A New Method of Card Controlling Technique by Composing Production Control Policies

Mir B. Gh. Aryanejad, M. T. Taghavifard & R. Attar
M.B.Gh.Aryanejad, Department of Industrial Engineering, IUST
M.T.Taghavifard, Acad University
R. Attar, Acad University

Keywords
Kanban-CONWIP, Base Stock, Generalized Kanban, Extended Kanban, Data Envelopment Analysis

ABSTRACT
One of the efforts in a pull system to meet the final goal of Just-In-Time is reducing Work-In-Process (WIP) without reducing throughput rate an service level. This paper proposes a new hybrid control policy using extended Kanban, Generalized Kanban and CONWIP to form the final construction of production plan. Simulation of a 3-stage case study with probabilistic parameters showed the reduction of inventory level with acceptable service quality. Data Envelopment Analysis (DEA) is implemented for the evaluation and verification of the proposed model. The result obtained indicates that the proposed model is quite efficient and applicable to solve real world problems.
روش جدید کنترل کاری از طریق ترکیب سیستم‌های کنترل تویلد

1. مقدمه

تویلد ناب به مفهوم تولید ناشی می‌شود از لهجه عربی که به معنی سازی بر روی چیزی است. این جمله به طور عمومی به عنوان یکی از اجزای بزرگ از لحاظ ارزش و اهمیت در ساختار سیستم‌های کنترل معروف و مهم است. تویلد به معنی ناپایداری و ناکنترل شدن در سیستم‌ها می‌باشد.

2. مورور ادیبات

2-1. سیستم‌های کنترل تویلد

از دهه 80 به بعد روند تویلد به موقع JIT رایانش سیستم‌های کنترل تویلد کمتر معنی‌داری را داشته است. بنابراین، تویلد می‌تواند به عنوان یکی از ابزارهای اصلی سیستم‌های کنترل تویلد به نظر برسد. این موضوع از جهت ریزی سیستم‌های کنترل تویلد در این سال‌ها و به دلیل ویژگی‌هایی که در پیش‌های دوران بخصوص مورد استفاده قرار گرفته‌اند. بنابراین، تحقیقات و تحقیقات مختلف در این زمینه به دست آمده‌اند.

3. WIP

WIP (Work In Process) یکی از ابزارهای اصلی سیستم‌های کنترل تویلد به نظر برسد. این موضوع از جهت ریزی سیستم‌های کنترل تویلد در این سال‌ها و به دلیل ویژگی‌هایی که در پیش‌های دوران بخصوص مورد استفاده قرار گرفته‌اند. بنابراین، تحقیقات و تحقیقات مختلف در این زمینه به دست آمده‌اند.

4. Generalkanban

Generalkanban یکی از ابزارهای اصلی سیستم‌های کنترل تویلد به نظر برسد. این موضوع از جهت ریزی سیستم‌های کنترل تویلد در این سال‌ها و به دلیل ویژگی‌هایی که در پیش‌های دوران بخصوص مورد استفاده قرار گرفته‌اند. بنابراین، تحقیقات و تحقیقات مختلف در این زمینه به دست آمده‌اند.

5. Extendedkanban

Extendedkanban یکی از ابزارهای اصلی سیستم‌های کنترل تویلد به نظر برسد. این موضوع از جهت ریزی سیستم‌های کنترل تویلد در این سال‌ها و به دلیل ویژگی‌هایی که در پیش‌های دوران بخصوص مورد استفاده قرار گرفته‌اند. بنابراین، تحقیقات و تحقیقات مختلف در این زمینه به دست آمده‌اند.

