تعیین میزان بهینه عوامل موثر در گشتاور چرخ‌خیشی کاسه‌چرخ خودرو با استفاده از روش شناسی رونده پایخ و الگوریتم زنی‌تیک

مقصود امیری، جمشید صالحی، صدقیانی، روزبه عزیزمحمدی و حسن هادی پور

چکیده:

با توجه به نقص حساس مجموعه اکسل بالاخص کاسه‌چرخ خودرو، به دلیل مرتبط بودن
آن با ایمنی سرنوشتی، بررسی فرآیند تولید و مواد تولید و انجام آزمایشات کنترلی کیفی
این مراحل از همین‌های بروزورد می‌باشد. در این مقاله به توجه به بهبود اپلیکاسیون
عامل اصلی قطع تجربی قسمت کاسه نمود، قطر داخلی کاسه نمود و گشتاور مهره قفلی به
عندوان متفاوتی متغیر مستقل، می‌باشد. بر این دارایی میزان گشتاور خردکاسه‌چرخ خودرو را
(اختوان متغیر پایخ)، به کمک مداخله محرک در طراحی آزمایشات و روش سطح
پایخ بهینه نمایند. در ادامه میزان گشتاور بهینه با استفاده از مدل برانماریزی غیرخطی
محاسبه و چهت بررسی آن به جواب از الگوریتم زنی‌تیک مقابله شده‌اند.

کلمات کلیدی:

طرح‌آزمایشات، روش شناسی، رونده پایخ، الگوریتم، گشتاور چرخ‌خیشی کاسه‌چرخ

1. مقدمه

طرح‌آزمایشات یکی از ابزارهای قوی در اصلاح و بهبود عملکرد
فرآیندهای تولید می‌باشد که با تفکر اهداف یک آزمایش و انتخاب
عوامل یافته‌ای نظری یک مدل درک شرایط عملیاتی سطح
یک مدل اهداف منظور در طراحی آزمایشات و روش شناسی
پایخ که غالباً به تطور متوازن انجام می‌شوند، به ترتیب یافتند از
استخراج عوامل متغیرهایی که در سطح پایخ موثرند و تنظیم
حدود این عوامل با متغیرها که بهترین میزان پایخ یا منجر شود.

تاریخ وصول: ۸۸/۱۲۳۲
تاریخ نوبت: ۸۹/۱۲۱۷

نویسندگان س毛孔 مقاله: دکتر مقصود امیری، استادیار و عضو هیات علمی
دکتر جمشید صالحی، صدقیانی، استاد و عضو هیات علمی دانشکده مدیریت و
جراحات دانشگاه علوم پزشکی
روزبه عزیزمحمدی، دانشجو دکتری مهندسی صنایع دانشگاه پام تبر زرتشتی.
حسن هادی پور، کارشناس ارشد مهندسی صنایع، دانشگاه آزاد اسلامی واحد
کرویت
7. توضیح مختصری از فرآیند موتورده‌گشتوار جرخ

توییک کاسه جرخ کیزی از آژاری ایستیق در این مجموعه می‌باشد، این قطعه دارای 7 عدد بی‌پدیده که توسط این بی‌پدیده بر روی طبق قرار می‌گیرد.

8. مجموعه مقياس مهندسی صنایع و مدیریت تویید

شماره 2، سال 1399، صفحه 42-43
5. انتخاب طرح آزمایش

گام مهم دیگر در انجام تحقیق و انتخاب طرح آزمایش است. برای انجام این مرحله، بررسی مقالاتی که با موضوع سیستم های رسانه های اطلاعاتی ارائه می‌شود و به ویژه در اثر مطالعه و تجربه، می‌تواند در انتخاب طرح آزمایش کمکی برای ما باشد. این مرحله شامل بررسی سیستم های اولیه، انتخاب سیستم مورد نظر و اقدامات بهینه برای اجرای آزمایش‌های رفتاری است.

