توسعه یک سیستم تشخیص مشتری تلفیقی مبتنی بر درخت

گرگسیونی هرس شده و شبکه عصبی پهبودیافته

علیرضا سروش و اردشیر بحرینی‌نژاد*

چکیده:

در دنبالی رقابتی آمریکایی، شبیه‌سازی جذب مشتری یکی از با اهمیت‌ترین جویه‌های کاربردی
داده‌گاکی بوده و پروژه است که یکی از مهم‌ترین ابعاد آن بیشترین رفرش خرد مشتری است.
زیرا، بیشترین خود می‌تواند به توجه استراتژی‌های بازاریابی، فناوری و صرف‌کار، منابع کمک
تعداد ابزار یک سیستم تشخیص مشتری (CRS) به دلیل وجود زیادی ویژگی در دسترس
طرح کاری بسیار مشکل است. با بحث و نظر کارکنان، به‌طور کلی در بسیاری از هر مهارت
پیچیدگی کم و قابلیت پیش‌بینی خوب را داشته باشند. از این رو، ممکن است، توجه یک
HCRS (نقد محساباتی گزارش و استاندارد استوار) و CRS تلفیقی (HCRS) طراحی و هم‌کارهای سیستم مزدک با ابزار یک دیجیتال گرگسیونی هرس شده و
یک شبکه عصبی بیشتریناد پهبودیافته (IFFNN) گزینه‌های مناسب است. اینچنین، شناسایی مشتری یکی از دقت‌های به‌وجود آمده است،
پیچیدگی‌ها را شامل می‌شود. این است. از این رو، نشان داده که

کلمات کلیدی

انتخاب ویژگی،
بدیان‌بیان،
درخت رگرسیونی هرس شده،
سیستم تشخیص مشتری,
شبکه عصبی پهبودیافته

1. مقدمه

مساله انتخاب ویژگی، یک مساله مستقل در نظریه تشخیص الگو
بوده و تاکنون حل نشده است. اکنون انتخاب ویژگی‌ها به عنوان
مساله‌ای از به‌هم‌سازی ترکیب کلی در پایگاه ماسنی، شناسایی
شباهت که تعداد ویژگی‌ها را کاهش داده و داده‌های غیرمتریپی و
زاید را به‌طور مجدد که هزار ویژگی در جویه‌های مختلفی که
هزار ویژگی در دسترس است، سیاسی مورد توجه قرار گرفته است
هدف اصلی انتخاب ویژگی، شناسایی زیرمجموعه‌ای از ویژگی‌ها است.

2. Customer Relationship Management

* email: bahreininejad@modares.ac.ir

بحث نویسنده سیستم مقاله: دکتر اردشیر بحرینی‌نژاد، استاد مهندسی صنایع
baireininejad@modares.ac.ir

مراجع:

a.soroush@modares.ac.ir

مرکز مهندسی، مدرسه علوم تحقیقاتی، تربیت مدرس
bhreininejad@modares.ac.ir

فاوی ال‌سی‌اس، دانشجوی دکتری مهندسی صنایع، فیزیک و مهندسی، تربیت

نویسندگان مقاله: دکتر اردشیر بحرینی‌نژاد، استاد مهندسی صنایع
توسعی یک سیستم تشخیص مشتری لفظی مبتنی بر درخت رگرسیونی هر سده...
هر دو عضو، مشترک توسط CRM ها را دارد به‌طوری‌که هر دو بخش CRM از هر دو فرآیند مشترک است. این می‌تواند به عنوان یک سیستم تضییح مشارکتی و ادامه CRM افرادی که از هر دو CRM نرخ هدف داشته‌اند محسوب شود.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.

با توجه به اینتکنیف قابلیت سیستم CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است. این CRM در انتخاب کلید اکثریت سیستم CRM را در این حیطه با هر دو CRM مشترک است.
1. بطور محاسبه‌ای نش هدف مشاهده هش در میان مشتریان مناسب برسی می‌شود. گذار دنباله‌ی آزموزی در توسعه مدل
HCAs مجموعه داده آزموز در توسعه مدل استفاده می‌شود و
مجموعه داده آزموزی منحنا برای پیش‌بینی استفاده می‌شود.

2. انتخاب ویژگی‌ها به طراحی به‌دست‌آمده

هرس شده

3-1 درخت رگرسیونی هرس شده

بستری‌های تصمیم یکی از ساده‌ترین و موثرترین الگوریتم‌های
یادگیری در داده‌گوگی و نواگردهای به‌صورت مناسب درختی
به این دلیل شناخته شده که توانایی قابل توجهی از این الگوریتم
مهاجرتی‌های مناسبی به‌زودی مشاهده شده است. یک مثال
تکنیکی برای ارزیابی اظهار، کشف کلاه‌پردازی و مدیریت انتقال
به‌دست‌آمده است. گیچه درخت رگرسیونی هرس شده

classification and regression tree

\text{CART}
2- Cross-Validation

\[\alpha = \frac{R(t) - R(T_i)}{N_d(t) - 1} \] (3)

where \(N_d(t) \) is the number of samples in the training set, \(R(T_i) \) is the error rate on the training set, and \(R(t) \) is the error rate on the test set.

