Outsourcing in Parallel Machine Scheduling

E.mardan, M.S. Amalnik & F.Jolai*

Ehsan mardan, MS Student of Industrial Engineering Department, College of Engineering, University of Tehran
Mohsen Sadegh Amalnik, Assistant Professor of Industrial engineering Department, college of engineering, University of Tehran
Fariborz Jolai, Associate Professor of Industrial Engineering Department, College of Engineering, University of Tehran

Keywords
Parallel Machine Scheduling, Outsourcing, Mathematical Modeling, Tabu Search, PSO

ABSTRACT
This paper considers a parallel machine scheduling problem with outsourcing allowed. The objective of this problem is the combination of makespan and Outsourcing costs. In order to solve the problem, A mathematical model is proposed. Because of high computational time of mathematical model a Tabu search and PSO methods are proposed to solve the problem.

© 2014 IUST Publication, IJIEPM. Vol. 25, No. 1, All Rights Reserved

* Corresponding author, Fariborz Jolai
Email: fjolai@ut.ac.ir
برونسپاری در مسئله ماشینهای موازی

احسان مردان، محسن صادق عمل نیک و فریبرز جولای

چکیده

این تحقیق به بررسی مسئله زمانبندی ماشینهای موازی با امکان برنسپاری می‌پردازد. نتایج هدف مورد استفاده در این تحقیق مجموعه مکان‌کلیه مدل‌های برنسپاری است. منابع آماری مکان‌کلیه را با روش‌های رایج و روش افزایش ابعاد مسئله به شدت افزایش می‌دهند که این به افزایش محدودیت‌های برنسپاری منجر می‌شود. بهینه‌سازی ذرات مسئله برنسپاری با استفاده از تکنیک‌های برنسپاری دیده، این مسئله به بهبود جواب اولیه مورد بررسی می‌شود. تحقیقات روش بهینه‌سازی ذرات جواب اولیه را به حداقل می‌رساند.

کلمات کلیدی

زمینبندی، سفارش، برنسپاری، زمان‌بندی، بالإضافة بهینه‌سازی برنسپاری

1. مقدمه

متغیر مسئله زمانبندی ماشینهای شبکه غیرibandی از منابع تنها برای تحقیق است که کاربردهای فراوانی تولید که می‌تواند از مثال‌های زمانبندی با برنسپاری در زمان‌بندی این برنامه‌های معنوی منجر شود. هدف مورد بررسی در این تحقیق مسائلی مربوط به برنسپاری در زمان‌بندی ماشینهای موازی از ارتباط گروهی زمانبندی گروهی از کارها بر روی معادل‌سازی این اثر‌ها به منظور افزایش کارایی در مدت زمان بطور منطقی می‌باشد. مسئله ماشینهای موازی از دیدگاه تعیینی و عملی نیاز به اهمیت می‌باشد. این مقاله بر اساس نگرشی تشکیلاتی می‌باشد که در مدت مورد بهبود جواب اولیه مورد بررسی می‌شود. تحقیقات روش بهینه‌سازی ذرات جواب اولیه‌ها به حداقل می‌رساند.

کیفیت صنعتی بطور کلی از...

تاریخ وصول: 90/6/30

تاریخ تصویب: 91/4/17

احسان مردان، دانشجوی کارشناسی ارشد، گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه تهران، ehsanmardan63@yahoo.com

محسن صادق عمل نیک، استادیار گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه تهران، amalnick@ut.ac.ir

فریبرز جولای، نویسنده مسئله، دکتر فیزیک جولای، دانشکده مهندسی صنایع، دانشگاه تهران، fjolai@ut.ac.ir
که مدل جوابی با کیفیت مناسب ایجاد می‌کند. (8) بررسی مسئله انتخاب و زمان‌بندی هزمان‌های مهندسی‌های مواد به منظور کم‌ترین مجموع هزمان‌های مهندسی‌های تغییرات و هزینه برترکرد. (9) بررسی این منطقه توسط داده‌های علوم کامپیوتر از دو طرف ماشین‌های موازی احسان مردان، محسن صادق عمل‌نیک و فریبرز جالی، نشریه بین‌المللی مهندسی صنایع و مدیریت تولید، خرداد 1313-جلد 27-شماره 3.

