Outsourcing in Parallel Machine Scheduling

E.mardan, M.S. Amalnik & F.Jolai

Ehsan mardan, MS Student of Industrial Engineering Department, College of Engineering, University of Tehran
Mohsen Sadegh Amalnik, Assistant Professor of Industrial engineering Department, college of engineering, University of Tehran
Fariborz Jolai, Associate Professor of Industrial Engineering Department, College of Engineering, University of Tehran

Keywords
Parallel Machine Scheduling, Outsourcing,
Mathematical Modeling,
Tabu Search, PSO

ABSTRACT
This paper considers a parallel machine scheduling problem with outsourcing allowed. The objective of this problem is the combination of makespan and Outsourcing costs. In order to solve the problem, A mathematical model is proposed. Because of high computational time of mathematical model a Tabu search and PSO methods are proposed to solve the problem.

© 2014 IUST Publication, IJIEPM. Vol. 25, No. 1, All Rights Reserved
برونسپاری در مسئله ماشینهای موازی

احسان مردان، محسن صادق عمل‌نیک و فریبرز جولای

چکیده:

این تحقیق به بررسی مسئله زمان‌بندی ماشینهای موازی با امکان برونسپاری می‌پردازد. با توجه به پیش‌بینی‌های حرکتی و رفتار واقعی دستگاه‌ها در تولید، کاهش دوره عملیاتی و افزایش کارایی راه‌حل‌های جدیدی در حوزه منابع دارای مکانیکی و سیستم شناختی از اهمیت بالایی دارد. در این تحقیق، مسئله مورد بررسی در این تحقیق این است که مدل مکانیکی زمان‌بندی ماشینهای موازی در ارتباط با چگونگی زمان‌بندی گروهی از کارها از روی تعیین اثر بهبود جواب‌های مربوط به حل مسئله مورد بررسی قرار می‌گیرد.

کلمات کلیدی:
زمینه‌بندی ماشینهای موازی، برونسپاری، مدل ریاضی، جستجوی ممنوع، بهینه‌سازی ذرات

1. مقدمه

مسئله زمان‌بندی ماشینهای سیستم‌های غنی و مناسب برای تحقیق است که کاربردهای فراوانی در تولید، پیشفینانی، معماری کامپیوتر و مانند آن را به همراه خود خواهند داشت. حوزه مورد بررسی در این تحقیق مسئله‌ها و مدل‌های مربوط به حل مسئله برونسپاری می‌باشد. زمان‌بندی ماشینهای موازی در ارتباط با چگونگی زمان‌بندی گروهی از کارها از روی تعیین اثر بهبود جواب‌های مربوط به حل مسئله مورد بررسی قرار می‌گیرد.

احسان مردان (ehs_mardan_63@yahoo.com)
محسن صادق عمل‌نیک (amalnick@ut.ac.ir)

*نویسنده مسئول مقاله دکتر فریبرز جولای (fjolai@ut.ac.ir)

تحلیل داده‌های مربوط به مسئله مورد بررسی با استفاده از جواب‌های اولیه راه‌حلهای پیشنهادی به حل مسئله مورد بررسی کاربرد مدل‌های سیستم‌های موازی را به همراه خواهد داشت.

*ISSN: 2008-4870
http://IJIEPM.iust.ac.ir/
 therapeutic strategies and genetics.

- Traditional Tabu Search
- Advanced Planning and Scheduling
- Due date

...
بی‌همچینی در این مقاله جهت افزایش اطمینان کارآیی چنین زنجیره‌ی تأمین ارائه‌شده است. هم‌فاضلی که بیان شده در زمان‌بندی‌های امکان‌پذیر برونسپاری یا صورت بسیار محدود و نتیجه‌ای نخستین مفهوم مورد بررسی گرفته‌است. لذا در این منتails خواهان شد بررسی مسئله‌ی امکان‌پذیری برونسپاری خواهیم پرداخت که تا کنون مورد بررسی محکفه‌ای در هرگاه سفارش‌گیران سازمانی در در مورد سازمانی و یا کاربردها با تابع خواهان‌های برونسپاری برونسپاری در مسئله ماشین‌های موازی احسان مردان، محسن صادق عمل نیک و فریبرز جولای

نشریهٔ بین‌المللی مهندسی صنایع و مدیریت تولید، خرداد 1393- جلد 25- شماره 1

۷۶

برونسپاری در مسئله‌ی ماهین‌های موازی

Transaction cost theory

Resource-base
برونسپاری در مسئله ماشین‌های موازی

احسان مردان، محسن صادق عمل نیک و فردیز جوادی

(1)

