نتایج، حاکمیت و سازمان‌های کشاورزی منطقه شرقی گلستان، خوزستان و سیستان و بلوچستان ملزم هستند تا به شکلی مناسب موانع کشت برنج را در این مناطق بهبود نمایاند و کشاورزان را بهتر آموزش دهند.
به همین صورت برای ماتریس حذف متوسط (A_M) مقدار a3 مقدار a1 و b1, b2 مقدار a4 مقدار a0 محسوس می‌شود. در نتیجه مقدار فاصله (z) برای کارشانس اول (اقتصادی) بر اساس مقدار محاسبه شده و رابطه 5 برای معيارهای اقتصادی حمل و نقل و مورفولوژی به ترتیب از است. (7) برای 200/0/21/5/1/1، 200/0/21/5/1/1، برای 100/0/21/5/1/1 و 200/0/21/5/1/1 به عنوان نمونه عدد 2929 از تجسم (4) بر این دیدن ترتیب این مراحل برای تعیین مقدار وزنی فاصله برای هر سه کارشانس محاسبه می‌شود (جدول 2) در نتیجه بر اساس رابطه 6 برای هر میانگین مقدار فاصله سه کارشانس با پنجره تجميع شده و مقدار غیرفازی شده محاسبه می‌شود (جدول 4).}

یادآوری می‌شود در رابطه 6 برای محاسبه انگاره ارائه شده با توجه به ابتکار اعداد فاصله بصورت مثلثی و محدوده‌های 1 می‌باشد. کافی است این محدوده مربوط به انگارل بصورت محدوده‌ای درجه 1 حل شوند و سپس برای جواب انگارل، مقدار عددی

\[
A_{3 \times 3} = \begin{bmatrix}
3 & 8 & 6 \\
0 & 3 & 6 \\
1 & 1 & 3 \\
\end{bmatrix}
\]

\[
A_L = \begin{bmatrix}
3 & 8 & 6 \\
0 & 3 & 6 \\
1 & 1 & 3 \\
\end{bmatrix}
\]

\[
A_M = \begin{bmatrix}
5 & 9.5 & 7.5 \\
0.5 & 5 & 7.5 \\
1 & 2.5 & 5 \\
\end{bmatrix}
\]

\[
A_U = \begin{bmatrix}
7 & 10 & 9 \\
2 & 7 & 9 \\
1 & 4 & 7 \\
\end{bmatrix}
\]

شرکت مهندسی کورش پژوهشی و علوم ارشد

8

نمایی پایه محل ساخت یا با استفاده از فرآیند تحلیل سلسله مراتی

بمنظور تشریح بهتر نتایج مدل، محاسبات مربوط به فضای کارشانس اول نسبت به معيارها با جزئیات بیشتر تشریح می‌شود. ماتریس مقایسه زوجی معيارها بر اساس ترمیم زبانی طبق جدول 3 (برای کارشانس اقتصادی بصورت زیر است:

\[
A_{3 \times 3} = \begin{bmatrix}
\text{eco} & \text{trans} & \text{morph} \\
\text{EI} & \text{VI} & \text{MI} \\
\text{VU} & \text{EI} & \text{MI} \\
\text{LI} & \text{LI} & \text{E1} \\
\end{bmatrix}
\]
مکان بیای مدل ساخته و با استفاده از فرآیند تحلیل سلسله مراتبی...
جدول ۴: وزن گزینه‌های نسبی به معیارها در سطح‌های اول و دوم

<table>
<thead>
<tr>
<th>وزن سطح اول</th>
<th>وزن سطح دوم</th>
<th>معیار</th>
<th>شماره</th>
<th>مقدار</th>
<th>مطلق</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱</td>
<td></td>
<td>۱</td>
<td>۱</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td></td>
<td>۲</td>
<td>۲</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۳</td>
<td>۳</td>
<td></td>
<td>۳</td>
<td>۳</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۴</td>
<td>۴</td>
<td></td>
<td>۴</td>
<td>۴</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۵</td>
<td>۵</td>
<td></td>
<td>۵</td>
<td>۵</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۶</td>
<td>۶</td>
<td></td>
<td>۶</td>
<td>۶</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۷</td>
<td>۷</td>
<td></td>
<td>۷</td>
<td>۷</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۸</td>
<td>۸</td>
<td></td>
<td>۸</td>
<td>۸</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۹</td>
<td>۹</td>
<td></td>
<td>۹</td>
<td>۹</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰</td>
<td></td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۱</td>
<td></td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۲</td>
<td></td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۱۳</td>
<td>۱۳</td>
<td></td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۱۴</td>
<td>۱۴</td>
<td></td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
</tbody>
</table>