2.4 مورر ادبیات

مطالعه در مسئله ماشین‌های موازی به‌طور کلی او مورد بررسی قرار گرفته است. بررسی‌های پیشین با این مسئله در زیر برخی از این مقالات که مورد بررسی قرار گرفته‌اند می‌باشد.

1. مزبوران (1) بررسی ساختاری مفهوم مواد با استفاده از روش بهورتیک محدودیت نشان داده می‌کند.

روش‌های جستجو محدودیت نشان داده می‌کند. (7) بررسی روش‌های جستجو محدودیت نشان داده می‌کند. (6) بررسی این مقاله در نظر گرفته شده است.

روش‌های جستجو محدودیت نشان داده می‌کند. (5) بررسی این مقاله در نظر گرفته شده است.

روش‌های جستجو محدودیت نشان داده می‌کند. (4) بررسی این مقاله در نظر گرفته شده است.

روش‌های جستجو محدودیت نشان داده می‌کند. (3) بررسی این مقاله در نظر گرفته شده است.

روش‌های جستجو محدودیت نشان داده می‌کند. (2) بررسی این مقاله در نظر گرفته شده است.

روش‌های جستجو محدودیت نشان داده می‌کند. (1) بررسی این مقاله در نظر گرفته شده است.

1. Traditional Tabu Search
2. Advanced Planning and Scheduling
3. Due date
4. Deteriorating job
5. Resource-constrained project scheduling problem
6. Makespan

نمره بین المللی مهندسی صنایع و مدیریت تولید، خرداد 1392-جلد 25-شماره 1
مقدمه

برونسپاری در مسئله ماشین‌های موازی

همچنین در این مقاله جهت ارزیابی چه اثری کارایی جنبه‌های زنجیره تأمین ارائه نشده است. همچنین بررسی‌های بسیاری محاسبه‌های تغییرات مقدار مصرف و تعداد نوشتاری مربوط به سیستم‌های متعدد بوده است. البته این که میزان حل قیمت جمعیت هر کارایی دارای بود در بعضی از این تحقیقات. بررسی‌های مناسب‌هست که مدل‌های جدیدی جزئی از این ارائه از جنگل‌ها می‌تواند به تاریخ آزمایش است که می‌تواند باعث افزایش سطح اجرای این مدل‌ها شود.

3. مدل ریاضی ماشین‌های موازی با امکان برونسپاری

مستله مردم نظر به این نشان داد که در زمان صرف همگی در سطح و سیستم‌های برون‌سپاری انجام داد و یا P_i O_i O_π π K N M

1 Transaction cost theory
2 Resource-base
برونسپاری در مسئله ماشین‌های موازی

احسان مردان، محسن صادق عمل‌نیک و فریبرز جولای

تابع هدف این مسئله از کمینه‌سازی مجموع حداکثر زمان تکمیل و هزینه برونسپاری تشکیل شده است. محدودیت‌های اول باید ماکز که اگر برونسپاری نشده باشد نهایا می‌تواند روی یک ماشین برده و در یک موقعیت برونسر. برونسر. محاسبه دوم نشان می‌دهد که یک کار از این روش با پایین‌ترین مقدار رودی قرار گیرد. محدودیت سوم نشان دهنده است که یک کار حاکم می‌تواند قبل از یک کار دیگر قرار گیرد. محدودیت چهارم و پنجم نشان دهنده است که اگر یک کار برونسپاری شود می‌تواند در داخل برونسر شود.

محدودیت ششم نشان می‌دهد که یک کار بعد از اتمام کار قبلی روی ماشینی پایاپس انجام شود. بعد از اتمام کار قبلی شروع به برونسر یک ماشین می‌کند و امکان انجام دو کار به طور همزمان روی یک ماشین وجود نخواهد داشت. محدودیت هفتم تضمین می‌کند که کاری که برونسری شده‌اند نهایا یک فلاش تحلیل می‌پایانند. محدودیت هشتم نشان می‌دهد که برونسری که مقدار محدودی دارد، می‌پایست ارضا شود. محدودیت نهم نیز ویژگی‌های متغیرهای مسئله را بیان می‌کند.

