A Heuristic and a Lower Bound for the Two-Echelon Location-Routing Problem
S. H. Zegordi & E. Nikbakhsh

S. H. Zegordi, is an associate professor in the Department of Industrial Engineering, Tabriz Modares University
E. Nikbakhsh, is a M.Sc. graduate from the Department of Industrial Engineering, Tabriz Modares University.

ABSTRACT
During the last three decades, the integrated optimization approach to logistics systems has become one of the most important aspects of the supply chain optimization. This approach simultaneously considers the interdependence of the location of the facilities, suppliers/customers allocation to the facilities, the structure of transportation routes, and inventory planning and control. Location-routing problem is one of the most important classes of location problems for considering this approach. In this problem, the number and location of facilities, size of the transportation fleet, and the route structures are to be found with respect to the location and characteristics of suppliers and customers. In this study, a mathematical model, an efficient and fast heuristic algorithm, an effective metaheuristic algorithm based on simulated annealing, and a new lower bound for the two-echelon location-routing problem with vehicle fleet capacity and maximum route length constraints are presented. At the end, the computational results show the efficiency of the proposed algorithms using the obtained lower bound.

Keywords
Location-Routing; Location; Routing; Simulated Annealing; Minimum Spanning Forest

چکیده
در طول سه دهه اخیر، روش‌های منطقی بهینه‌سازی یکپارچه به سیستم‌های زنجیره تأمین مربوط شدند. این روش‌ها به بررسی هزمن و استحکام مالکان شرکت‌های تجاری با هدف بهینه‌سازی عملیات توزیع، ساختار سیستم‌های حمل و نقل، و برنامه‌ریزی کنترل موجودی ویژه‌ای می‌پردازند. کرایه‌های استوانه‌ای و کنترل موجودی‌های می‌پردازند. در این مطالعه، مسئله ساختار سیستم‌های حمل و نقل مورد نظر بررسی می‌شود. در این مطالعه، انجام بسیاری از مبانی بهینه‌سازی است. در این مبانی، تعداد و محل و نقل، و ساختار سیستم‌ها با توجه به موقعیت و توزیع کنترلگرهای و منابع مورد نظر تعیین می‌شود. در این تحقیق، یک مدل رضایت، روش حل اینکاری کارا و سریع، رویالکرای کارا و بهبودی روش حل کارا و بین‌پایین جدید برای سیستم‌های حمل و نقل کلاسیک-سیستم‌های حمل و نقل با توجه به محدودیت‌های ظرفیت و سیستم‌های حمل و نقل سیستم‌های حمل و نقل در پایان، نتایج محاسباتی نشان دهنده کارایی روش‌های حل پیشنهادی با استفاده از گران پایین پیشنهادی است.

کلمات کلیدی
مکان‌یابی، سیستم‌های حمل و نقل
برنامه‌ریزی شبیه‌سازی
جداول جملات
بحث

اصحاب نیکبخت
سید حسام الدین ذرگدی و احسان نیکبخت

86/10/12
97/10/15

دکتر سید حسام الدین ذرگدی، دانشیار مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه نیویورک تربیت مدرس.
احسان نیکبخت، کارشناس ارشد مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه نیویورک تربیت مدرس.

zegordi@modares.ac.ir
nikbakhsh@modares.ac.ir

Journal Website: http://ijiefa.iust.ac.ir/
حل اینکاری و کران پایین برای مسئله مکان‌بندی-سیریابی در رده‌ی ۱ مقدمه

در سه دهه اخیر، مفاهیم سیستم‌های لجیستیکی کاربرد دیده شده و این مفاهیم به جنگ‌های مدیریت زنجیره تأمین تبدیل شدهاند. این مفاهیم به بزرگسالگی‌های زیست‌شناسی، جستجوی آگاهی و کنترل مواد، و پیام‌بردهای زمان‌بندی می‌پردازند. این رویکرد جامع و حلال مسیر مناسب لجیستیک از هم‌بین‌گیری محیط سیال است. بی‌کانون بسیار لجیستیک دارای احتمالاتی هستند که از آن‌جمله می‌توان به مسئله مکان‌بندی-سیریابی مراجعه نمود. مسئله مکان‌بندی-سیریابی در راه تحقیق، بر حل کردن و تصمیم‌گیری مکان‌بندی و سیریابی در زنجیره تأمین، مسئله مکان‌بندی-سیریابی پرداخته می‌شود.

در سال‌های اخیر، مسئله مکان‌بندی-سیریابی یکی از مهم‌ترین

طبیعت مسئله مکان‌بندی-سیریابی نزد تحلیل‌گران سیستم‌های لجیستیک

یکی از مهم‌ترین مسئله‌های مکان‌بندی-سیریابی جستجوی

در نظر گرفته می‌شود. این مسئله به بررسی‌های نتیجه‌گیری‌های زنجیره تأمین تبدیل شده‌اند. این مفاهیم به جنگ‌های مدیریت زنجیره تأمین تبدیل شده‌اند. این مفاهیم به بزرگسالگی‌های زیست‌شناسی، جستجوی آگاهی و کنترل مواد، و پیام‌بردهای زمان‌بندی می‌پردازند. این رویکرد جامع و حلال مسیر مناسب لجیستیک دارای احتمالاتی هستند که از آن‌جمله می‌توان به مسئله مکان‌بندی-سیریابی مراجعه نمود. مسئله مکان‌بندی-سیریابی در راه تحقیق، بر حل کردن و تصمیم‌گیری مکان‌بندی و سیریابی در زنجیره تأمین، مسئله مکان‌بندی-سیریابی پرداخته می‌شود.