Subject to:

\[\sum_{k=1}^{K} x_{ijk} \leq 1, \quad j = 1, \ldots, N, \quad i = 1, \ldots, K \]

(2)

\[\sum_{i=1}^{N} x_{ijk} = y_{jk}, \quad j = 1, \ldots, N, \quad k = 1, \ldots, K \]

(3)

\[\sum_{i=1}^{N} x_{ijk} \leq z_{ij}, \quad j = 1, \ldots, N, \quad k = 1, \ldots, K \]

(4)

\[\sum_{j=1}^{N} y_{jk} = 1 - z_{ij}, \quad j = 1, \ldots, N \]

(5)

\[\sum_{j=1}^{N} x_{ijk} = 1 - z_{ij}, \quad j = 1, \ldots, N \]

(6)

\[C_j + M(1 - x_{ijk}) \geq C_i + P_j, \quad C_0 = 0, \quad j = 1, \ldots, N, \quad i \neq j, \quad k = 1, \ldots, K \]

(7)

\[C_i \geq z_{ij} \times L_i, \quad i = 1, \ldots, N \]

(8)

\[\sum_{j=1}^{N} z_{ijk} \times a_j \leq B \]

(9)

مدل ریاضی

روش حل

همانطور که در به‌پیش‌آمده دیده شد مدل‌های ریاضی برای بررسی زمان‌بندی‌های موازی ارائه شده و در نهایت به‌کار بردن حل به‌صورت اندازه‌گیری‌های مناسب را با دنبال‌داری از چنین کرده‌اند.

به‌جز تابع هدف استفاده کردیم.

\[\delta \left(\frac{\max_{w} C_i - \text{OPT}_{\text{scheduling}}}{\min \{ \text{OPT}_{\text{scheduling}}, \text{OPT}_{\text{outsourcing}} \} + 1 - \delta} \right) \]

به‌عنوان مقیاس‌گیری تابع هدف از

\[C_j + M(1 - x_{ijk}) \geq C_i + P_j, \quad C_0 = 0, \quad j = 1, \ldots, N, \quad i \neq j, \quad k = 1, \ldots, K \]

\[C_i \geq z_{ij} \times L_i, \quad i = 1, \ldots, N \]

\[\sum_{j=1}^{N} z_{ijk} \times a_j \leq B \]

\[x_{ijk}, y_{jk} \geq 0 \text{ or } 1; \quad C_i \geq 0, \quad j = 1, \ldots, N, \quad i = 0, \ldots, N, \quad k = 1, \ldots, K \]

نتیجه‌ی بین‌المللی مهندسی صنایع و مدیریت تولید، خرداد ۱۳۹۲- جلد ۲۵- شماره ۱
برونسپاری در مسئله مانیفسته‌های وزی

کارهای برونسپاری شده با توجه به نسبت تعریف شده در بالاحکاری به داخل کارهایی که به وسیله‌ی برداشتن شونده بر اساس لشگر تیپ می‌شوند. این داده است که این رویه برداشته‌ای است. مراحل بدست آمده جواب‌های اولیه در زیر آمده است:

$$i = 1, 2, \ldots, N$$

$$\delta_{i} = \frac{p_{i}}{\sum_{j=1}^{N} p_{j}}$$

$$X = \begin{cases} \text{نرمال} & 0.2 \\ \text{یکندا و دوی جواب‌های کننده} & 0.1 \end{cases}$$

$$Y = \text{دوم‌کننده و دوی جواب‌های کننده}$$

$$K = \text{کارکردی لپ‌ک زمان‌یابی LPT}$$

روش جستجوی منفی در محیط ماشین‌های موازی

همانطور که در قبل نیز گفته شدند، به منظور حل مسئله ماشین‌های موازی با ایجاد برودسپاری به این‌ها روی در ایجاد مراست مصرفی برای جستجوی منفی در نقاط بهینه مواکب به‌طور موردی لیست مصرفی با دان‌نمایی تند این‌ها قرار می‌دهد. این‌ها منفی از این‌ها می‌گردد که جستجوی منفی اجازه دارد که به ما یک مسئله به‌طور کلی می‌تواند در یک سری از توان‌های قابل‌توجه دستور بهره‌برداری باشد.