در رابطه فوق، مدلی انتخاب طرح آزمایش به شکل زیر نمایش داده شده است:

\[Y = \beta_0 + \sum_{i=1}^{n} \beta_i x_i + \varepsilon \]

\[x_i = \frac{2(X_i - \mu_X)}{\sigma_i^2} \]

به طوریکه \(X_i \) اعداد واقعی عامل \(X \) در دیمانسیون مربوطه، \(\mu_X \) و \(\sigma_i \) میان آمار سطح بالا و بالینی از میان‌رسی خاصیت سیستم مهم برای انتخاب طرح راه‌های مثبت است. به عنوان برنامه‌های راهبردی، تعداد از چنین سیستم‌هایی که به‌عنوان ابزار نمایشگر سیستم‌های هوشمند و به‌عنوان سازماندهی و سیستم‌های سازنده درست از طرف دیگر به درک حرفه‌ای این مدل می‌باشد.

جدول 1. سطح عوامل

<table>
<thead>
<tr>
<th>عامل مورد</th>
<th>سطح بالا</th>
<th>سطح بالین</th>
<th>متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>قطر توپی قفسه کاسه نهاد</td>
<td>38.938</td>
<td>39.0</td>
<td>38.938</td>
</tr>
<tr>
<td>قطر داخلی کاسه نهاد</td>
<td>38.938</td>
<td>39.0</td>
<td>38.938</td>
</tr>
<tr>
<td>کشتار مرها قفسه</td>
<td>0.4</td>
<td>0.7</td>
<td>0.64</td>
</tr>
</tbody>
</table>

4. انتخاب متنگر پایش

با توجه به اینکه متنگر پایش با پایین بسته‌های فاصله‌های مختلف در یک فرصت جهانی داده شده است، بررسی‌ها در دسته‌بندی این‌ها انجام شده است. این مطالعه نشان می‌دهد که میزان عوامل فاصله ایمنی و توانایی فیزیکی کشتاریراهاندازی باعث نجات و توانایی فیزیکی کشتاریراهاندازی باعث شده است. این نتایج به طور کلی این‌ها در توجه به آزمایش‌های کشنده و پایداری که در این بخش انجام شده است.
جدول ۲: حذف سطح و نقط مرجعی و محوری برای متغیر پاسخ اول

<table>
<thead>
<tr>
<th>Coded level (X_j)</th>
<th>Effective factor</th>
<th>Un coded value</th>
<th>Lower level (-)</th>
<th>Center</th>
<th>Upper level (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>β</td>
<td>γ</td>
<td>δ</td>
<td>ϵ</td>
</tr>
<tr>
<td>X_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

داده‌های جدول زیر (جدول ۳) مقادیر گشتاور کاسه چرخ (متغیر پاسخ) را نشان می‌دهند.

جدول ۳: اطلاعات آزمایش و ارزش مشاهده شده پاسخ

<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>کاسه چرخ (γ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.3</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8.5</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8.5</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

بررسی مستقل بودن

با توجه به محاسبه ضریب همبستگی دو دوری متفاوت‌ها و توسط نرم افزار MINITAB14، قدرت نشان‌دهنده‌ی کاسه چرخ در جدول ۳ ارزش‌های بالایی داشته و محوریت متغیر پاسخ با اینکه از ابزار اندازه‌گیری، مقادیر گشتاور کاسه چرخ (متغیر پاسخ) را نشان می‌دهند.

باید توجه داشته که برای محققین باید از ابزار اندازه‌گیری، مقادیر گشتاور کاسه چرخ (متغیر پاسخ) را نشان می‌دهند.
贾هولی در این‌جا مقادیر معبران و می‌تواند شامل مقدار معبران و می‌توانده
جدول ۷ مدل زیگرسون متغیر پایشی

<table>
<thead>
<tr>
<th>مدل</th>
<th>مجموع مربعات کاهش چرخ</th>
<th>درجه آزادی</th>
<th>میانگین مربعات</th>
<th>F-مقدار</th>
<th>پیوستگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل</td>
<td>۴۸۴.۷۳۹۱</td>
<td>۷</td>
<td>۶۹.۲۴۸۴</td>
<td>۵۹.۵۷</td>
<td><۰.۰۰۰۱</td>
</tr>
<tr>
<td>خطای</td>
<td>۱۲.۷۸۷۲</td>
<td>۱۱</td>
<td>۱.۱۶۲۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کل</td>
<td>۴۹۷.۵۲۶۳</td>
<td>۱۸</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficient of correlation (R^2).۰۹۷۴۲۹۸
Coeficient of determination (adjusted R^2).۰۹۵۷۹
Coeficient of variation ۹.۶۶۲۹۳۹%