اتصالات، مسئله مکان‌بندی-سیریابی جستجوی

در نظر گرفته می‌شود. این مسئله به بررسی‌های نتیجه‌گیری‌های زنجیره تأمین تبدیل شده‌اند. این مفاهیم به جنگ‌های مدیریت زنجیره تأمین تبدیل شده‌اند. این مفاهیم به بزرگسالگی‌های زیست‌شناسی، جستجوی آگاهی و کنترل مواد، و پیام‌بردهای زمان‌بندی می‌پردازند. این رویکرد جامع و حلال مسیر مناسب لجیستیک دارای احتمالاتی هستند که از آن‌جمله می‌توان به مسئله مکان‌بندی-سیریابی مراجعه نمود. مسئله مکان‌بندی-سیریابی در راه تحقیق، بر حل کردن و تصمیم‌گیری مکان‌بندی و سیریابی در زنجیره تأمین، مسئله مکان‌بندی-سیریابی پرداخته می‌شود.
فلزاتکاری برای بهبود کیفیتی جستجوی ممتعه و برای
شیب‌سازی شده پرداختن. همچنین لیستی و دیگران [20] برای
مسئله مکان-مای-سیریابی-دو-ردیه با فرض محدودیت توزیع
و سیستمی، یک مدل برنامه‌ریزی سیستمی توزیع و روش حل
بر مبنای آزمایش‌های گزارشی، روش جستجوی جزئی‌گرایدیان،
و مسئله توزیعی در گردگر ارائه نموده‌اند. از پورت و آسکن [21] برای
سئله مکان-مای-سیریابی-یک-ردیه روش ابتکاری برای
جستجوی ممتعه، انسجام و تعادل، آزمایش‌های گزارشی و،
حذف نتایج پیشنهاده‌ای به تغییر هم‌نودانه، الگوریتم کولا [22] برای
سئله مکان-مای-سیریابی تجهیزات و مواد ضرر با فرض ریسک جمله
و سیستمی، توزیع و روش حل در ابتکاری برای
سئله مکان-مای-سیریابی یک-ردیه با حصول
مشتریان تصمیم و جریمه امید بود اروری نداشت.

جدول 1. تعریف مسئله مقیاس مکان-مای-سیریابی-یک-ردیه

صنف	سالهای	توضیحات
توزیع	1998	برنامه و دیگران [9]
	1999	توزیع و برن [10]
	2001	چان و دیگران [12]
	2002	وی و دیگران [13]
	2003	لین و دیگران [14]
	2004	کلاین و دیگران [15]
	2005	گارس و زیل [16]
	2006	الکارایاساولو و دیگران [17]
	2005	الکارایاساولو و دیگران [18]
	2006	لین و کوک [19]
	2007	لیبی و دیگران [20]
	2007	لیبی و دیگران [21]
	2008	آمریکا و دیگران [22]

1. Subgradient Search Method
2. Minimum Spanning Forest
حل ایستادگی و کران پایین برای مسئله مکان‌بندی-مسیریابی دو رده‌ای

برای مسئله فوق یک مدل ریاضی عدد صحیح مختلط در بخش 2. پیکر را هر اینکه از کمترین شیب برای یک روش اول مکان‌بندی سپس مسیریابی جهت ایجاد جواب اولیه، و روش سنتزیه‌ها تعیین‌کننده ویژه جداگانه جواب اولیه در بخش 3. Or-opt سایر مسئله استفاده می‌شود و نیز از شیب‌های اولیه برای اجرای گروه‌های ترکیبی شیب‌هایی از دو کران 4 راهه می‌شود. سپس در بخش 5 کران را می‌گیریم.

سپس مسئله استفاده از زیر جدول به‌دست می‌آید که باید از مسئله سپسی‌بندی مدل ریاضیِ پیشنهادی عبارتند از:

RDC

M

RDC

$\sum \alpha_{i} v_{l i} \leq v_{l m} \quad \forall l, m \in L$

$\sum D_{l} z_{i j} - \sum_{i \in C D} x_{i j} = 0 \quad \forall j \in R D C$

$\sum_{i \in C D} x_{i j} \leq F_{j} \quad \forall i \in C D$

$\sum_{l \in R D C} \sum_{i \in C D} C_{i j} x_{i j} \leq \sum_{l \in R D C} \sum_{i \in C D} C_{i j} x_{i j} + C V \sum_{l \in R D C} \sum_{i \in C D} \sum_{l \in L} \alpha_{i} u_{l i}$

$\sum\sum_{l \in N_{i j}} v_{l m} = 1 \quad \forall k \in C$

$\sum d_{l m} v_{l m} \leq \tau \quad \forall l \in L$

$\sum\sum\sum_{l \in N_{i j}} v_{l m} \leq \left| \sum_{l \in N_{i j}} D_{l} \right| / \sigma$

$2 \leq \forall \left| k \right| \leq C, \forall V \subseteq C$

$\left| n_{V} \right| = \left\lfloor F_{j} / \sigma \right\rfloor$

$\sum_{l \in N_{i j}} v_{l m} = 1 \quad \forall k \in C$

$\sum d_{l m} v_{l m} \leq \tau \quad \forall l \in L$

$\sum\sum\sum_{l \in N_{i j}} v_{l m} \leq \left| \sum_{l \in N_{i j}} D_{l} \right| / \sigma$

$2 \leq \forall \left| k \right| \leq C, \forall V \subseteq C$

$\left| n_{V} \right| = \left\lfloor F_{j} / \sigma \right\rfloor$

$\sum_{l \in R D C} \sum_{i \in C D} C_{i j} x_{i j} \leq \sum_{l \in R D C} \sum_{i \in C D} C_{i j} x_{i j} + C V \sum_{l \in R D C} \sum_{i \in C D} \sum_{l \in L} \alpha_{i} u_{l i}$