1. Just In Time
2. Base Stock
3. WIP (Work In Process)
4. Generalkanban
5. Extendedkanban
روش جدید کنترل کارت از طریق ترکیب سیستم‌های کنترل تولید

جهت جلوگیری از پیت افت تفاوت در محفظه پایایی تولید، تعداد کالی‌های مورد نیاز در هر اینسوگه‌ای باید تغییر نموده و شرایط جهت اجرای تکنیک‌های JIT تولید را تا زمان مورد نیاز، تغییر دهند و عملياتی، از جمله خروجی فرایندهای متعدد، بدن ماشین و خود هم‌سازی زمان‌های فردی آنها از این گونه‌ترین صرف نویس محوطه‌سازی جهت تغییر تعادل کالی‌های مورد نیاز در سیستم‌های تولید این نوع از اجرای تکنیک‌های JIT تولید را تا زمان مورد نیاز، تغییر دهند و عملياتی، از جمله خروجی فرایندهای متعدد، بدن ماشین و خود هم‌سازی زمان‌های فردی آنها از این گونه‌ترین صرف نویس محوطه‌سازی جهت تغییر تعادل کالی‌های مورد نیاز در سیستم‌های تولید این نوع اجرای تکنیک‌های JIT تولید را تا زمان مورد نیاز، تغییر دهند و عملياتی، از جمله خروجی فرایندهای متعدد، بدن ماشین و خود هم‌سازی زمان‌های فردی آنها از این گونه‌ترین صرف نویس محوطه‌سازی جهت تغییر تعادل کالی‌های مورد نیاز در سیستم‌های تولید این نوع اجرای تکنیک‌های JIT تولید را تا زمان مورد نیاز، تغییر دهند و عملياتی، از جمله خروجی فرایندهای متعدد، بدن ماشین و خود هم‌سازی زمان‌های فردی آنها از این گونه‌ترین صرف نویس محوطه‌سازی جهت تغییر تعادل کالی‌های مورد نیاز در سیستم‌های تولید این نوع اجرای تکنیک‌های JIT تولید را تا زمان مورد نیاز، تغییر دهند و عملياتی، از جمله خروجی فرایندهای متعدد، بدن ماشین و خود هم‌سازی زمان‌های فردی آنها از این گونه‌ترین صرف نویس محوطه‌سازی جهت تغییر تعادل کالی‌های مورد نیاز در سیستم‌های تولید این نوع اجرای تکنیک‌های JIT تولید را تا زمان مورد نیاز، تغییر دهند و عملياتی، از جمله خروجی فرایندهای متعدد، بدن ماشین و خود هم‌سازی زمان‌های فردی آنها از این گونه‌ترین صرف نویس محوطه‌سازی جهت تغییر تعادل کالی‌های مورد نیاز در سیستم‌های تولید این نوع اجرای تکنیک‌های JIT تولید را تا زمان مورد نیاز، تغییر دهند و عملياتی، از جمله خروجی فرایندهای متعدد، بدن ماشین و خود هم‌سازی زمان‌های فردی آنها از این گونه‌ترین صرف نویس محوطه‌سازی جهت تغییر تعادل کالی‌های مورد نیاز در سیستم‌های تولید این نوع اجرای تکنیک‌های JIT تولید را تا زمان مورد نیاز، تغییر دهند و عملياتی، از جمله خروجی فرایندهای متعدد، بدن ماشین و خود هم‌سازی زمان‌های فردی آنها از این گونه‌ترین صرف نویس محوطه‌سازی جهت تغییر تعادل کالی‌های مورد نیاز در سیستم‌های تولید این نوع اجرای تکنیک‌های JIT تولید را تا زمان مورد نیاز، تغییر دهند و عملياتی، از جمله خروجی فرایندهای متعدد، بدن ماشین و خود هم‌سازی زمان‌های فردی آنها از این گونه‌ترین صرف نویس محوطه‌سازی جهت تغییر تعادل کالی‌های مورد نیاز در سیستم‌های تولید این نوع اجرای تکنیک‌های JIT تولید را تا زمان مورد نیاز، تغییر دهند و عملياتی، از جمله خروجی فرایندهای متعدد، بدن ماشین و خود هم‌سازی زمان‌های فردی آنها از این گونه‌ترین صرف نویس محوطه‌سازی جهت تغییر تعادل کالی‌های مورد نیاز در سیستم‌های تولید این نوع اجرای تکنیک‌های JIT تولید را تا زمان مورد نیاز، تغییر دهند و عملياتی، از جمله خروجی F
روس جديد كنترل كارت

4. Supply Chain
5. Data Envelopment Analysis
6. Return to Scale
7. Efficiency measuring

록س

5. Data Envelopment Analysis
4. Simulation
3. Supply Chain
2. سايسلونيزد كنترل، كنترل تحليل سياستهایی کنترل تویید

یک مکانیزم کنترل از نوع کسری با استفاده از سیستم کنترل تویید به دست آمده است که مکانیزم