شکل: 1 نمایش جواب مشاهده

$$\text{PMSPCOM}$$

$$n_{K}$$

$$k = \{1, 2, \ldots, K\}$$

$$\text{جواب اولیه}$$

$$\text{روش جستجوی منفی با کنکار ماشین‌های منفی}$$

Machine 1:

Machine i:

Machine K:

Machine K+1:

شکل: 1 نمایش جواب مشاهده

4 Robust
5 Parallel Machine Scheduling Problem Considering Outsourcing Model
6 Hill-climbing
7 Near Optimal
8 Makespan
شامل همه کارهای باشند و نمایشگر یک جواب است. بعد از اندازه‌گیری ایران‌های حرکت بردار هاله‌ای که اکثری‌تیم کرادن مجموعه مساحتی که یک بردار \((i, k)\) باشد مجموعه مساحتی که اکثری‌تیم \((i, k)\) باشد از بندکن و در مسئله ماشین‌های موازی

4-1-1 چاپ‌سازی کار برپورتی نشده نکته چه چه این ایران‌های کار برپورتی نشده را از یک کار و تایید آن را مجموعه کارهای ماشین‌های دو جهته می‌دهد.

4-1-2 چاپ‌سازی کار برپورتی نشده دو جهته این ایران‌های دو کار را به طور گروهی می‌کند. این ایران‌های دو کار را به طور گروهی می‌کن...
برونسپاری در مسئله ماشین‌های موازی

به همان‌طورکه می‌دانید در مسیریابی ماشین‌های موازی چهارهای می‌پایست. روی کار آنها اثبات داده شده است که به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

روش دوم:
در این روش به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

روش سوم:
در این روش به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

روش چهارم:
در این روش به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

ثابت است این روش‌ها برای محیط‌ها در مسئله روش جستجوی بهینه‌سازی در مسیریابی ماشین‌های موازی می‌پایست. های روش‌های می‌پایست.

2-1. نمایش جواب

همان‌طورکه می‌دانیم در مسیریابی ماشین‌های موازی کارهای ساده و بانک‌های مناسبی دارند که به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

شکل 2. نمایش جواب روش جستجوی بهینه‌سازی در محیط ماشین‌های موازی

پس از آنکه به همان‌طورکه می‌دانید در بخش روش جستجوی بهینه‌سازی در مسیریابی ماشین‌های موازی می‌پایست. به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

2-2. تولید جواب اولیه

به همان‌طورکه می‌دانید در بخش روش جستجوی بهینه‌سازی در مسیریابی ماشین‌های موازی می‌پایست. به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

روش اول:
به همان‌طورکه می‌دانید در بخش روش جستجوی بهینه‌سازی در مسیریابی ماشین‌های موازی می‌پایست. به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

\[V_{d}^{+1} = w_{1}V_{d} + c_{1}r_{1}(p_{local} - x) \]
\[V_{d}^{+1} = x_{d} + V_{d}^{+1} \]

با توجه به فرمول‌های (1) و (2) واضح است که این روش به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

2-3. تولید جواب هم‌ساز

به همان‌طورکه می‌دانید در بخش روش جستجوی بهینه‌سازی در مسیریابی ماشین‌های موازی می‌پایست. به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

روش اول:
به همان‌طورکه می‌دانید در بخش روش جستجوی بهینه‌سازی در مسیریابی ماشین‌های موازی می‌پایست. به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

\[V_{d}^{+1} = w_{1}V_{d} + c_{1}r_{1}(p_{local} - x) \]
\[V_{d}^{+1} = x_{d} + V_{d}^{+1} \]

با توجه به فرمول‌های (1) و (2) واضح است که این روش به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

2-3. تولید جواب هم‌ساز

به همان‌طورکه می‌دانید در بخش روش جستجوی بهینه‌سازی در مسیریابی ماشین‌های موازی می‌پایست. به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.

روش اول:
به همان‌طورکه می‌دانید در بخش روش جستجوی بهینه‌سازی در مسیریابی ماشین‌های موازی می‌پایست. به‌منظور بهینه‌سازی این ماشین‌ها به‌کار برده می‌شود. از این رو در زیر به‌جای انرژی بهینه‌سازیی در روی‌های موازی، در اینجا می‌توان یک مطالعه انجام داد.
برای این منظور به اینجا سه ایرانی جمع، بنگاه و تریلی
می‌پردازند تا نیازی به ایجاد روش جستجو بهینه‌تر در بزاحی
ایرانی‌ها را که وضعیت مشابه دارند عیانی گی می‌کنند. سپس برای هر سایر
کارهای محاسبات انجام شده به نظر می‌رسد که اگر با احتمال ۰/۰
وضعیت توانایی را به عنوان خروجی در نظر گیریم، با توجه به
همزمان برونپاری:

\[\begin{align*}
\gamma_{t+1}^+ &= \gamma_0^+ \left((R_1 \times \text{Localmax}^+ \times \gamma_0^+) \times (R_2 \times \text{Globalmax}^+ \times \gamma_0^+) \right) \\
\gamma_{t+1}^- &= \gamma_0^- \times (R_1 \times \gamma_0^+) \times (R_2 \times \gamma_0^+)
\end{align*} \]

\[(4) \]