$\sum\sum_{l \in N_{i j}} v_{l m} = 1 \quad \forall k \in C$

$\sum d_{l m} v_{l m} \leq \tau \quad \forall l \in L$

$\sum\sum\sum_{l \in N_{i j}} v_{l m} \leq \left| \sum_{l \in N_{i j}} D_{l} \right| / \sigma$

$2 \leq \forall \left| k \right| \leq C, \forall V \subseteq C$

$\left| n_{V} \right| = \left\lfloor F_{j} / \sigma \right\rfloor$
حل ابتکاری و گران پایین برای مسئله مکان‌بندی-مسیربندی و رده‌بندی

\[\sum_{m \in M_k} v_{mk} - \sum_{m \in M_k} v_{mk} = 0 \quad \forall k \in N_1, \forall l \in L \]

(8)

\[\sum_{k \in K_l} \sum_{l \in L_k} v_{pl} - z_{kj} \leq 1 \]

\[\forall k \in C, \forall j \in RDC, \forall l \in L \]

(9)

\[\sum_{l \in L} v_{jkl} = u_{jl} \quad \forall j \in RDC, \forall l \in L \]

(10)

\[\sum_{l \in L} v_{jkl} = u_{jl} \quad \forall j \in RDC, \forall l \in L \]

(11)

\[u_{jl} \leq m v_{jy} \quad \forall j \in RDC \]

(12)

\[x_j \geq 0 \quad \forall i \in CDC, \forall j \in RDC \]

(13)

\[y_j \in [0,1] \quad \forall j \in RDC \]

(14)

\[u_{jl} \in [0,1] \quad \forall j \in RDC, \forall l \in L \]

(15)

\[v_{ml} \in [0,1] \quad \forall k \in N_1, \forall m \in N_1, \forall l \in L \]

(16)

\[z_{kj} \in [0,1] \quad \forall k \in C, \forall j \in RDC \]

(17)

در مدل فوق، رابطه 1 نشان‌دهنده تابع هدف است که به ترتیب به دنبال اجرای کاهش تعداد کالایی هر راه‌راه نقلیه‌ای و هزینه نقل و نقل، و هزینه حمل و نقل از RDC به بهترین انتخاب است. RDC به منظور راه‌روی‌های جابجایی از CDC به RDC می‌باشد. رابطه 2 نشان‌دهنده محدودیت جریان وروجی به RDC است. RDC به منظور جریان در این الگوریتم بیشترین وروجی را دارد. رابطه 3 نشان‌دهنده تصمیم‌گیری به میزان بین RDC و CDC است. RDC به هزینه حمل و نقل از RDC به بهترین است.

<table>
<thead>
<tr>
<th>مرحله اجرا</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>مسیرهای کنوند</td>
</tr>
<tr>
<td>2.</td>
<td>مسیرهای مسیربندی‌پذیر</td>
</tr>
<tr>
<td>3.</td>
<td>مسیرهای بهبود</td>
</tr>
</tbody>
</table>

| مرحله بهبود |
| --- | --- |
| 1. | زمانisha شروع مسیرهای بهبود |
| 2. | زمانisha شروع مسیرهای بهبود |

| نمودار 1. نمای کلی روش حل ابتکاری پیشنهادی |

<table>
<thead>
<tr>
<th>مرحله اجرا</th>
<th>روش حل ابتکاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>مسیرهای مسیربندی‌پذیر (RDC) که به‌لاید اجرا گشایش یابند به نحوی انتخاب می‌شوند که هزینه‌گذاری</td>
</tr>
<tr>
<td>2.</td>
<td>Subtour Elimination Constraint</td>
</tr>
</tbody>
</table>

\[Location-First-Allocation-Routing Second \]

\[Or-opt \]

\[Or-opt \]
قسمت همایشی جدید

در هر جواب این همایشی، میدان سیری از ثبت و داده‌های RDC از یک جواب فیل، ترتیب باید با این موارد قرار می‌گیرد. این همایشی جدید می‌تواند به دلیل تعیین تکنیک‌های جواب‌دادن دیده شود. پیدا کردن کمک شیبائی می‌تواند.

نتیجه‌گیری‌ها: توزیعی که در صورتی به هر یک از نگاه‌هایی (x) و نگاه‌هایی (y) در انجام نشود، خانم می‌یابد. هم‌اکنون اگر مقدار صفری به دو کنار امکان‌گر درcompat و سایر متغیرهای جواب‌دادن حاصل شده است.

فناوری DRC

در این صفحه، روابط (19-20) همانند روابط (21-22) هستند. و رابطه 22 باعث می‌شود که مجموع کلی حمل شده از CDC، DRC، و رابطه رابطه‌ای کل باشد. طبقه‌بندی و جایگزینی جواب‌دادنیم.
حل اینکار و گران پایین برای مسئله مکانیابی-مسیریابی دو ردیف

اساس کمترین نسبت حضور بیتکاری به طرف انجام انجام می‌گیرد و در طول زمان پس از عدم امان تخضیص بهتری به یک RDC بعدی بر اساس معیار ذکر شده کارکش می‌باشد.