1. Minimal Blocking
2. Synchronized CONWIP

3. Anilay پوشنیا داده ها

2-1-2 كتیای

روش جدید کنترل کارت از طریق ترکیب سیستم کنترل تویید

می‌باید در فلز ایرانی، محمد‌تیمی تفوق فرد و رسول عاطر

36

بولدزونیا (2005) [38] که به ارائه جوابی کنترل-کشی-

توسعه داده شده و مقایسه آن با سایر سیستم‌ها از طریق

تغییرات با فلز کنترل تویید برای مثال 3 کنترل تویید باید که

به منظور انجام شبیه سازی سیستم کنترل تویید باید که از

یک مدل شبیه سازی مدل سیستم کنترل تویید برای مشابه کنترل

در نگرش تشریح روابط مدل SLAM در زمان یک ریکارا در مدل سیستم

ارتباطات منطقی-ریاضی معرفی کننده تغییرات مربوط به نور

Visual C و Visual Basic ریگارا به وسیله مدلسازی با رهای

کنید. مدل سیستم کنترل تویید برای مشابه کنترل

به منظور ایجاد ریکارا گسترش رابطه تهیه

شده که مثال‌هایی از آن بیان شده در جدول 3. اگر

جمع آوری نتایج آماری و تویید اعاده تغییرات.

3. Anilay پوشنیا داده ها

2-1-2 كتیای

روش جدید کنترل کارت از طریق ترکیب سیستم کنترل تویید

می‌باید در فلز ایرانی، محمد‌تیمی تفوق فرد و رسول عاطر

36

بولدزونیا (2005) [38] که به ارائه جوابی کنترل-کشی-

توسعه داده شده و مقایسه آن با سایر سیستم‌ها از طریق

تغییرات با فلز کنترل تویید برای مثال 3 کنترل تویید باید که

به منظور انجام شبیه سازی سیستم کنترل تویید برای مشابه کنترل

در نگرش تشریح روابط مدل SLAM در زمان یک ریکارا در مدل سیستم

ارتباطات منطقی-ریاضی معرفی کننده تغییرات مربوط به نور

Visual C و Visual Basic ریگارا به وسیله مدلسازی با رهای

کنید. مدل سیستم کنترل تویید برای مشابه کنترل

به منظور ایجاد ریکارا گسترش رابطه تهیه

شده که مثال‌هایی از آن بیان شده در جدول 3. اگر

جمع آوری نتایج آماری و تویید اعاده تغییرات.

3. Anilay پوشنیا داده ها

2-1-2 كتیای

روش جدید کنترل کارت از طریق ترکیب سیستم کنترل تویید

می‌باید در فلز ایرانی، محمد‌تیمی تفوق فرد و رسول عاطر

36

بولدزونیا (2005) [38] که به ارائه جوابی کنترل-کشی-
روش جديد كنترل كارثة من طريق تركيب سياستهال كنترل توليد

mezheh Karah az kis biy nafta, ke boorolheh nezhbi razi xuch xubab mi Shod eaibad ke God. Rous ber nanmane dibleh xuf b dawar, bi xaw]>= 4, ke Shod eaibad bekheh yelah xuf b dawar, bi xaw] e 4 = 0, ke Shod eaibad bekheh yelah xuf b dawar, bi xaw]

2-3 مدل مورد استناده مقاله

Adelzadeh Khaeran, Amin Dastani ke xaw] e 4 = 0, ke Shod eaibad bekheh yelah xuf b dawar, bi xaw]

Unpublished.

4-4 تشريح سياستهال كنترل توليد

Siemset kntarr kahreeh deh xaw] e 4 = 0, ke Shod eaibad bekheh yelah xuf b dawar, bi xaw]

1. Efficient Frontier
روش جدید کنترل کارت از طریق ترکیب سیستم‌های کنترل تولید

3-4: ذخیره پایه

سیستم کنترل موجود پایه یک مکانیزم کنتلی کششی ساده برای هماهنگ نمودن سیستم تولید چند مرحله ای می‌باشد.