به منظور مقیاس کردن تابع هدف از

\[
\delta \left(\frac{\max C_i - \text{OPT}_{\text{scheduling}}}{\min \{ \text{OPT}_{\text{scheduling}}, \text{OPT}_{\text{outsourcing}} \}} \right) + (1 - \delta) \left(\frac{\sum (Z_i \times H_i)}{\min \{ \text{OPT}_{\text{scheduling}}, \text{OPT}_{\text{outsourcing}} \}} \right)
\]

بتای هدف استفاده کرده‌اند.

به جای تابع هدف استفاده کرده‌اند.

روش حل

همانطور که در یک باره، به دست اولیه مدل ریاضی برای مسائل زمان‌بندی ماشین‌های موازی ارائه شد با توجه به اینکه زمان حل

\[
\text{Min} \{ B \sum_{i=1}^{N} Z_i \} + (1 - \delta) \left(\frac{\sum (Z_i \times H_i)}{\min \{ \text{OPT}_{\text{scheduling}}, \text{OPT}_{\text{outsourcing}} \}} \right)
\]

Subject to:

\[
\sum_{i=1}^{N} \sum_{k=1}^{K} x_{ijk} \leq 1, \quad j = 1, ..., N, i = 1, ..., K
\]

(2)

\[
\sum_{i=1}^{N} y_{jk} \leq y_{jk}, \quad j = 1, ..., N, k = 1, ..., K
\]

(3)

\[
\sum_{i=1}^{N} x_{ijk} \leq y_{jk}, \quad i = 1, ..., N, k = 1, ..., K
\]

(4)

\[
\sum_{k=1}^{K} x_{ijk} = 1 - z_{ij}, \quad j = 1, ..., N
\]

(5)

\[
\sum_{j=1}^{N} y_{jk} = 1 - z_{ij}, \quad j = 1, ..., N
\]

(6)

\[
C_i + (1 - x_{ijk}) \geq C_i + z_{ij}, \quad i = 1, ..., N, i \neq j, k = 1, ..., K
\]

(7)

\[
C_i \geq z_{ij} \times L_i, \quad i = 1, ..., N
\]

(8)

\[
\sum_{i=1}^{N} z_{ijk} \leq B
\]

(9)
کارهای برپایی‌سازی شده با توجه به نسبت تعیین شده در بیابانی که در داخل کارهایی می‌بایست برداشته شوند اساس LPT روش چیده می‌شوند. البته (22) شان داده است که این روش‌های بازمانده‌ای مورد بررسی قرار گرفت.

مراحل بدست آوردن جواب‌های دو، در آمد است:

1. جواب اولین (Hill-climbing)، با تجربه نسبت مقدار $i = 1, 2, ..., N$ را به عنوان ورودی دریافت کند.

2. فرمول $I_i = \frac{\delta}{1-\delta} \times \frac{P_i}{K \times x_i}$ مبتنی کنید.

3. کار را بر اساس این نظریه بتوانی مقدار $X = 0.2$ بود اگر $0.1 \leq X \leq 0.2$ و گرنه 0.2. گام 3. اگر $X = 0.2$ بود اگر $0.1 \leq X \leq 0.2$ و گرنه 0.2. گام 4. داده $Y = \text{Uniform}[1, X] N$ را برای انتخاب کنید.

4. کار را بر اساس این نظریه بتوانی، مقدار $Y = \text{Uniform}[1, X] N$ را برای انتخاب کنید.

5. اعداد روش LPT پیچیده.

6. نمایش جواب PMSPCOM	extsuperscript{4} در شکل دیده می‌شود. مثال به مقدار کارهایی که در داخل کارهایی می‌بایست برداشته شوند اساس LPT روش چیده می‌شوند. البته (22) شان داده است که این روش‌های بازمانده‌ای مورد بررسی قرار گرفت.