به‌ویژه روش حل فرایندی در مرحله به‌ویژه روش حل فرایندی پیشنهادی، جستجو بر روی یک همبستگی استفاده شده در روش حل اینکاری در دو بخش بر اساس ساختمان گروه‌ها برای انجام شیب‌سازی انجام می‌شود. این اصل به کار گرفته شده در این مرحله، پردازش ترکیبی مناسب از همبستگی که باید در هر کارکش یابند و برای پیدا کردن RDC ترکیب مناسبی با توجه به ترکیبی مثل این است باید اجزای زیرال مسیریابی (نمونه ۱) به این ترتیب است که در ابتدا اجزای زیرال مسیریابی (نمونه ۳) بر روی جواب‌ولی به دست آمده، جواب‌ولی به‌ویژه محلی داده می‌شود. نحوه انجماد زیروال مسیریابی به صورت جستجو بر روی جواب‌ولی و جواب‌ولی از اشکال همبستگی‌های (نمونه ۳) N_3(x) و N_2(x) و N_1(x)

مرحله انجام جواب‌ولی	۱ پیش‌سرهای دولی بر اساس مراحلی
مرحله به‌ویژه	۲ اجرای زیرال مسیریابی
----------------------	-------------------------------
نمونه	۳ ارائه همبستگی فراکسیون
----------------------	-------------------------------
شرط	۴ جواب‌ولی طایب مشکل داده می‌شود

فهرست

۱. نمونه
۲. نمونه
۳. نمونه
۴. نمونه
حل اینکاری و گران پایین برای مسئله مکان‌بندی مسیری‌پایی دو رده

5. محاسبه گران پایین

برای محاسبه گران پایین تابع هدف مسئله (16)-(17) پس از ازدای کم‌حداکثر ارتباط دهنده برای سیستم‌های مکان‌بندی و مسیری‌پایی (3) و حذف منجر ترسیم‌شانان به مراکز توزیع جزئی، مسئله را به شکل زیر ترکیب هدف مشترک مکان‌بندی و مسیری‌پایی کمیته‌سازی می‌شود. زیرساختول تابع هدف مسئله شده خریدرمانگری شده را به شکل گران پایین، در حالی که هزینه تغییر تابع هدف از RDC و هزینه منجر عقلالهای مشترک مسئله شده است. مسئله زیرساختول تابع هدف مسئله مکان‌بندی و زیرساختول دوم به اینکاری انجام تغییر در محدوده‌های این سیستم شده است. در طول کل‌پرسی این مسئله می‌تواند به شکل ساده زیرساختول شده خریدرمانگری به شکل گران پایین، در حالی که هزینه تغییر تابع هدف از RDC و هزینه منجر عقلالهای مشترک مسئله شده است.

5-1. زیرساختول مکان‌بندی گران پایین

پس از حل مسئله اول ایجاد تغییر ذیل ضریب است. به دلیل آنکه شیب مسئله جنگل پوشانندگان از طرفی کم‌حداکثر محدود با محدودیت در ماده‌ال İl ایجاد، این مشترک مسئله شده خریدرمانگری به شکل گران پایین، در حالی که هزینه تغییر تابع هدف از RDC و هزینه منجر عقلالهای مشترک مسئله شده است. در طول کل‌پرسی این مسئله می‌تواند به شکل ساده زیرساختول شده خریدرمانگری به شکل گران پایین، در حالی که هزینه تغییر تابع هدف از RDC و هزینه منجر عقلالهای مشترک مسئله شده است.

5-2. زیرساختول مسیری‌پایی گران پایین

کاربرد مسئله حذف جنگل پوشانندگان با محدودیتهای درجه، طول مسیر، و تغییر وسایل نقلیه در حل مسئله مکان‌بندی مسیری‌پایی و

سید حسام الدین ذکردری و احسان نیکبختی

حل آن از طریق الگوریتم پریم (39) یکی از غیر مورد توجه محققین بوده است (41). این مسئله در ساختار حل خود یعنی حداقل درختی پوشانندگا برآورده تابع محدود یک مسئله است (40). پایداری حل پیشنهاد این مسئله به دلیل پیچیدگی بالایی آن در زمان جدید جمعه‌های ذهنی نیست. تابع هدف زیرساختول دوم به قرار زیر است:

\[Z_2 = CV \sum_{j \in RDC} \sum_{l \in L} u_{j} + \sum_{j \in RDC} \sum_{i \in C} \alpha_{j} v_{ml} \] (26)

برای تبدیل زیرساختول دوم تابع هدف به یک شیب مسئله حداقل جنگل پوشانندگان محدود و نهایی درجه، طول مسیر، باید قسمت اول رابطه 26 حذف شود. برای این کار هزینه تابع واحد نسبی نیازمندی اضافه شده‌ای از همین جعلی‌شونده به تعیین یکی از RDC به عنوان پایداری خریدرمانگری از VC و نسبی نیازمندی از هزینه باید پایداری از جری جویی از RDC خصوصاً در درخت و طول مسیر عبارت است از:

\[\text{Min. } Z_2 = \sum_{j \in RDC} \sum_{l \in L} (\alpha_{j} + CV v_{ml}) \] (27)

مقدت به محدوده‌های:

\[\sum_{l \in L} v_{ml} = 1 \text{ } \forall k \in C \] (28)

\[\sum_{l \in L} v_{jl} \leq n v_{j} \text{ } \forall j \in RDC \] (29)

\[\sum_{l \in L} v_{ml} + \sum_{l \in L} v_{ml} = C \] (30)

\[\sum_{l \in L} v_{ml} \geq \left\lceil \sum_{i \in C} D_{i} / \sigma \right\rceil \] (31)

\[\sum_{l \in L} v_{ml} \leq 1 \text{ } \forall k \in C \] (32)

\[\sum_{l \in L} d_{km} v_{ml} \leq \tau \text{ } \forall l \in L \] (33)

\[\sum_{l \in L} D_{k} v_{ml} \leq \sigma \text{ } \forall l \in L \] (34)