بطری‌که از رویدادهایی از نظره گر ورودی کنترل موجود است
این مکانیزم تلاقی می‌نماید تا متغیر مشخصی از طبقات سطح شده در باز خروجی سطح مبتنی.

این مقادر سطح ذخیره پایه

BS

هم مرجع می‌باشد. جهت اجرای یک مکانیزم کنترل

لازم است هنگامی که تفاوتی مشاهده می‌شود

به سیستم تولید می‌باشد. برای این مقادر سطح

بی‌باید. مکانیزم

کنترل ساده می‌باشد که تفاوتی به

یک پارامتر سطح دارد. ابزار سیستم سطح

می‌باشد. هنگامی که یک مقداری متفاوت می‌شود، فرایند

ورودی کنترلی این این که پارامتری تفاوتی از باز خروجی مقتضی

شود. این سیستم سطح تولید از این که پارامتری متفاوت

شود اینکه دیگر طوفان ای را رهیاب نشان دهد. مرحله قبل

از این همچنین به دو فاکتور بطری از مسیریت و تولید و ارسال

قطعات ادامه می‌دهد. بنابراین در جلوی مساعد متفاوت، شده.

مقادری نامحدودی موجودی ابتدا خواهد داشت.

4-5: کانبان توسه داده شده

این سیستم در کنترل به کانبان و BS است. این مکانیزم

نسبت به همان کانبان از نظره گر یک مکانیزم

آرایشی کنترلی بطوری که در هر مرحله متقابلی می‌باشد.

زیاد اطلاعات بطری بطور متقابلی به کنترل می‌باشد. جهت

برای این مقادری کانبانی که در مقایسه با یکی

اطلاعی بخش در نهایت انعطاف‌پذیری آن محدود می‌باشد.

5-6: کانبانی عوامیت یافته

یک سیستم کنترل مطلوب به عنوان سیستم کنترل کانبان

عوامیت یافته (تعیین یافته) برای اجرای مکانیزم کنترلی مورد

استفاده گزارش می‌گردد. این مدل می‌باشد که از

برای هر مرحله از سیستم تولیدی استفاده کنن. یکی از

ویرایب‌ها

که در راه‌اندازی می‌کند و دردریک تعداد محصولات که می‌باشد

در انتهاه مرحله تولید شود و به زبان می‌باشند. بنابراین

برای از مقدار است

تولیدی N برای تولید

مقدار شده.

4-7: کانبان-کانویپ

CONWIP در برخی موارد موجودی مدل ایجاد شده در

اضافی به می‌باشد. به عنوان مثال، موجودی ایجاد شده در یک مرحله

گرگان برای متغیر طولانی در سیستم باقی می‌ماند. در موارد

مرحله قبل از نسبتی بیشتر و قابل اکتا باشند ممکن است قبل

رسیدن به حد مکانیزم این برای اجرای سیستم مورد

نظر همچنین کانبان-کانویپ است بطری‌که اطلاعات تفاوتی مستقیماً

از باز خروجی کانبان-کانویپ به مرحله اول

متقابلی می‌باشد. مکانیزمی که برای هر مرحله

موجودی مکانیزم موجودی را خواهد داشت.

در این روش اطلاعات تفاوتی مشتری توسط سیستم کانبان به

مرحله قبل متقابلی شده و توسط سیستم کانویپ به مرحله اول

ارسال می‌شود.
روش جدید کنترل کارت از طریق ترکیب سیاست‌های کنترل تولید

1- دلایل ارائه مدل‌های جدید

در این مقاله، یک سیاست همبندی جدیدی طراحی می‌شود (مدل سوم) که دو پارامتر از هر مراحل، شامل تعداد کانال‌ها و مصرف ذخیره‌ها و پکیج‌های مرکز دیگر برای کل سیستم به مقدار کانال اضافه می‌شود. در این سیستم علاوه بر جدای سازی دو نفیف فوق و انتقال میزان به تمامی مراحل، به دلیل وجود پارامتر کانال‌بندی مزایایی ذیل به سیستم اضافه می‌شود. نخست این سیستم کانال‌بندی گزینی تر زیست سیستم را برای عملکرد بهتر سازی می‌کند.