7. نمایش جواب شدنی PMSPCOM	extsuperscript{5}

8. شکل 1. نمایش جواب شدنی

1. Robust
2. Parallel Machine Scheduling Problem Considering Outsourcing Model
3. Near Optimal
4. Makespan
5. Hill-climbing

1392- جلد 25- شماره 1
نشریه بین المللی مهندسی صنایع و مدیریت تولید. خرداد
شامل همه کارها باشد نمایشگر یک جواب است. بعد از انجام یک ابزار حرکت بردارهایی که اختیاری تغییر کرده‌اند مجموعه می‌شوند. هنگامی که بردار \((i, k)\) از مجموعه \(\mathcal{M}(i, k)\) بایک بین مجموعه \(\mathcal{M}(i, k)\) نهایت ردیابی \(\mathcal{M}(i, k)\) از بازگشت یک جواب جایگزین شده مانند \(\mathcal{M}(i, k)\) در جنگ مرحله بعدی توجه به باندهای همبسته و، جواب این را افزایش و به‌طور مطلق تعداد این نوع تغییر مقاومتی می‌کند و با یک مانند \(\mathcal{M}(i, k)\) همبسته این تغییر مقاومتی می‌کند.

این ابزار حرکت مرحله بعدی همبسته است که به‌طور مطلق تعداد این نوع تغییر مقاومتی می‌کند و با یک مانند \(\mathcal{M}(i, k)\) همبسته این تغییر مقاومتی می‌کند.

4-1-6.1-1-4 فراکسیونی انتخاب تور می‌شود.

3-4-1-4-1-3-2 ابزار حرکت رohn جواب همبسته است که به‌طور مطلق تعداد این نوع تغییر مقاومتی می‌کند و با یک مانند \(\mathcal{M}(i, k)\) همبسته این تغییر مقاومتی می‌کند.

4-1-7-4-1-7-2 ابزار حرکت رohn جواب همبسته است که به‌طور مطلق تعداد این نوع تغییر مقاومتی می‌کند و با یک مانند \(\mathcal{M}(i, k)\) همبسته این تغییر مقاومتی می‌کند.

4-1-8-4-1-8-2 جواب همبسته است که به‌طور مطلق تعداد این نوع تغییر مقاومتی می‌کند و با یک مانند \(\mathcal{M}(i, k)\) همبسته این تغییر مقاومتی می‌کند.

4-1-9-4-1-9-2 جواب همبسته است که به‌طور مطلق تعداد این نوع تغییر مقاومتی می‌کند و با یک مانند \(\mathcal{M}(i, k)\) همبسته این تغییر مقاومتی می‌کند.

4-1-10-4-1-10-2 جواب همبسته است که به‌طور مطلق تعداد این نوع تغییر مقاومتی می‌کند و با یک مانند \(\mathcal{M}(i, k)\) همبسته این تغییر مقاومتی می‌کند.

4-1-11-4-1-11-2 جواب همبسته است که به‌طور مطلق تعداد این نوع تغییر مقاومتی می‌کند و با یک مانند \(\mathcal{M}(i, k)\) همبسته این تغییر مقاومتی می‌کند.

4-1-12-4-1-12-2 جواب همبسته است که به‌طور مطلق تعداد این نوع تغییر مقاومتی می‌کند و با یک مانند \(\mathcal{M}(i, k)\) همبسته این تغییر مقاومتی می‌کند.

4-1-13-4-1-13-2 جواب همبسته است که به‌طور مطلق تعداد این نوع تغییر مقاومتی می‌کند و با یک مانند \(\mathcal{M}(i, k)\) همبسته این تغییر مقاومتی می‌کند.

4-1-14-4-1-14-2 جواب همبسته است که به‌طور مطلق تعداد این نوع تغییر مقاومتی می‌کند و با یک مانند \(\mathcal{M}(i, k)\) همبسته این تغییر مقاومتی می‌کند.
برونسپاری در مسئله ماشین‌های موازی

روش‌های برونسپاری می‌تواند در این روش کارهایی با بازی‌های برترین برخورداری را در داخل برخورد می‌کند و تعادل کارهایی را که با بیشترین زمان بردارش را دارد بهبود برخورداری می‌کند.

روش دوم:
در این روش کارهایی با کمترین زمان بردارش را در داخل برخورد کمی و تعادل کارهایی را که در برخورد از کبیرترین زمان بردارش را دارد بهبود برخورداری می‌کند.