۱۰. مدل زیگرسون متغیر پایشی Y

مدل زیگرسون گشتاور چرخی کمکی چرخ به صورت زیر می‌باشد:

$$ Y = 8.802 + 1.743 x_1 + 1.3 x_2 + 0.237 x_2^2 + 3.434 x_1 - 3.689 x_2 + 1.678 x_3 - 2.312 x_1 x_2 $$

۱۱. بررسی واریانس خطا

اگر مدل درست باشد و پیش‌بینه‌ها برقرار باشد نماده‌ها به‌یادی به شکل متغیر دیگری از جمله متغیر پایش وابسته نباشند. با توجه به نمودار پراکنش خطا در مقابل مقادیر پیش بینی شده (شکل ۳)، خطاهای هم‌واری نبوده.

۱۲-۱. مدل برآورده شده e_i در مقابل مقادیر متغیر پایشی

با توجه به تجزیه و تحلیل واریانس و نمودار احتمالات نرمال ارائه شده در متغیر پایش Y اثرات اصلی x_1، x_2 و اثرات مقابل درون‌ای $x_1 x_2$ و $x_1 x_3$ نموداری از گفتارکننده چرخ باعث نموداری توزیع نرمال می‌گردد.

۱۳-۱. بررسی کفاده مدل

با فرض اینکه خطایها دارای توزیع نرمال با میانگین صفر باشد باهم نمودار احتمال نرمال مانده‌ها در صورتی که این نمودار شیب‌های ممیزان پیشین به صورت میانگین (شکل ۳) بصورت مشابهی باشند می‌باشد.

شکل ۳. نمودار پراکنش مشاهده شده (e_i) در مقابل مقادیر متغیر پایشی

- شکل ۴. نمودار نقطه ای احتمال نرمال مانده‌ها برای متغیر پایشی

- شکل ۵. پراکنش مشاهده شده (e_i) در مقابل مقادیر پایشی

- شکل ۶. نمودار نقطه ای احتمال نرمال مانده‌ها برای متغیر پایشی

- شکل ۷. پراکنش مشاهده شده (e_i) در مقابل مقادیر پایشی

- شکل ۸. نمودار نقطه ای احتمال نرمال مانده‌ها برای متغیر پایشی

- شکل ۹. پراکنش مشاهده شده (e_i) در مقابل مقادیر پایشی

- شکل ۱۰. نمودار نقطه ای احتمال نرمال مانده‌ها برای متغیر پایشی

- شکل ۱۱. پراکنش مشاهده شده (e_i) در مقابل مقادیر پایشی

- شکل ۱۲. نمودار نقطه ای احتمال نرمال مانده‌ها برای متغیر پایشی

- شکل ۱۳. پراکنش مشاهده شده (e_i) در مقابل مقادیر پایشی

- شکل ۱۴. نمودار نقطه ای احتمال نرمال مانده‌ها برای متغیر پایشی

- شکل ۱۵. پراکنش مشاهده شده (e_i) در مقابل مقادیر پایشی

- شکل ۱۶. نمودار نقطه ای احتمال نرمال مانده‌ها برای متغیر پایشی
جدول 9 متغیر ورودی برای نقطه بهینه پویش‌های Lingo