در بیان‌های همان‌کلاسیک به منظور تولید مستند آزمایش
زاویه‌بازی و انتخاب استفاده کردیم.

\[\text{زمان برونپاری: } l_t \sim \gamma_{t+1}^+ \left(\text{average} \left(50, \text{diversion} \left(20 \right) \right) \right) \]

\[\text{زمان تحولی: } i_t \sim \gamma_{t+1}^+ \left(\text{average} \left(10, \text{diversion} \left(10 \right) \right) \right) \]

\[\text{بودجه برونپاری: } B \sim Unif \left(0.6 \times \left(\frac{\sum_{j=1}^{n} p_j}{K} \right), 1.25 \times \left(\frac{\sum_{j=1}^{n} p_j}{K} \right) \right) \]

برای این منظور به ایجاد سه ایرانی جمع، بنگاه و تریلی
می‌پردازند تا نیازی به ایجاد روش جستجو بهینه‌تر در بزاحی
ایرانی‌ها را که وضعیت مشابه دارند عیانی گی می‌کنند. سپس برای هر سایر
کارهای محاسبات انجام شده به نظر می‌رسد که اگر با احتمال ۰/۰
وضعیت توانایی را به عنوان خروجی در نظر گیریم، با توجه به
همزمان برونپاری:

\[\begin{align*}
\gamma_{t+1}^+ &= \gamma_0^+ \left((R_1 \times \text{Localmax}^+ \times \gamma_0^+) \times (R_2 \times \text{Globalmax}^+ \times \gamma_0^+) \right) \\
\gamma_{t+1}^- &= \gamma_0^- \times (R_1 \times \gamma_0^+) \times (R_2 \times \gamma_0^+)
\end{align*} \]

\[(4) \]

برای این منظور به ایجاد سه ایرانی جمع، بنگاه و تریلی
می‌پردازند تا نیازی به ایجاد روش جستجو بهینه‌تر در بزاحی
ایرانی‌ها را که وضعیت مشابه دارند عیانی گی می‌کنند. سپس برای هر سایر
کارهای محاسبات انجام شده به نظر می‌رسد که اگر با احتمال ۰/۰
وضعیت توانایی را به عنوان خروجی در نظر گیریم، با توجه به
همزمان برونپاری:

\[\begin{align*}
\gamma_{t+1}^+ &= \gamma_0^+ \left((R_1 \times \text{Localmax}^+ \times \gamma_0^+) \times (R_2 \times \text{Globalmax}^+ \times \gamma_0^+) \right) \\
\gamma_{t+1}^- &= \gamma_0^- \times (R_1 \times \gamma_0^+) \times (R_2 \times \gamma_0^+)
\end{align*} \]

\[(4) \]

برای این منظور به ایجاد سه ایرانی جمع، بنگاه و تریلی
می‌پردازند تا نیازی به ایجاد روش جستجو بهینه‌تر در بزاحی
ایرانی‌ها را که وضعیت مشابه دارند عیانی گی می‌کنند. سپس برای هر سایر
کارهای محاسبات انجام شده به نظر می‌رسد که اگر با احتمال ۰/۰
وضعیت توانایی را به عنوان خروجی در نظر گیریم، با توجه به
همزمان برونپاری:

\[\begin{align*}
\gamma_{t+1}^+ &= \gamma_0^+ \left((R_1 \times \text{Localmax}^+ \times \gamma_0^+) \times (R_2 \times \text{Globalmax}^+ \times \gamma_0^+) \right) \\
\gamma_{t+1}^- &= \gamma_0^- \times (R_1 \times \gamma_0^+) \times (R_2 \times \gamma_0^+)
\end{align*} \]

\[(4) \]
ب) توجه به اینکه مجلس مورد بررسی گرفته است، مدل رایانه‌ای Lingo نمایش می‌دهد.