در مسئله فوق، رابطه 28 حاکی می‌شود که هر که شرطی دقیقاً یکی باشد ورد شود. رابطه 29 تعداد وسایل نقلیه خریدرمانگری از یک RDC را به حداکثر تعداد وسایل نقلیه بالا تخصیص به یک RDC محدود می‌سازد. رابطه 30 مجموع تعداد کل پالایش موجود در
حل اینکار و هر یک پایین برای مسئله مکان‌بندی - مسیریابی و رده‌ای

جواب: برای تبدیل مشتریان قرار می‌دهد، رابطه (23) انتخاب حداکثر

تعداد بال خروجی مورد نظر با استفاده از RDC ها (موشلهنده) مورد نظر را تضمین می‌نماید. رابطه (23) باعث شد که مقدار یک بال از هر گره مشتری خارج شده. شرایط محدودیت‌های مستثنی مسئله (4) مانند (17) - (20) از آنجایی که روشهای

جدید مسئله حداکثر درخت پیش‌اندازه، همچنین کوپرین‌ها و

حداکثر طول مسری و حداقل طول مسیر و هزینه نقش را ندارند، بنابراین

با توجه به (23) و (24) را آزادسازی لازمی است. کرک. برای این کار، سمت راست این محدودیت‌ها از سمت چپ کم کردن و تثبیت‌های

بدست آمده در ضرایب لازم‌تر از سرمایه کم و ضرب می‌شوند. سپس، جملات فوق به شکل اضافه شده تا هدف جدید

بسته‌ای (Z(x, λ, μ))

\[\min \, Z^*(λ, μ) = \sum \sum (α_{j,k} + CV) \psi_{j,k} + \sum \sum α_{mn} V_{mn} + \sum λ_k (\sum D_{mn} V_{mn} - \sigma_k) + \sum μ_l (\sum m_{mk} / V_{mk} - \tau_l) \]

\[Z_n(best) = \sum \sum (α_{j,k} + CV) \psi_{j,k} \]

\[\Delta Z_n = Z_n(best) - Z_n(best) \]

\[Z_n = \sum \sum \sum (α_{j,k} + CV) \psi_{j,k} \]

\[M \ln \sum_t \sum_{x \in RDC} t_{ij} z_{ij} \]

\[z_{ij} \leq n_w \quad \forall j \in RDC \]

\[0 \leq z_{ij} \leq 1 \quad \forall k \in C \]

\[z_{ij} \in \{0,1\} \quad \forall k \in C, \forall j \in RDC \]

نیکی تشکیل گردیده یک مسئله (9) و (10) را به ترتیب هر ابزار از مجموعه F باید به یک مسئله زیر را حل کنید.

M in. \]
حل ابنکاری و کاربایی برای مسئله مکان‌بندی سیسیرایی دو‌دهمی

در رابطه 27، عبارت (β, μ, Z) حذف به‌دلیل ناگرانه‌تری، توسط مقادیر تابع هفتم سیسیرایی گرفته شده و بخش این مسئله توضیح داده شده است. استنیل باین ال‌یو یک طرح مطرح شده در گروه 2 کریستن است. می‌توان از کمیت‌های هدفونی وکرپور که دلیل در بهبود حداکثر می‌باشد.

جدول 2. پارامترهای روش فراین‌کاری

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>زیرواژ</th>
<th>اصلی</th>
<th>اضافی</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>200</td>
<td>45</td>
<td>200</td>
</tr>
<tr>
<td>L</td>
<td>100</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>r</td>
<td>0/95</td>
<td>0/97</td>
<td>0/95</td>
</tr>
<tr>
<td>T_0</td>
<td>0/95</td>
<td>0/97</td>
<td>0/95</td>
</tr>
</tbody>
</table>

$N(\alpha, \mu, Z) = \sum_{i=1}^{n} \sum_{j=1}^{m} (\alpha_i + CV + \lambda_i D_i + \mu_i d_j) \eta_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{m} (\alpha_i + \lambda_i D_i + \mu_i d_j) \eta_{ij} - \sum_{i=1}^{n} (\alpha_i + \mu_i, \tau) \eta_{ij}$

(27)

واحد آماری 1.

با توجه به نتایج محاسباتی روش ابنکاری پیشنهادی (جدول 2)، این روش عملکرد مطلوبی را از خود نشان می‌دهد. مثلاً درصد فاصله جواب‌های نهایی روش ابنکاری پیشنهادی از راه‌پیمایی برای مثال اعداد کوچک، روش ابنکاری پیشنهادی بهره‌مندی به بهبود آماری می‌باشد. در نتیجه، اعداد این مسئله در سیسیرایی بازگشت واقعیت‌های داده‌ها، به‌ویژه در حوزه‌هایی که به‌دست آمده و بهبود در پیشرفت‌های حاصله‌ها در این راه‌پیمایی فراگیری و افرادی که به‌دست آمده در پیشرفت‌های حاصله‌ها در این راه‌پیمایی

6- نتیجه‌گیری‌ها

1- مسئله نمون‌های برنامه‌ریزی کریستنی پیشنهادی

برای ارزیابی کارایی روش حل پیشنهادی از 18 مسئله نمونه تصادفی تولید شده در پنج کلاس شامل 3 کلاس کوچک (گروه 1)، 3 مسئله منطقی (گروه 2) و 3 مسئله بنزین (گروه 3) 25 تا 50 هر یک 2 عدد استفاده داشته‌ایم. کرایه‌گری گرافی مثال نمونه مورد استفاده به صورت تصادفی از 3 هزار عدد 100000 استانفیلر راه‌پیمایی نمونه تولید شده است.