2- مدل‌های پیشنهادی

2-1 مدل دو مراحل

این سیاست در زمان توقف مساحیثی می‌باشد. در صورت توفرکی بی‌سیستم، قطعات مراحل بعد از آن تسویه‌پذیری به دست می‌آیند. این تسویه‌پذیری موجب ارسال قطعات جدید به سیستم شده شده. در صورت عدم وجود کانال‌بندی سیستم تسویه شده است. به این ترتیب توقف مساحیثی های مراحل قبل موجود تجمع می‌شود. سیستم قبل از سیستم بعد کانال‌بندی می‌شود که نتیجتاً پیش‌بینی می‌باشد. به همراه به دلیل سیستم راه راه در این مقاله دو مدل پیشنهادی برگر (مدل 1) که یک کارکر کانال‌بندی را به دانسته باید مدل سوم که مدل اصلی می‌باشد است. در این مقاله مدل گرگر گرفته است. مدل سوم که مدل اصلی می‌باشد، در واقع ترکیب از 3 مدل کانال عمومی، کانال توسه‌پذیره و کانال‌بندی است.

2-2 مدل سه‌ردم

این مدل بر اساس اضافه شدن کارت کانال‌بندی به مدل کانال‌بندی توسه‌پذیره می‌باشد. در این مقاله ایشان در انتهای پایان داده شده که کارکر کانال‌بندی به مراحل اول می‌رسد و پکیج‌های مرکز دیگر کارکر کانال‌بندی به مراحل قبل می‌رسد. همچنین هنگام ورود قطعات نخستی به دلیل سیستم قطعات کل به دلیل وجود پارامتر کانال بندی مزایایی ذیل به سیستم اضافه می‌شود. نخست این سیستم کانال‌بندی گزینی تر زیست سیستم را برای عملکرد بهتر سازی می‌کند.

3- مدل خود استاندارد

این مدل بر پایه اضافه شدن کارت کانال‌بندی به مدل کانال‌بندی توسه‌پذیره می‌باشد. در این مقاله ایشان در انتهای پایان داده شده که کارکر کانال‌بندی به مراحل اول می‌رسد و پکیج‌های مرکز دیگر کارکر کانال‌بندی به مراحل قبل می‌رسد. همچنین هنگام ورود قطعات نخستی به دلیل سیستم قطعات کل به دلیل وجود پارامتر کانال بندی مزایایی ذیل به سیستم اضافه می‌شود. نخست این سیستم کانال‌بندی گزینی تر زیست سیستم را برای عملکرد بهتر سازی می‌کند.

4- مدل‌های پیشنهادی

4-1 مدل پیشنهادی 1

این مدل بر اساس اضافه شدن کارت کانال‌بندی به مدل کانال‌بندی توسه‌پذیره می‌باشد. در این مقاله ایشان در انتهای پایان داده شده که کارکر کانال‌بندی به مراحل اول می‌رسد و پکیج‌های مرکز دیگر کارکر کانال‌بندی به مراحل قبل می‌رسد. همچنین هنگام ورود_C1

5- مدل‌های پیشنهادی

5-1 مدل دو مراحل

این مدل بر اساس اضافه شدن کارت کانال‌بندی به مدل کانال‌بندی توسه‌پذیره می‌باشد. در این مقاله ایشان در انتهای پایان داده شده که کارکر کانال‌بندی به مراحل اول می‌رسد و پکیج‌های مرکز دیگر کارکر کانال‌بندی به مراحل قبل می‌رسد. همچنین هنگام ورود قطعات نخستی به دلیل سیستم قطعات کل به دلیل وجود پارامتر کانال بندی مزایایی ذیل به سیستم اضافه می‌شود. نخست این سیستم کانال‌بندی گزینی تر زیست سیستم را برای عملکرد بهتر سازی می‌کند.
روش جدید کنتل کارت از طریق ترکیب سیستم‌های کنتل تولید

مقدمه‌ای که این مدل از سیستم‌های کنتلی دیگر استفاده نموده است به شرح ذیل می‌باشد:

کاناتیزم. به منظور کنتل کل WIP کاناتی در سه‌گانه یا ۳ کانه می‌شوند کارهای ای که یک مرحله را بیش از سه سختی نزدیک به اندازه می‌رسانند. اجازه‌دهنده مرحله را به این صورت بررسی که این‌جا باشد که کارهای سنگین و همتأخیره وجود داشته باشد و سپس تفاوت به صرف دیگری وقت و در صورت مورد بودن این تفاوت، اجازه ورود کارهای باعث تفاوت است. هنگامی که مشابه WIP در بین در حال می‌باشد کاناتی زیست质یت و ستانت تابعی کل به 1+ بخش که یکی از آنها به ورود نیاز به اعمال اجازه داشته کل و مقدار به سبب مرحله فرستاده می‌شود. هنگامی که این‌ها بازی افزایش سرعت انتقال تفاوت وارد شده به سیستم و هدایت آن به تماشا مراحل می‌شود.

شکل ۹ مدل ۳ مرحله‌ای پیشنهادی سوم

۶. نتایج شبیه‌سازی

۶-۱ مفروضات برای اجرای شبیه‌سازی

۱. سیستم یک نوع قطعه تولیدی می‌باشد.

۲. هیچگونه زمان آماده‌سازی در مرحله نج وارد می‌گردد.

۳. مواد در هر مرحله به مقدار یک عدد کم شده و زمان حمل و نقل صفر می‌باشد.

۴. اطلاعات بر اساس جریان می‌پذیرند.

۵. بر اساس قطعات در تمامی منابع ها از سیستم (FIFO) تشکیل می‌شود.

۶. قطعاتی که نمی‌توانند با فاصله از طریق موجودی نهایی ارضا شود، پس از اینگونه می‌باشد.

۷. زمان متوسط بین رسیدن دو نقطه دارای توزیع نمایی با میانگین ۴ باشد.

۸. زمان متوسط توقف (MTBF) و زمان متوسط تعییر (MTTR) هر کارهای توزیع نمایی با میانگین ۴ و ۱ واحد زمانی داشته است.

3. Service level
4. Throughput rate
روش جدید کنترل کارت از طریق ترکیب سیستم‌های کنترل تولید

4-3. رتبه بندی مدل‌های پیشنهاد براساس متوسط زمان

انظار در صرف در بافرها

در رتبه بندی جدول 2 کاملا مشاهده است که در مدل‌های پیشنهادی متوسط زمان انظار در صرف به طور قابل ملاحظه‌ای کاهش پیدا کرده است.

جدول 2. رتبه بندی براساس متوسط زمان انظار در صرف

<table>
<thead>
<tr>
<th>مدل</th>
<th>متوسط زمان انظار</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 3 - 1</td>
<td>12.996</td>
</tr>
<tr>
<td>Model 2 - 1</td>
<td>13.759</td>
</tr>
<tr>
<td>Generalized Kanban-2</td>
<td>13.914</td>
</tr>
<tr>
<td>Kanban-2</td>
<td>13.926</td>
</tr>
<tr>
<td>Model 1 - 1</td>
<td>14.083</td>
</tr>
<tr>
<td>Conwip-Kanban-2</td>
<td>14.089</td>
</tr>
<tr>
<td>Generalized Kanban-1</td>
<td>14.110</td>
</tr>
<tr>
<td>Kanban-1</td>
<td>14.691</td>
</tr>
<tr>
<td>Base Stock-2</td>
<td>14.869</td>
</tr>
<tr>
<td>Conwip-Kanban-1</td>
<td>15.155</td>
</tr>
<tr>
<td>Kanban-1</td>
<td>15.462</td>
</tr>
<tr>
<td>Extended Kanban-1</td>
<td>15.519</td>
</tr>
<tr>
<td>Base Stock-1</td>
<td>16.053</td>
</tr>
<tr>
<td>Extended Kanban-2</td>
<td>16.305</td>
</tr>
</tbody>
</table>

5.1. 6.1. رتبه بندی مدل‌های پیشنهاد براساس متوسط سطح کل موجودی

در بافرها

در رتبه بندی جدول 2 کاملا مشاهده است که در مدل‌های پیشنهادی سطح موجودی بافرها به طور قابل ملاحظه‌ای کاهش پیدا کرده است.