پژوهش‌های مناسب مورد بررسی و حل قرار گرفته است، با توجه به اینکه مجلس مورد بررسی گرفته است، مدل رایانه‌ای Lingo نمایش می‌دهد.

جدول 3. تأثیر عددی با $\delta = 0.25$

<table>
<thead>
<tr>
<th>عدد جارب</th>
<th>تابع</th>
<th>PSO</th>
<th>اثرین رشته</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.87%</td>
<td>2.94%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
</tr>
<tr>
<td>20</td>
<td>0.42%</td>
<td>2.94%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
</tr>
<tr>
<td>30</td>
<td>0.42%</td>
<td>2.94%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
</tr>
<tr>
<td>40</td>
<td>0.42%</td>
<td>2.94%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
</tr>
<tr>
<td>50</td>
<td>0.42%</td>
<td>2.94%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
</tr>
<tr>
<td>60</td>
<td>0.42%</td>
<td>2.94%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
</tr>
</tbody>
</table>

جدول 4. تأثیر عددی با $\delta = 0.5$

<table>
<thead>
<tr>
<th>عدد جارب</th>
<th>تابع</th>
<th>PSO</th>
<th>اثرین رشته</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.87%</td>
<td>2.94%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
</tr>
<tr>
<td>20</td>
<td>0.42%</td>
<td>2.94%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
</tr>
<tr>
<td>30</td>
<td>0.42%</td>
<td>2.94%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
</tr>
<tr>
<td>40</td>
<td>0.42%</td>
<td>2.94%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
</tr>
<tr>
<td>50</td>
<td>0.42%</td>
<td>2.94%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
</tr>
<tr>
<td>60</td>
<td>0.42%</td>
<td>2.94%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
<td>3.21%</td>
<td>2.43%</td>
<td>1.52%</td>
</tr>
</tbody>
</table>
جدول ۵. نتایج عددی با $\delta = 0.75$

<table>
<thead>
<tr>
<th>عدد جوار</th>
<th>δ</th>
<th>Aver. Gap(%)</th>
<th>Max. Gap(%)</th>
<th>Aver. time/sec</th>
<th>Max. time/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰۰</td>
<td>۱۰۰۰۰</td>
<td>۱۰۰۰۰۰۰</td>
<td>۱۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۸۰</td>
<td>۱۸۰۰</td>
<td>۱۸۰۰۰</td>
<td>۱۸۰۰۰۰۰</td>
<td>۱۸۰۰۰۰۰۰۰</td>
<td>۱۸۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۶۰</td>
<td>۶۰۰</td>
<td>۶۰۰۰۰</td>
<td>۶۰۰۰۰۰۰۰</td>
<td>۶۰۰۰۰۰۰۰۰۰</td>
<td>۶۰۰۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۴۰</td>
<td>۴۰۰</td>
<td>۴۰۰۰۰</td>
<td>۴۰۰۰۰۰۰۰</td>
<td>۴۰۰۰۰۰۰۰۰۰</td>
<td>۴۰۰۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>۲۰۰</td>
<td>۲۰۰۰۰</td>
<td>۲۰۰۰۰۰۰۰</td>
<td>۲۰۰۰۰۰۰۰۰۰</td>
<td>۲۰۰۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰۰</td>
<td>۱۰۰۰۰</td>
<td>۱۰۰۰۰۰۰۰</td>
<td>۱۰۰۰۰۰۰۰۰۰</td>
<td>۱۰۰۰۰۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

برونسپاری در مسئله ماشین‌های موازی

همانطور که از جداول بالا من очه است میزان اختلاف تابع هدف روش‌های متاهوریستیک و کاهش مدل رایانی با اکتشاف ابعاد مسئله کاهش یافته با همچنین روش جستجوی بهینه در نسبت به روش جستجوی متنوع به طور مستقیم جواب‌هایی با 1.55% کیفیت بهتر ارائه می‌کند به نظر می‌رسد که اکتشافه روش جستجوی بهینه در نسبت به روش جستجوی متنوع با بهینه سازی و منطقی باید. به نظر روش‌های مختلف برداشتی شدن مسئله در زمینه حل مسئله با روش‌های مختلف پرداختنی. شکل ۳. نشان دهنده زمان صرف شده برای مسئله با ابعاد مختلف می‌باشد. همانطور که دیده می‌شود زمانی که برای حل مسئله به طور دقیق مورد نیاز است با اکتشاف تعداد کارها به هدیش افزایش می‌یابد.

