Interpretation of Multivariate Control Chart Based on Paired Decomposition of T^2

Saeed Hafezi & Hamid Shahriari

Saeed Hafezi, student of Industrial Eng-kntu.
Hamid Shahriari, Assistance professor of Industrial Eng, kntu

Keywords

MSPC, T^2
Chart, Warning
Limits, Paired Decomposition of T^2

ABSTRACT

There are multivariate processes in which two or more quality characteristics must be controlled simultaneously. In controlling such processes, two goals must be achieved. The first one is to identify an out of control situation and the second is to determine the quality features caused the out of control signal. In this paper, both goals are investigated. In addition to the current methods used to diagnose an out of control situation, for the purpose of making the Hotelling T^2 more sensitive, the warning limits for T^2 are also defined. In determining the quality characteristics caused the out of control situation, current methods are investigated and a new procedure is suggested. Not only the new approach does not have some of the deficiencies with the current methods, but also its application is much simpler in practice. The results of simulation using the warning limits for very small shifts in process mean vector indicate that in 81% of the time, shifts are being detected. While in similar conditions, when the regular T^2 is used, only 19% of the time true signals are observed. In comparison with similar techniques, use of new procedure in detecting the quality characteristics responsible for an out of control situation identifies the shifted quality features in 76% of the time. While in existing methods at most in 64% of the time the shifted quality characteristics are detected.

© 1388 شماره 1 (نشريه بين الملل مهندسي صناعي و مديريت توليد)
یک مقدمه

مسائلی که در اینجا مطرح می‌شود، معمولاً مربوط به تجزیه و تحلیل فراوانی‌ها می‌باشد. این مقاله به‌عنوان یک نمونه از این نوع مقالات درج می‌شود.

1. Multivariate Statistical Process Control

2. Multivariate Exponentially Weighted Moving Average

3. Multivariate Cumulative Sum

مقدمه

عملکرد مورد استفاده در کنترل توزیعهای متغیرهای برابر پیش‌بینی می‌شود. معمولاً می‌توان از مدل‌های تجزیه و تحلیل فراوانی‌ها استفاده کرد.

بررسی نمودار کنترل چند متغیره بر اساس تجزیه زوجی آماره T^2

در مطالعه فوق، روش‌های مختلف تجزیه و تحلیل فراوانی‌ها با استفاده از متغیرهای مختلف مورد بررسی قرار گرفته. در اینجا، مدل T^2 به عنوان یکی از روش‌های شناخته‌شده در تجزیه و تحلیل فراوانی‌ها مورد بررسی قرار گرفته است.

بنابراین، در این مقاله، به بررسی مدل T^2 و آنالیز دقیق مشخصه‌های اصلی متغیرهای متغیرهای برابر پیش‌بینی می‌شود.
تفسیر نمودار کنترل چند متغیره بر اساس تجزیه زوجی آماره T^2 در آماره‌های مکعبی مانند MCUSUM و MEWMA استفاده می‌گردد. در محاسبه آماره در نظر گرفته می‌شوند. مقادیر Rehmer و Hotelling T^2 نسبت به نمودارهای گذشته در فرآیند حساسیت بیشتری دارند. در Hotelling T^2 عمل می‌کنند. بنابراین نمودار حساسیت شناسایی تغییرات گوشه‌های دیگری استفاده می‌کنند. حساسیت بیشتری در کنترل نمودارهای تقصیرات تأکید می‌شود. به دلیل ویژگی‌ها، حساسیت بیشتری در کنترل نمودارهای تقصیرات تأکید می‌شود. حساسیت بیشتری در کنترل نمودارهای تقصیرات تأکید می‌شود. حساسیت بیشتری در کنترل نمودارهای تقصیرات تأکید می‌شود.
تنقیح نمونه کontل چند متغیره بر اساس تجزیه مدلی آماره T^2

ارائه مشاهده که این افزایش تعادل مشخصتهای کیفی، کارایی آنها کاهش می‌یابد [4]. از آن جا که روش معرفی‌شده همان یک روش چند متغیره می‌باشد و در این مقاله دارند، مختصاً انتخاب آن بروز می‌شود [4].

در روش که همکاران برای کشف مشخصتهای کیفی معرفی‌شده T^2, این روش چند متغیره مستقل که هر یک توصیفی کننده به‌کار می‌رود مشخصه کیفی می‌باشد و تشکیل می‌شود.

این روش آماره T^2 به صورت زیر به p جزء متعادل شکسته می‌شود:

$$T^2 = T^2_1 + T^2_2 + \ldots + T^2_{p-1} = T^2_0 + \sum_{j=1}^{p-1} X_{ij}^2$$

رابطه فوق ممکن است برای توصیف مدل مربوط به درون و بین‌داده‌های متغیر، امکان‌پذیر به طوری که توان این رابطه در اختیار یک نظریه جبرالاً قرار گرفته است. به طوری که نکته زیر این منطق بردار مشاهده شده که X و عبارات کلی به‌کار گرفته در (جزء دوم) که شرطی نیست که به صورت زیر تعیین می‌شود:

$$T^2_i = \left(\frac{x_i - \bar{X}}{s_i} \right)^2$$

که در آن:

$$T^2_{j+1,j-1} = \frac{(x_i - \bar{X}_{j+1,j-1})^2}{s^2_{j+1,j-1}}$$

همانطور که مشاهده کردیم نیاز به ارائه این نیاز به
1- اگر $r_{i,j} > \rho$ و $T_{i,j}^2 > q_1$, $T_{i,j}^2 > q_1$ با توجه به آمار T^2 با سعی برزند، می‌توان نشان داد که متغیر مشخصه کیفی آمار T^2 به سعی برزند. منظور برزند، T^2 به سعی برз
در حالی‌های مطرح شده، فرضیت ۱ (p) و q1، q2 و ρ در هر یک از محاسبه‌های باید از نظر احتمال‌ باشد. محاسبه تعداد این‌ها به‌طور صحیح در نظر گرفته شده و بر اساس رابطه زیر محاسبه می‌شود:

\[q_i = \frac{2p_i}{q_1} \times 100 \]

که در آن \(\rho \) مقدار حداقل ضربه‌های متغیرهایی است که برای تعیین مقدار \(\rho \) تعیین می‌شود. \(\rho \) باید دو عدد در مقدار \(q_1 \) باشد.

به صورت زیر بررسی نشان‌دهنده محاسبه می‌شود:

\[q_i = \frac{2p_i}{q_1} \]

در تحقیقات تحلیلی \(T_0 \) به میزان این‌ها به صورت زیر محاسبه می‌شود:

\[q_i = \frac{2p_i}{q_1} \]
تفسير نمودار کنترل چند متغیره بر اساس تجزیه زوجی آماره T^2

مقدار q_1 در نظر می گیریم. تحلیل حالت‌های مختلف ایجاد شده در وضعیتی که $q_1 < q_2$ باشد نیز مشابه حالت قبل است.

مثال

برای درک بهتر روش جدید ارائه شده، مثالی که شامل پنج متغیر کوک (K) (5/3) در میانگین مشخصه‌های کیفی سوم و پنجم از نمونه 24، نمودار کنترل شکل 3 حاصل شده است:

$$T = \begin{bmatrix} 13.48 & 10.06 & 9.51 & 4.77 \\ 0.12 & 9.54 & 5.40 & 2.29 & 7.67 \\ 10.06 & 5.40 & 19.62 & 8.06 & 1.77 \\ 9.51 & 2.29 & 8.06 & 14.13 & 5.57 \\ 4.77 & 7.67 & 1.77 & 5.57 & 17.52 \end{bmatrix}$$

$$\bar{X} = \begin{bmatrix} 24.814 \\ 59.911 \\ 41.293 \\ 100.29 \\ 80.361 \end{bmatrix}$$

ماتریس همبستگی (R) نیز به صورت زیر حاصل می شود:

$$R = \begin{bmatrix} 1 & 0.011 & 0.618 & 0.689 & 0.31 \\ 0.011 & 1 & 0.395 & 0.197 & 0.593 \\ 0.618 & 0.395 & 1 & 0.484 & 0.096 \\ 0.689 & 0.197 & 0.484 & 1 & 0.354 \\ 0.31 & 0.593 & 0.096 & 0.354 & 1 \end{bmatrix}$$

حدود کنترل نمودار به صورت زیر محاسبه می گردد:

$$UCL = \frac{m(n+1)(n-1)}{mn-m-p+1} F_{a,p,m-p+1} = \frac{S(26)(3)}{100-25-5+1}$$

$$UCW = \frac{S(26)(3)}{100-5-5+1}$$

$$UCW = \frac{S(26)(3)}{100-25-5+1}$$

مقدار T^2 برای نمودار نتیجه شده محاسبه و بر روی نمودار کنترل شکل 3 رسم شده است.
نتایج چکیده
روش جدید ارائه شده در این مقاله برای تعیین مشخصه‌های کیفی عامل انحراف در نمودار کنترل T^2، به‌عنوان نمایانگر ارائه شده، توسط تهیه‌کننده کاربرد آن در عمل سیستم آسان و مفید می‌باشد. زیرا برخلاف نمودار T^2، نمودار جدید می‌تواند نتایج به‌سادگی امکان‌پذیر است. نتایج تحقیق حاصل از این تحقیق حاصل از مطالعه روش‌های قبلی روش‌های گرفته شده برای مشخصه‌های کیفی عامل انحراف از این عملکرد نشان می‌دهد که تغییر این دو مشخصه کیفی در یک جهت بوده است.

6. ارزیابی روش جدید با استفاده از داده‌های شیب‌سازی

برای بررسی کارایی روش جدید کنترل مشخصه‌های کیفی T^2، در این مقاله با استفاده از داده‌های ساخته‌شده در سال 1383، برای سه صنف مشخصه‌های کیفی به‌عنوان تقریر کاربرد این روش برای سه طبقه ذکر شده است. نتایج حاصل از این تحقیق نشان می‌دهد که استفاده از روش جدید کنترل مشخصه‌های کیفی در صنایع مختلف می‌تواند به کاهش شیب‌سازی و بهبود کیفیت کارخانجات کمک کند.

مراجع