جدول 3. اعداد مسئله‌های نمونه

<table>
<thead>
<tr>
<th>کرایه‌گری</th>
<th>مسئله‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC</td>
<td>20</td>
</tr>
<tr>
<td>RDC</td>
<td>20</td>
</tr>
<tr>
<td>تعداد مشتریان</td>
<td>20 5 10</td>
</tr>
<tr>
<td>تعداد</td>
<td>20 5 10</td>
</tr>
<tr>
<td>تعداد مشتریان</td>
<td>20 5 10</td>
</tr>
</tbody>
</table>

نتایج محاسباتی

2- تناوب آماری

با توجه به نتایج محاسباتی روش ابنکاری پیشنهادی (جدول 2)، این روش عملکرد مطلوبی را از خود نشان می‌دهد. مثلاً درصد فاصله جواب‌های نهایی روش ابنکاری پیشنهادی از راه‌پیمایی برای مثال اعداد کوچک، روش ابنکاری پیشنهادی بهره‌مندی به بهبود آماری می‌باشد. در نتیجه، اعداد این مسئله در سیسیرایی بازگشت واقعیت‌های داده‌ها، به‌ویژه در حوزه‌هایی که به‌دست آمده در پیشرفت‌های حاصله‌ها در این راه‌پیمایی

6- نتیجه‌گیری‌ها

1- مسئله نمون‌های برنامه‌ریزی کریستنی پیشنهادی

برای ارزیابی کارایی روش حل پیشنهادی از 18 مسئله نمونه تصادفی تولید شده در پنج کلاس شامل 3 کلاس کوچک (گروه 1)، 3 مسئله منطقی (گروه 2) و 3 مسئله بنزین (گروه 3) 25 تا 50 هر یک 2 عدد استفاده داشته‌ایم. کرایه‌گری گرافی مثال نمونه مورد استفاده به صورت تصادفی از 3 هزار عدد 100000 استانفیلر راه‌پیمایی نمونه تولید شده است.

جدول 3. اعداد مسئله‌های نمونه

<table>
<thead>
<tr>
<th>کرایه‌گری</th>
<th>مسئله‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC</td>
<td>20</td>
</tr>
<tr>
<td>RDC</td>
<td>20</td>
</tr>
<tr>
<td>تعداد مشتریان</td>
<td>20 5 10</td>
</tr>
<tr>
<td>تعداد</td>
<td>20 5 10</td>
</tr>
<tr>
<td>تعداد مشتریان</td>
<td>20 5 10</td>
</tr>
</tbody>
</table>

نتایج محاسباتی

2- تناوب آماری

با توجه به نتایج محاسباتی روش ابنکاری پیشنهادی (جدول 2)، این روش عملکرد مطلوبی را از خود نشان می‌دهد. مثلاً درصد فاصله جواب‌های نهایی روش ابنکاری پیشنهادی از راه‌پیمایی برای مثال اعداد کوچک، روش ابنکاری پیشنهادی بهره‌مندی به بهبود آماری می‌باشد. در نتیجه، اعداد این مسئله در سیسیرایی بازگشت واقعیت‌های داده‌ها، به‌ویژه در حوزه‌هایی که به‌دست آمده در پیشرفت‌های حاصله‌ها در این راه‌پیمایی

6- نتیجه‌گیری‌ها

1- مسئله نمون‌های برنامه‌ریزی کریستنی پیشنهادی

برای ارزیابی کارایی روش حل پیشنهادی از 18 مسئله نمونه تصادفی تولید شده در پنج کلاس شامل 3 کلاس کوچک (گروه 1)، 3 مسئله منطقی (گروه 2) و 3 مسئله بنزین (گروه 3) 25 تا 50 هر یک 2 عدد استفاده داشته‌ایم. کرایه‌گری گرافی مثال نمونه مورد استفاده به صورت تصادفی از 3 هزار عدد 100000 استانفیلر راه‌پیمایی نمونه تولید شده است.

جدول 3. اعداد مسئله‌های نمونه

<table>
<thead>
<tr>
<th>کرایه‌گری</th>
<th>مسئله‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC</td>
<td>20</td>
</tr>
<tr>
<td>RDC</td>
<td>20</td>
</tr>
<tr>
<td>تعداد مشتریان</td>
<td>20 5 10</td>
</tr>
<tr>
<td>تعداد</td>
<td>20 5 10</td>
</tr>
<tr>
<td>تعداد مشتریان</td>
<td>20 5 10</td>
</tr>
</tbody>
</table>
جدول 4. نتایج محاسباتی مسائل نمونه در ابعاد کوچک