روش سوم:
در این روش کارهایی با کمترین زمانهای برخورداری را در داخل برخورد کمی و تعادل کارهایی را که در برخورد از کبیرترین زمان برخورداری شده در این روش باید از این برخورد تعادل کارهایی را تعریف کرده و تعادل ماشین‌های مانند و مانند پیمان کنند.

روش نهایی:
این روش به طور زندگی به ایجاد جواب‌های اولیه می‌پردازد. در این روش تغییر کارهایی با برخوردی شدن آن در زمان قدیم به‌طور نیم‌جدید. پس در این روش باید داشته که در تئوری روش‌های با کمترین هزینه برخورداری کل از بودجه برخورداری بیشتر نشود.

شکل 3- نمایش جواب‌های محیط‌های موازی

Hamantooreh که در این مسئله محیط‌های موازی کارهایی را به‌طور راهبردی در تعدادی انجام می‌شود. برای این منظور به این تعداد کارهایی را که در محیط‌های موازی پرداخته می‌شود. در این همان‌طور که می‌داند در محیط‌های موازی کارهایی به‌طور اولیه است. یک نمونه از این روش محیط جواب‌هایی به‌طور اولیه در

روش نهایی:
همان‌طور که در حال حاضر در محیط‌های موازی کارهایی به‌طور نهایی است. به این تعداد کارهایی را که در محیط‌های موازی پرداخته می‌شود. برای این منظور تکن پرداخت غیرملایمی در محیط‌های موازی مطابق با تعداد کارهایی به‌طور نهایی است.

4-2 نمایش جواب

روش نهایی:
به این روش به‌طور زندگی به ایجاد جواب‌های اولیه می‌پردازد. در این روش تغییر کارهایی با برخوردی شدن آن در زمان قدیم به‌طور نیم‌جدید. پس در این روش باید داشته که در تئوری روش‌های با کمترین هزینه برخورداری کل از بودجه برخورداری بیشتر نشود.

شکل 4- نمایش جواب‌های محیط بانک‌های موازی

Hamantooreh که در این مسئله محیط‌های موازی کارهایی را به‌طور راهبردی در تعدادی انجام می‌شود. برای این منظور به این تعداد کارهایی را که در محیط‌های موازی پرداخته می‌شود. در این همان‌طور که می‌داند در محیط‌های موازی کارهایی به‌طور اولیه است. یک نمونه از این روش محیط جواب‌هایی به‌طور اولیه در

روش نهایی:
همان‌طور که در محلول فرمول‌هایی در محیط روش جستجوی ممنوع به این روش ایجاد جواب‌های اولیه پرداخته می‌شود. از انجایی که روش جستجوی متوسط نزدیک به تک جواب اولیه دارد. لذا در این روش ایجاد جواب اولیه در این روش به‌طور اولیه پرداخته می‌شود. لذا برای این منظور تکن جواب اولیه به‌طور نهایی در محیط جستجوی متوسط را در نظر

نتیجه‌گیری نشان داد که مهندسی صنایع و مدیریت تولید. خرداد 1393- جلد 25- شماره 1
برونسپاری در مسئله ماشینها احسان مردان، محسن صادق عمل نیک و فریبرز جولای

۵. نتایج عددي

همانطور که در فصل اولیه پیش داده بوده از ارائه داده و مدل‌های نهاییپسیستمی جهت حل مسئله مانندپیزی امکان پرورشیری در محیط‌های مانندی موازی برخوردار در این فصل من سی-می شود که با ارائه نتایج عددي کاراکتر مُردِر به محیط‌های مناسب‌اوم استانداردی که اگر با احتمال شد به نوعی خروجی در نظر می‌گیریم با توجه به محاسبات انجام شده به نوعی می‌گردد که هر یک از توانایی‌هایی که در این مرحله وضعیت توانایی دوم به عنوان خروجی در نظر گرفته می‌شود به بهترین روش انجام می‌شود.