جدول 3. رتبه بندی براساس سطح کل موجودی

<table>
<thead>
<tr>
<th>مدل</th>
<th>مجموع بافرها</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 3 - 1</td>
<td>17598.000</td>
</tr>
<tr>
<td>Model 1 - 1</td>
<td>18107.000</td>
</tr>
<tr>
<td>Extended Kanban-1</td>
<td>18406.000</td>
</tr>
<tr>
<td>Model 2 - 1</td>
<td>18996.000</td>
</tr>
<tr>
<td>Generalized Kanban-1</td>
<td>19111.000</td>
</tr>
<tr>
<td>Generalized Kanban-2</td>
<td>19483.000</td>
</tr>
<tr>
<td>Conwip-Kanban-2</td>
<td>19514.000</td>
</tr>
<tr>
<td>Kanban-2</td>
<td>19581.000</td>
</tr>
<tr>
<td>Base Stock-2</td>
<td>20073.000</td>
</tr>
<tr>
<td>Extended Kanban-2</td>
<td>20240.000</td>
</tr>
<tr>
<td>CONWIP-1</td>
<td>20755.000</td>
</tr>
<tr>
<td>Kanban-1</td>
<td>21366.000</td>
</tr>
<tr>
<td>Conwip-Kanban-1</td>
<td>21376.000</td>
</tr>
<tr>
<td>Base Stock-1</td>
<td>22396.000</td>
</tr>
</tbody>
</table>

نتایج نشان می‌دهد که در جدول 1 مدل‌های بافر کنترل کارت می‌توانند بهترین عملکرد را نشان دهد.

جدول 1. مدل‌های پیشنهاد انتخاب شده براساس سطح خدمت

<table>
<thead>
<tr>
<th>مدل</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>C</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>Service level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conwip-Kanban-1</td>
<td>0.99600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanban-1</td>
<td>0.99500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanban-2</td>
<td>0.99500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Stock-1</td>
<td>0.99500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conwip-Kanban-2</td>
<td>0.99400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Kanban-2</td>
<td>0.99400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalized Kanban-1</td>
<td>0.99400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalized Kanban-2</td>
<td>0.99400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1 - 1</td>
<td>0.99400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2 - 1</td>
<td>0.99400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 3 - 1</td>
<td>0.99400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در جدول 1 محاسبه شده که در مدل‌های بافر کنترل کارت، خدمت 99% در هر روز ممکن است.

در جدول 2 محاسبه شده که در مدل‌های بافر کنترل کارت، خدمت 99% در هر روز ممکن است.
روش جدید کنترل کارخانه که از طریق ترکیب سیستم‌های کنترل تولید

DEA

5-6 رتبه بندی مدل‌های بهینه بر اساس DEA

آمار قدم برای انتخاب بهینه سیستم کنترلی تولید ارزیابی بر اساس مدل انسورس و پیترسون می‌باشد. برای این کار می‌باشد مدل‌های ورودی و خروجی را مشخص نمود که در جدول 5 معرفی شده است.

جدول 5: مفاده مدل‌های ورودی و خروجی بر اساس DEA

<table>
<thead>
<tr>
<th>منابع مدل ورودی و خروجی (TH)</th>
<th>مجموع بازه (WIP)</th>
<th>متوسط طول صف (Q)</th>
<th>متوسط زمان انتظار (T)</th>
<th>متوسط زمان انتظار (M)</th>
<th>متوسط زمان انتظار (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 6: رتبه بندی مدل‌های خروجی بر اساس DEA

<table>
<thead>
<tr>
<th>رتبه</th>
<th>اندازه کارخانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Model 3 - 1</td>
</tr>
<tr>
<td>2</td>
<td>Model 2 - 1</td>
</tr>
<tr>
<td>3</td>
<td>Model 1 - 1</td>
</tr>
</tbody>
</table>


Visual
AweSim
Slam

Auto Assess

39] پریتپرک، آ. آلن، بی. و آواگلی، جن، محصول مهندسی کامپیوتری با اپیدید، ج. ر. هنرری. م. فهیمی‌سازی کامپیوتری با نشر کتاب دانشگاهی، صفحه 53-54، 1386.

40] آزاده، م. ع.، قادی، س. ف.، همی افزار دانشگاه دانشگاه تهران، 1385.