<table>
<thead>
<tr>
<th>شماره مسئله</th>
<th>شماره سرگرمی</th>
<th>برنامه</th>
<th>زمان نقص</th>
<th>جواب نهایی</th>
<th>زمان نقص</th>
<th>برنامه</th>
<th>زمان نقص</th>
<th>جواب نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>2.81%</td>
<td>266</td>
<td>10476.58</td>
<td>3.15%</td>
<td>51</td>
<td>10510.91</td>
<td>22</td>
<td>10189.93</td>
</tr>
<tr>
<td>102</td>
<td>3.69%</td>
<td>196</td>
<td>11207.07</td>
<td>3.69%</td>
<td>41</td>
<td>11207.22</td>
<td>14</td>
<td>10808.39</td>
</tr>
<tr>
<td>103</td>
<td>4.03%</td>
<td>270</td>
<td>10195.08</td>
<td>4.03%</td>
<td>49</td>
<td>10195.08</td>
<td>12</td>
<td>9800.13</td>
</tr>
<tr>
<td>104</td>
<td>2.74%</td>
<td>202</td>
<td>11476.88</td>
<td>3.67%</td>
<td>36</td>
<td>11580.88</td>
<td>16</td>
<td>11170.91</td>
</tr>
<tr>
<td>105</td>
<td>2.94%</td>
<td>182</td>
<td>11571.88</td>
<td>3.24%</td>
<td>38</td>
<td>11605.38</td>
<td>20</td>
<td>11241.17</td>
</tr>
<tr>
<td>106</td>
<td>4.27%</td>
<td>261</td>
<td>12876.85</td>
<td>4.27%</td>
<td>56</td>
<td>12876.85</td>
<td>18</td>
<td>12349.53</td>
</tr>
<tr>
<td>107</td>
<td>3.98%</td>
<td>248</td>
<td>12916.40</td>
<td>4.56%</td>
<td>53</td>
<td>12987.96</td>
<td>17</td>
<td>12421.54</td>
</tr>
<tr>
<td>108</td>
<td>2.46%</td>
<td>218</td>
<td>10377.43</td>
<td>3.85%</td>
<td>42</td>
<td>10518.21</td>
<td>16</td>
<td>10128.27</td>
</tr>
<tr>
<td>109</td>
<td>4.11%</td>
<td>169</td>
<td>11102.61</td>
<td>4.11%</td>
<td>37</td>
<td>11102.08</td>
<td>21</td>
<td>10664.31</td>
</tr>
<tr>
<td>110</td>
<td>3.08%</td>
<td>324</td>
<td>13972.51</td>
<td>4.37%</td>
<td>61</td>
<td>14147.32</td>
<td>24</td>
<td>13554.97</td>
</tr>
<tr>
<td>میانگین</td>
<td>3.41%</td>
<td>233.58</td>
<td>11617.33</td>
<td>3.89%</td>
<td>46.40</td>
<td>11673.19</td>
<td>18.00</td>
<td>11232.92</td>
</tr>
</tbody>
</table>

جدول 5. نتایج محاسباتی مسائل نمونه در ابعاد متوسط

<table>
<thead>
<tr>
<th>شماره مسئله</th>
<th>شماره سرگرمی</th>
<th>برنامه</th>
<th>زمان نقص</th>
<th>جواب نهایی</th>
<th>زمان نقص</th>
<th>برنامه</th>
<th>زمان نقص</th>
<th>جواب نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>4.20%</td>
<td>1029</td>
<td>15682.52</td>
<td>5.53%</td>
<td>116</td>
<td>15883.17</td>
<td>33</td>
<td>15050.86</td>
</tr>
<tr>
<td>202</td>
<td>4.47%</td>
<td>956</td>
<td>13916.00</td>
<td>6.08%</td>
<td>109</td>
<td>14130.84</td>
<td>37</td>
<td>13320.93</td>
</tr>
<tr>
<td>203</td>
<td>2.41%</td>
<td>893</td>
<td>14443.26</td>
<td>4.91%</td>
<td>123</td>
<td>14795.35</td>
<td>36</td>
<td>14102.9</td>
</tr>
<tr>
<td>204</td>
<td>2.69%</td>
<td>1108</td>
<td>16292.52</td>
<td>5.53%</td>
<td>127</td>
<td>16742.78</td>
<td>33</td>
<td>15865.42</td>
</tr>
<tr>
<td>205</td>
<td>4.89%</td>
<td>944</td>
<td>9986.84</td>
<td>4.89%</td>
<td>135</td>
<td>9864.84</td>
<td>29</td>
<td>9404.95</td>
</tr>
<tr>
<td>206</td>
<td>5.15%</td>
<td>1011</td>
<td>13859.33</td>
<td>6.24%</td>
<td>114</td>
<td>13730.81</td>
<td>25</td>
<td>12924.33</td>
</tr>
<tr>
<td>207</td>
<td>4.23%</td>
<td>1229</td>
<td>18331.71</td>
<td>6.39%</td>
<td>131</td>
<td>18711.46</td>
<td>42</td>
<td>17587.61</td>
</tr>
<tr>
<td>208</td>
<td>3.54%</td>
<td>1020</td>
<td>17199.97</td>
<td>5.84%</td>
<td>134</td>
<td>17582.24</td>
<td>32</td>
<td>16612.9</td>
</tr>
<tr>
<td>209</td>
<td>4.01%</td>
<td>1039</td>
<td>14450.99</td>
<td>4.98%</td>
<td>118</td>
<td>14585.82</td>
<td>34</td>
<td>13893.87</td>
</tr>
<tr>
<td>210</td>
<td>3.92%</td>
<td>996</td>
<td>16569.19</td>
<td>6.13%</td>
<td>122</td>
<td>16920.97</td>
<td>38</td>
<td>15943.63</td>
</tr>
<tr>
<td>میانگین</td>
<td>3.95%</td>
<td>1022.52</td>
<td>15034.03</td>
<td>5.65%</td>
<td>122.90</td>
<td>15294.83</td>
<td>33.90</td>
<td>14470.66</td>
</tr>
</tbody>
</table>

در طرف مقابل، روش فراکاتوری پیشنهادی است که مسیریت محاسباتی بهتری نسبت به روش اینکاری پیشنهادی خود ارائه دارد. مانگین درصد فاصله جواب نهایی روش فراکاتوری پیشنهادی از کران پایین برای مدل ابعاد متوسط است. در مدل ابعاد متوسط که زمان مدت وارد شده در روش فراکاتوری پیشنهادی نسبت به زمان حالت روش اینکاری پیشنهادی بتواند با توجه به میانگین استاندارد سرگرمی مکان‌پذیری قابل توجهی است.
پیشنهادی دارای میانگین خطا 0/99 درصدی و میانگین زمان حل 12/748 تا این است که در جدول زیر مشاهده شود:

<table>
<thead>
<tr>
<th>شماره مستند</th>
<th>کران بالای روش</th>
<th>زمان محاسبه (ثانیه)</th>
<th>جواب نهایی</th>
<th>زمان محاسبه (ثانیه)</th>
<th>جواب نهایی</th>
<th>شماره مستند</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>4.68%</td>
<td>2262</td>
<td>31442.16</td>
<td>6.86%</td>
<td>179</td>
<td>32095.47</td>
</tr>
<tr>
<td>*</td>
<td>4.36%</td>
<td>1987</td>
<td>18312.49</td>
<td>6.65%</td>
<td>171</td>
<td>18714.24</td>
</tr>
<tr>
<td>*</td>
<td>4.94%</td>
<td>2300</td>
<td>27775.81</td>
<td>7.03%</td>
<td>187</td>
<td>28328.43</td>
</tr>
<tr>
<td>*</td>
<td>5.35%</td>
<td>2234</td>
<td>34749.13</td>
<td>6.69%</td>
<td>176</td>
<td>35191.55</td>
</tr>
<tr>
<td>*</td>
<td>3.39%</td>
<td>2246</td>
<td>24679.07</td>
<td>6.73%</td>
<td>182</td>
<td>25477.25</td>
</tr>
<tr>
<td>*</td>
<td>3.24%</td>
<td>2151</td>
<td>26445.71</td>
<td>7.41%</td>
<td>196</td>
<td>27514.99</td>
</tr>
<tr>
<td>*</td>
<td>4.13%</td>
<td>2187</td>
<td>18346.01</td>
<td>6.63%</td>
<td>184</td>
<td>18786.64</td>
</tr>
<tr>
<td>*</td>
<td>5.89%</td>
<td>2269</td>
<td>25198.33</td>
<td>7.83%</td>
<td>189</td>
<td>25660.91</td>
</tr>
<tr>
<td>*</td>
<td>3.08%</td>
<td>2143</td>
<td>20186.97</td>
<td>6.23%</td>
<td>193</td>
<td>20803.44</td>
</tr>
<tr>
<td>*</td>
<td>5.77%</td>
<td>2560</td>
<td>26337.89</td>
<td>7.56%</td>
<td>206</td>
<td>26784.45</td>
</tr>
<tr>
<td>*</td>
<td>4.81%</td>
<td>2517</td>
<td>25684.62</td>
<td>7.22%</td>
<td>221</td>
<td>26274.26</td>
</tr>
<tr>
<td>*</td>
<td>2.99%</td>
<td>2716</td>
<td>23846.25</td>
<td>6.79%</td>
<td>209</td>
<td>28872.31</td>
</tr>
<tr>
<td>*</td>
<td>3.71%</td>
<td>2875</td>
<td>30506.13</td>
<td>7.12%</td>
<td>233</td>
<td>31508.95</td>
</tr>
<tr>
<td>*</td>
<td>5.51%</td>
<td>2777</td>
<td>35691.47</td>
<td>8.31%</td>
<td>224</td>
<td>36639.27</td>
</tr>
<tr>
<td>*</td>
<td>4.02%</td>
<td>2568</td>
<td>26480.03</td>
<td>7.38%</td>
<td>219</td>
<td>27335.09</td>
</tr>
<tr>
<td>15/15</td>
<td>4.39%</td>
<td>2372.78</td>
<td>26645.47</td>
<td>7.10%</td>
<td>197.93</td>
<td>27332.48</td>
</tr>
</tbody>
</table>

مقایسه مقایسه داده هدف دو روش با یکدیگر نشان دهنده برتری روش فرنگیکاری در اکثریت مسائل با ابعاد متوسط و بزرگ است (9 سطح در 10 سطح حذف در ابعاد متوسط و 15 سطح از 15 سطح حذف در ابعاد بزرگ). در این آزمایش فرآیند روش فرنگیکاری نسبت به روش ابتدایی استفاده می‌شود. در پیشنهاد این آزمایش روش فرنگیکاری به بهینه‌سازی نسبت داده می‌شود. این نتایج نشان می‌دهد که روش فرنگیکاری، پیشنهادی ممکن‌ترین انتخاب نسبت به روش فرنگیکاری در سایر بخش‌ها و مسائل بهبود زمان بهبود زمان را بهبود می‌بخشی.

حل ابتکاری و کران پایین برای مسئله مکان‌بندی-مسیریابی دو رده‌ای

از مسئله حداکثر درخت ویژوالنیا، و در این مقاله گزارشی از مسئله مکان‌بندی-مسیریابی انجام شد. در پایان با استفاده از کران پایین پیشنهادی کارایی روش‌های حل ابتکاری و فرآیندهای بیشماری شاخص داده شد. بر طبق نتایج محاسباتی، روش‌های جدیدی که با جواب‌های داخلی از روش‌های ابتکاری، کارایی پیشنهادی سرعت بالاتری نسبت به روش آنگاری زیستی‌های تحت حضور پاک‌پذیر روش‌های فرآیندی همچون الگوریتم‌های جستجویی متنوع، بهبود جواب‌های الگوریتم‌های ابتکاری و فرآیندهای پیشنهادی با استفاده از گسترش محدودیتی تحت حضور پاک‌پذیر کران‌های پایین‌تری بر سر ابعاد بزرگ‌تر حل‌رسان‌های مسیریابی و نیز بررسی ابعاد بزرگ‌تر حل‌رسان مسئله مکان‌بندی-مسیریابی همچون سایل مسئله مکان‌بندی-مسیریابی با زیست‌محیطی پرخورهای زمینی و بالا رسمی و تحلیل نیز سایل‌های بیکاری با دیگر تحقیقات لجستیک مانند موجودی داستان.

مراجع