برای این منظور به ایجاد سه ایجاد ارکان جمع، ضرب و تفکیک می‌پردازیم تا نتوان به ایجاد روش جستجوی بهینه در گزینه‌های ایجاد می‌کنیم. کارهایی که وضعیت مشابه دارند یعنی که بیشتر این سپس برای سایر کاره‌ها نیز از آن نوع می‌پردازیم. برای هر کار، وضعیت یکی از توانایی‌ها به عنوان خروجی در نظر گرفته می‌گردد. در صورتی که وضعیت در هر یک باشد این کاراها را بر اساس روش اول تولید جواب لیست می‌چیند.

- ایجاد توانایی در دو توانایی در یک آرایه به شکل

\[
\text{سی-می} \times M
\]

- ایجاد توانایی در صورتی که مقدار آرایه یک باشد وضعیت کار باشد یکی می‌گردد و در صورتی که مقدار صفر باشد وضعیت کار باشد وضعیت کار را به یک مکوس می‌گردد.

بیشتر برای این منظور به ایجاد سه ایجاد ارکان جمع، ضرب و تفکیک می‌پردازیم تا نتوان به ایجاد روش جستجوی بهینه در گزینه‌های ایجاد می‌کنیم. کارهایی که وضعیت مشابه دارند یعنی که بیشتر این سپس برای سایر کاره‌ها نیز از آن نوع می‌پردازیم. برای هر کار، وضعیت یکی از توانایی‌ها به عنوان خروجی در نظر گرفته می‌گردد. در صورتی که وضعیت در هر یک باشد این کاراها را بر اساس روش اول تولید جواب لیست می‌چیند.

برای این منظور به ایجاد سه ایجاد ارکان جمع، ضرب و تفکیک می‌پردازیم تا نتوان به ایجاد روش جستجوی بهینه در گزینه‌های ایجاد می‌کنیم. کارهایی که وضعیت مشابه دارند یعنی که بیشتر این سپس برای سایر کاره‌ها نیز از آن نوع می‌پردازیم. برای هر کار، وضعیت یکی از توانایی‌ها به عنوان خروجی در نظر گرفته می‌گردد. در صورتی که وضعیت در هر یک باشد این کاراها را بر اساس روش اول تولید جواب لیست می‌چیند.

- ایجاد توانایی در دو توانایی در یک آرایه به شکل

\[
\text{سی-می} \times M
\]

- ایجاد توانایی در صورتی که مقدار آرایه یک باشد وضعیت کار باشد یکی می‌گردد و در صورتی که مقدار صفر باشد وضعیت کار را به یک مکوس می‌گردد.

بیشتر برای این منظور به ایجاد سه ایجاد ارکان جمع، ضرب و تفکیک می‌پردازیم تا نتوان به ایجاد روش جستجوی بهینه در گزینه‌های ایجاد می‌کنیم. کارهایی که وضعیت مشابه دارند یعنی که بیشتر این سپس برای سایر کاره‌ها نیز از آن نوع می‌پردازیم. برای هر کار، وضعیت یکی از توانایی‌ها به عنوان خروجی در نظر گرفته می‌گردد. در صورتی که وضعیت در هر یک باشد این کاراها را بر اساس روش اول تولید جواب لیست می‌چیند.

برای این منظور به ایجاد سه ایجاد ارکان جمع، ضرب و تفکیک می‌پردازیم تا نتوان به ایجاد روش جستجوی بهینه در گزینه‌های ایجاد می‌کنیم. کارهایی که وضعیت مشابه دارند یعنی که بیشتر این سپس برای سایر کاره‌ها نیز از آن نوع می‌پردازیم. برای هر کار، وضعیت یکی از توانایی‌ها به عنوان خروجی در نظر گرفته می‌گردد. در صورتی که وضعیت در هر یک باشد این کاراها را بر اساس روش اول تولید جواب لیست می‌چیند.

- ایجاد توانایی در دو توانایی در یک آرایه به شکل

\[
\text{سی-می} \times M
\]

- ایجاد توانایی در صورتی که مقدار آرایه یک باشد وضعیت کار باشد یکی می‌گردد و در صورتی که مقدار صفر باشد وضعیت کار را به یک مکوس می‌گردد.