جدول ۵: وزن گزینه‌های نسبی بر اساس سطح‌های اول و دوم

<table>
<thead>
<tr>
<th>وزن سطح اول</th>
<th>وزن سطح دوم</th>
<th>معیار</th>
<th>شماره</th>
<th>مقدار</th>
<th>مطلق</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱</td>
<td></td>
<td>۱</td>
<td>۱</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td></td>
<td>۲</td>
<td>۲</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۳</td>
<td>۳</td>
<td></td>
<td>۳</td>
<td>۳</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۴</td>
<td>۴</td>
<td></td>
<td>۴</td>
<td>۴</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۵</td>
<td>۵</td>
<td></td>
<td>۵</td>
<td>۵</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۶</td>
<td>۶</td>
<td></td>
<td>۶</td>
<td>۶</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۷</td>
<td>۷</td>
<td></td>
<td>۷</td>
<td>۷</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۸</td>
<td>۸</td>
<td></td>
<td>۸</td>
<td>۸</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۹</td>
<td>۹</td>
<td></td>
<td>۹</td>
<td>۹</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰</td>
<td></td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۱</td>
<td></td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۲</td>
<td></td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۱۳</td>
<td>۱۳</td>
<td></td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
<tr>
<td>۱۴</td>
<td>۱۴</td>
<td></td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱/۰۸۰۸</td>
<td>۱۰۰%</td>
</tr>
</tbody>
</table>

جدول ۶: فراوانی نسبی (درصد) در به‌نوبه‌ای پنج مقطع برتر در حالات مختلف عدم قطعیت بارامترهای مدل

| مشخصات | فراوانی نسبی (درصد) | مدل Fuzzy-AHP | مدل شیب سازی | مدل مجموعه روشن | مدل مجموعه ضهن | مدل مجموعه بی‌پیشینه | مدل مجموعه بی‌پیشینه
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
</tr>
<tr>
<td>۰.۱</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
</tr>
<tr>
<td>۰.۲</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
</tr>
<tr>
<td>۰.۳</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
</tr>
<tr>
<td>۰.۴</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
</tr>
<tr>
<td>۰.۵</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
</tr>
</tbody>
</table>

شکل ۲: فراوانی نسبی پنج مقطع بل برتر حاصل از ۱۰۰۰۰ مقاله‌ی مثبت در حالات عدم قطعیت بارامترهای مدل Fuzzy-AHP | مدل Fuzzy-AHP | مدل شیب سازی | مدل مجموعه روشن | مدل مجموعه ضهن | مدل مجموعه بی‌پیشینه | مدل مجموعه بی‌پیشینه
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
</tr>
<tr>
<td>۰.۱</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
</tr>
<tr>
<td>۰.۲</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
</tr>
<tr>
<td>۰.۳</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
</tr>
<tr>
<td>۰.۴</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
</tr>
<tr>
<td>۰.۵</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
</tr>
</tbody>
</table>

شکل ۳: فراوانی نسبی پنج مقطع بل برتر حاصل از ۱۰۰۰۰ مقاله‌ی مثبت در حالات عدم قطعیت بارامترهای مدل Fuzzy-AHP | مدل Fuzzy-AHP | مدل شیب سازی | مدل مجموعه روشن | مدل مجموعه ضهن | مدل مجموعه بی‌پیشینه | مدل مجموعه بی‌پیشینه
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
</tr>
<tr>
<td>۰.۱</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
</tr>
<tr>
<td>۰.۲</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
</tr>
<tr>
<td>۰.۳</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
</tr>
<tr>
<td>۰.۴</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
</tr>
<tr>
<td>۰.۵</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
</tr>
</tbody>
</table>