<table>
<thead>
<tr>
<th>شماره اجرا</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0062</td>
<td>0.0452</td>
<td>0.7156</td>
<td>9.9992</td>
</tr>
<tr>
<td>2</td>
<td>0.0888</td>
<td>-0.1950</td>
<td>0.0412</td>
<td>9.9992</td>
</tr>
<tr>
<td>3</td>
<td>0.8081</td>
<td>0.5383</td>
<td>-0.0619</td>
<td>9.9974</td>
</tr>
<tr>
<td>4</td>
<td>-0.5256</td>
<td>-0.9798</td>
<td>-0.7910</td>
<td>9.9940</td>
</tr>
<tr>
<td>5</td>
<td>0.5673</td>
<td>0.4596</td>
<td>0.3972</td>
<td>9.9970</td>
</tr>
<tr>
<td>6</td>
<td>0.0732</td>
<td>0.2673</td>
<td>0.9628</td>
<td>9.9930</td>
</tr>
<tr>
<td>7</td>
<td>0.6286</td>
<td>0.6745</td>
<td>0.6573</td>
<td>9.9933</td>
</tr>
<tr>
<td>8</td>
<td>0.2982</td>
<td>0.5224</td>
<td>0.9965</td>
<td>9.9920</td>
</tr>
<tr>
<td>9</td>
<td>0.5272</td>
<td>0.5034</td>
<td>0.5669</td>
<td>9.9946</td>
</tr>
<tr>
<td>10</td>
<td>-0.2395</td>
<td>-0.5512</td>
<td>-0.1261</td>
<td>9.9956</td>
</tr>
<tr>
<td>11</td>
<td>-0.0729</td>
<td>-0.1275</td>
<td>0.5261</td>
<td>9.9893</td>
</tr>
<tr>
<td>12</td>
<td>-0.5219</td>
<td>-0.7046</td>
<td>0.0681</td>
<td>9.9945</td>
</tr>
<tr>
<td>13</td>
<td>-0.4656</td>
<td>-0.6783</td>
<td>0.0286</td>
<td>9.9993</td>
</tr>
<tr>
<td>14</td>
<td>-0.2333</td>
<td>-0.4517</td>
<td>0.1262</td>
<td>9.9998</td>
</tr>
<tr>
<td>15</td>
<td>0.2315</td>
<td>-0.0336</td>
<td>0.0960</td>
<td>9.9974</td>
</tr>
<tr>
<td>16</td>
<td>-0.0766</td>
<td>0.0626</td>
<td>0.8900</td>
<td>9.9988</td>
</tr>
<tr>
<td>17</td>
<td>0.7335</td>
<td>0.7743</td>
<td>0.6122</td>
<td>9.9982</td>
</tr>
<tr>
<td>18</td>
<td>0.5989</td>
<td>0.6520</td>
<td>0.6798</td>
<td>9.9952</td>
</tr>
<tr>
<td>19</td>
<td>-0.4549</td>
<td>-0.4694</td>
<td>0.4818</td>
<td>9.9967</td>
</tr>
<tr>
<td>20</td>
<td>0.1511</td>
<td>-0.3370</td>
<td>-0.5740</td>
<td>9.9964</td>
</tr>
</tbody>
</table>

Max: 9.9998
Mean: 9.9960

GA

جدول 8 نتایج آزمایشات

<table>
<thead>
<tr>
<th>متغیر های ورودی (کد شده)</th>
<th>شماره اجرا</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1 = 0.75 = X_1 = 38.992mm</td>
<td>1</td>
<td>0.0062</td>
<td>0.0452</td>
<td>0.7156</td>
<td>9.9992</td>
</tr>
<tr>
<td>x_2 = 0.75 = X_2 = 38.992mm</td>
<td>2</td>
<td>0.0888</td>
<td>-0.1950</td>
<td>0.0412</td>
<td>9.9992</td>
</tr>
<tr>
<td>x_3 = 0.65 = X_3 = 0.65kg m</td>
<td>3</td>
<td>0.8081</td>
<td>0.5383</td>
<td>-0.0619</td>
<td>9.9974</td>
</tr>
</tbody>
</table>

$Y = 10kg . cm$

14. بهینه‌سازی مسئله با استفاده از الگوریتم زننیک

ارایه کننده جهت بررسی مطلق بودن جواب بهینه به وسیله Lingo و GA

جدول 10 پاسخ‌های بدست آمده برای نقطه بهینه به وسیله Lingo و GA

<table>
<thead>
<tr>
<th>Lingo optimization</th>
<th>GA optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>10</td>
</tr>
</tbody>
</table>

15. نتیجه‌گیری

در این مقاله ضمن بررسی و تغییر عوامل موثر در میزان گشتاور چرخشی کاسه چرخ خودرو، این عوامل (فشار نتویی، قسمت کاسه...) بررسی گردید. حاصل بدست آمده از الگوریتم Lingo و GA در جدول 10 نشان داده شده است. معادله جواب‌های ارائه‌شده در جدول 10 به لحاظ نزدیک بودن مقادیر آن با جواب به دست امده توسط Lingo و GA انتخاب گردید.
Under Microirrigation", Agricultural water management, 41, 1999, pp. 11-19