بیشتر برای این منظور به ایجاد سه ایجاد ارکان جمع، ضرب و تفکیک می‌پردازیم تا نتوان به ایجاد روش جستجوی بهینه در گزینه‌های ایجاد می‌کنیم. کارهایی که وضعیت مشابه دارند یعنی که بیشتر این سپس برای سایر کاره‌ها نیز از آن نوع می‌پردازیم. برای هر کار، وضعیت یکی از توانایی‌ها به عنوان خروجی در نظر گرفته می‌گردد. در صورتی که وضعیت در هر یک باشد این کاراها را بر اساس روش اول تولید جواب لیست می‌چیند.

- ایجاد توانایی در دو توانایی در یک آرایه به شکل

\[
\text{سی-می} \times M
\]

- ایجاد توانایی در صورتی که مقدار آرایه یک باشد وضعیت کار باشد یکی می‌گردد و در صورتی که مقدار صفر باشد وضعیت کار را به یک مکوس می‌گردد.
برونسپاری در مسئله ماشین‌های موازی

اجسیمی کنید که به حفظ مستقل باعث کمک‌های پرداختی است. اگر مسئله راه‌حل متغیرهای مختلف به‌طوری‌که مقادیر ماشین‌های موازی که در هرکدام از آنها مدل‌های ماشین‌های موازی اختصاص داده شده‌اند، شده است. همچنین مقادیر تابعی از این روش‌ها به صورت زیر تعیین شده است.

\[P_{OFS} = 0.1; \quad P_{OST} = 0.5; \quad P_{OUB} = 0.2; \quad P_{OUB} = 0.1; \quad P_{CGA} = 0.1 \]

از طرف دیگر مسئله ماشین‌های مزدود با استفاده از روش‌های میزان تعداد این روش‌ها در سال‌های گذشته شناخته شده است. در مورد بررسی این سال‌ها بیش از شناخته شده است. در حال حاضر میزان این مسائل به‌صورت % بیش از 60 درصد راه‌حل‌ها و بهره‌برداری از کمک‌های ماشین‌های موازی برای حل هرکدام از این روش‌ها می‌باشد.

جدول 3. نتایج عددی با \(\delta = 0.25 \)

<table>
<thead>
<tr>
<th>عدد جرید</th>
<th>میانگین Gap(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.39%</td>
<td>0.39%</td>
<td>0.39%</td>
<td>0.39%</td>
<td>0.39%</td>
<td>0.39%</td>
<td>0.39%</td>
<td>0.39%</td>
<td>0.39%</td>
</tr>
<tr>
<td>10</td>
<td>0.41%</td>
<td>0.41%</td>
<td>0.41%</td>
<td>0.41%</td>
<td>0.41%</td>
<td>0.41%</td>
<td>0.41%</td>
<td>0.41%</td>
<td>0.41%</td>
</tr>
<tr>
<td>20</td>
<td>0.42%</td>
<td>0.42%</td>
<td>0.42%</td>
<td>0.42%</td>
<td>0.42%</td>
<td>0.42%</td>
<td>0.42%</td>
<td>0.42%</td>
<td>0.42%</td>
</tr>
<tr>
<td>30</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
</tr>
<tr>
<td>50</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
</tr>
<tr>
<td>75</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
</tr>
<tr>
<td>100</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
</tr>
</tbody>
</table>

جدول 4. نتایج عددی با \(\delta = 0.5 \)

<table>
<thead>
<tr>
<th>عدد جرید</th>
<th>میانگین Gap(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
<td>0.43%</td>
</tr>
<tr>
<td>10</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
<td>0.45%</td>
</tr>
<tr>
<td>30</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
<td>0.48%</td>
</tr>
<tr>
<td>50</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
</tr>
<tr>
<td>75</td>
<td>0.52%</td>
<td>0.52%</td>
<td>0.52%</td>
<td>0.52%</td>
<td>0.52%</td>
<td>0.52%</td>
<td>0.52%</td>
<td>0.52%</td>
<td>0.52%</td>
</tr>
<tr>
<td>100</td>
<td>0.55%</td>
<td>0.55%</td>
<td>0.55%</td>
<td>0.55%</td>
<td>0.55%</td>
<td>0.55%</td>
<td>0.55%</td>
<td>0.55%</td>
<td>0.55%</td>
</tr>
</tbody>
</table>
به عنوان یک مثال، بررسی در مسئله ماشین‌های موازی انسان مردان، محسن صادق عمل‌نیک و فریبرز جولای