شکل ۳. زمان حل مسئله ماشین‌های موازی با اکتشاف برونسپاری

این در حالی است که زمان مورد نیاز برای حل مسئله از طریق روش‌های متاهوریستیک به‌دست آمده نیست. با توجه به زمان صرف شده اکتشافه روش‌های متاهوریستیک کاملی معقotton به در نظر می‌رود. اکتشاف به همگامی که ابعاد کارها بیشتر می‌شود بسیار مشاهده می‌گردد. با ابعاد بزرگتر از ۱۰۰ با اکتشافه روش دقیق‌کاری غیر معقول به در نظر می‌رود.

این میزان کیفیت جواب بیشتر می‌باشد در انتخاب نوع روش حل می‌توان به اینکه کیفیت روش‌های متاهوریستیک ایندی شده در این تحقیق با اکتشاف ابعاد مسئله بهبود می‌یابد. می‌توان برای مسائل با ابعاد بزرگ از روش‌های متاهوریستیک استفاده نمود. این امر در شکل نشان داده شده است.

شکل ۴. آنالیز انحراف از جواب دقیق

<table>
<thead>
<tr>
<th>عدد جوار</th>
<th>δ</th>
<th>Aver. Gap(%)</th>
<th>Max. Gap(%)</th>
<th>Aver. time/sec</th>
<th>Max. time/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰۰</td>
<td>۱۰۰۰۰</td>
<td>۱۰۰۰۰۰۰</td>
<td>۱۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۸۰</td>
<td>۱۸۰</td>
<td>۱۸۰۰۰</td>
<td>۱۸۰۰۰۰۰</td>
<td>۱۸۰۰۰۰۰۰۰</td>
<td>۱۸۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۶۰</td>
<td>۶۰۰</td>
<td>۶۰۰۰۰</td>
<td>۶۰۰۰۰۰۰۰</td>
<td>۶۰۰۰۰۰۰۰۰۰</td>
<td>۶۰۰۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۴۰</td>
<td>۴۰۰</td>
<td>۴۰۰۰۰</td>
<td>۴۰۰۰۰۰۰۰</td>
<td>۴۰۰۰۰۰۰۰۰۰</td>
<td>۴۰۰۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>۲۰۰</td>
<td>۲۰۰۰۰</td>
<td>۲۰۰۰۰۰۰۰</td>
<td>۲۰۰۰۰۰۰۰۰۰</td>
<td>۲۰۰۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰۰</td>
<td>۱۰۰۰۰</td>
<td>۱۰۰۰۰۰۰۰</td>
<td>۱۰۰۰۰۰۰۰۰۰</td>
<td>۱۰۰۰۰۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>
برونسپاری در مسئله ماشین‌های موازی

احسان مردان، محسن صادق عمل‌نیک و فریبرز جولای

همچنین به منظور اثبات کارایی روش هیوریستیک مورد استفاده برای ایجاد جواب اولیه به ایجاد مسئله نمونه با ابعاد ۴۰۰ و ۲۰۰۰ کار بردارده ایم. به منظور تست کارایی این روش به فاکتور زیر تعریف شدند.

جدول ۵. تأثیر روش هیوریستیک در تولید جواب اولیه در روش های PSO و TS

<table>
<thead>
<tr>
<th></th>
<th>PSO</th>
<th>Tabu Search</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ = 0.25</td>
<td>δ = 0.5</td>
</tr>
<tr>
<td>Number of jobs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>۴۶.۲۱%</td>
<td>۴۳.۵۳%</td>
</tr>
<tr>
<td>۵۰</td>
<td>۵۱.۲۵%</td>
<td>۴۷.۳۲%</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۶۳.۱۹%</td>
<td>۴۷.۳۲%</td>
</tr>
<tr>
<td>۲۰۰</td>
<td>۶۰.۱۱%</td>
<td>۴۷.۳۲%</td>
</tr>
</tbody>
</table>

مراجع

[۱] حاج شیر محمدی، علی مدیریت و کنترل پروژه، مرکز انتشارات واحد صنعتی اصفهان، ۱۳۷۸.

[۲] طارقیان، حامد رضا، برناوه رزی و کنترل پروژه‌های فراموش‌شده، ۱۳۸۸.

[۳] راهنمای گسترش دانش مدیریت پروژه، مؤسسه مدیریت پروژه PMI، ترجمه: دکتری اشتیاقی، حسین، سید حسنی، جام، سوم، ۱۳۸۰.