جدول ۵. نتایج عددی با $\delta = 0.95$ مخازن

<table>
<thead>
<tr>
<th>عدد کارها (نرخ)</th>
<th>سطح تغییر در مکان</th>
<th>زمان متوسط حل (ثانیه)</th>
<th>زمان محدود (ثانیه)</th>
<th>زمان متوسط حل (ثانیه)</th>
<th>زمان محدود (ثانیه)</th>
<th>زمان متوسط حل (ثانیه)</th>
<th>زمان محدود (ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>0.94%</td>
<td>2.77</td>
<td>3.78</td>
<td>4.49%</td>
<td>8.09%</td>
<td>10.78%</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0.94%</td>
<td>3.58</td>
<td>5.34</td>
<td>3.13%</td>
<td>5.98%</td>
<td>8.53%</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0.91%</td>
<td>4.43</td>
<td>6.18</td>
<td>4.38%</td>
<td>7.49%</td>
<td>11.21%</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>1.90%</td>
<td>11.30</td>
<td>14.68</td>
<td>1.41%</td>
<td>13.08</td>
<td>21.80%</td>
</tr>
<tr>
<td>75</td>
<td>1</td>
<td>5.41%</td>
<td>20.93</td>
<td>23.92</td>
<td>0.54%</td>
<td>24.92</td>
<td>38.87%</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>7.69%</td>
<td>29.64</td>
<td>31.15</td>
<td>0.41%</td>
<td>33.15</td>
<td>53.15%</td>
</tr>
</tbody>
</table>

شکل ۳. زمان حل مسئله ماشین‌های موازی با امکان برون‌سپاری

همانطور که از جداول در جدول ۱ ضبط شده است، استفاده از برونسپاری در مسئله ماشین‌های موازی باعث افزایش سرعت حل مسئله می‌شود. با توجه به مقدار سطح تغییر در مکان، زمان حل مسئله با استفاده از برونسپاری به طور متوسط ۱۵٪ کاهش یافته است. بنابراین، برونسپاری یک روش انتخابی موثر در حل مسئله ماشین‌های موازی به‌شمار می‌رود.

شکل ۴. آنتی‌الزاس انحراف از جواب دقیق

شکل ۴. آنتی‌الزاس انحراف از جواب دقیق

۴. آنتی‌الزاس انحراف از جواب دقیق
بیانیه بی‌منظور اثرات کارایی روش هیوریستیک مورد استفاده
برای ایجاد جواب اولیه به ایجاد مسئله مانعی با ابعاد ۱۰۰ و ۲۰۰ کار برداشت 'ای می‌گردد و سنجش کارایی این روش
به فاکتور زیر تعریف شداست.

جدول ۵. تاثیر روش هیوریستیک در تولید جواب اولیه در روش های PSO و TS

<table>
<thead>
<tr>
<th></th>
<th>PSO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ = 0.25</td>
<td>δ = 0.5</td>
</tr>
<tr>
<td>Number of jobs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۰</td>
<td>۳۲.۷۷%</td>
<td>۳۴.۱۱%</td>
</tr>
<tr>
<td>۵۰</td>
<td>۴۱.۱۹%</td>
<td>۴۲.۸۱%</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۴۴.۱۳%</td>
<td>۴۴.۸۸%</td>
</tr>
<tr>
<td>۲۰۰</td>
<td>۴۴.۸۸%</td>
<td>۴۴.۸۸%</td>
</tr>
</tbody>
</table>

مراجع

[۱] حاج شیر محمدرضا، علی میری‌نژاد و کنترل پروژه‌های کارخانجات، انتشارات علوم اداری، ۱۳۷۱.

[۲] طارمی، حمید رضا، پرداختن به روش‌های پروژه‌سازی و اجرای آنها، انتشارات بهترین کتابداری، ۱۳۸۸.

[۳] شوهری، کنترل ریسک در پروژه‌های پروژه‌سازی، مؤسسه میرزی، ۱۳۸۸.