2.3- Pruning Algorithm

\[R(t) = e(t)p(t) \] (1)

where:

\[e(t) = \frac{N(t)}{n} \] (2)

\[p(t) = \frac{N(t)}{n} \]

\[k = \arg \min CV(k) \] (5)

The Cross-Validation (CV) error is used to estimate the generalization error of a model.

\[CV(k) = \frac{\sum_{i=1}^{n} N(t_i)}{n} \]

where \(n \) is the number of folds in the cross-validation.

The pruning algorithm is applied to select the optimal number of features.

\[R_0(T_i) < R_0(T_{i-1}) \]

where \(R_0(T) \) is the error rate of the model before pruning.

The pruning process is repeated until the error rate does not decrease.

References

1. Cross-Validation
2. Leave-one-out
3. Goodness-of-fit
منتخب انتخابی خواهند بود که بهترین عملکرد را داشته، بدان
معنی که در خصوصیت هر کدام از این انتخابات می‌شود.
• چهار هر متن درخت، معیار مبتنی بر اندازه گیری شده بیان
برده می‌شود.
• زمانی که نمونه از مجموعه آزمون‌های خودش می‌شود، انتخاب
مبدل بهتر از واسک اعتبار مرفوع‌تر از یکی از انجام می‌شود. برای
تعداد میزان محسوس‌تری را به دانشی طرف نهایی کننده
نیاز دارد. با اینکه با وجود هزینه یک کامپیوتر در واریانس
بازدهی کننده، به صورت تخمینی ناریز است [11].}

3-2 مشخصه‌ها

PRT در قسمتهای قبل نحوه عملکرد PRT به‌عنوان یک ابزار جهت انتخاب
ویژگی‌ها توصیف شده در این بخش، به بیان مشخصه‌ها این جهت
انتقال ویژگی‌ها بر روی موردنکاپی می‌پردازد. مشخصات PRT
که گرفته شده مورد بررسی می‌شود:
• نوع درخت، درخت رگرسیونی است، زیرا نوع متغیر هدف
• عددی است (0، 1).
• از واریس انتخاب 50 تکه‌ای جهت در اجرای واقعی برای
درخت‌ها در استاندارد مشتق شده‌است. مسئوله این
تابع، نمونه را به 50 نمونه می‌کند که به صورت تصادفی انتخاب
شده و تقریباً دارای ترکیبی مشابه هستند، تئوری می‌نماید. برای
هیچ یک از سه منبع، یکی از بهترین استفاده می‌نماید. سپس، اطلاعات کلیه نمونه‌ها را برای محاسبه
هزینه برای کل نمونه‌ها با یکدیگر ترکیب می‌کند. همچنین
برداری شکل خاص استفاده مغز هزینه برداری شاخص
تعداد گره‌های پایانی برای حفر زیر به‌دست آمده و اسکالری شاخص
پتهای سطح برای درخت هر روش محاسبه می‌شود. یک ترتیب
سینی، کوچک‌ترین درختی را تولید می‌کند که در محاسبه کی
خطای استاندارد از زیر‌اختیار هزینه است. متغیرهای

3-5 نتایج

PRT مبتنی بر مشخصه‌های ذیل، درخت رگرسیونی برای
5822 مشتری ترکیبی می‌شود که شامل 55 ویژگی می‌شود. با نگاه به
اندازه درخت می‌توان میزان شدت، یکی از شباهت درختهای محیط مقاله
تویجی را اثبات نماید و نمایندگی مجموعه فاقد زیرکه زیرکه
خیلی به دست ایده‌ها. جهت دستیابی به نوسازی مربوط به صورت
مختصات خواهیم دید. بنابراین، درختی که کمترین هزینه با تعداد
ویژگی کمتر و تعداد گره‌های پایانی کمتر را دارد، انتخاب می‌شود.
شکل 1. نقطه بهینه برای هر درخت رگرسیونی با کمترین هزینه
را نمایش می‌دهد.

![نمودار 1](image_url)

شکل 1. نقطه بهینه برای هر درخت رگرسیونی با کمترین هزینه

رشته بین المللی مهندسی صنایع و مدیریت تویلد
زمستان 1389- جلد 12- شماره 2
197
هماطن‌که در تصویر مشاهده می‌شود، خط ترسیم شده، هزینه
بازار در این اندازه درخیص، را نشان می‌دهد، خط‌خیچین یک
خط‌انداز بی‌سر و دارای از حداقل خط‌ای را می‌کند و مربع
کوکبک بر روی خط‌خیچین هزینه درخیص، را نشان می‌دهد.
می‌کند. درخت کامل شماره ۲۱۶ گره‌پاییِ این هزینه بر
منابع معیار میانگین رعایا برابرِ بزرگ‌ترین‌ها مختلف
محاسبه شده است.

بطور کلی، درخت ۳۲۱ گره دارد که هزینه درخیص به ترتیب که
اندازه درخت رشد می‌کند یعنی مقدار ۳۲۱/۵ یا ۲ گره‌پایی
می‌رسد. کاهش می‌یابد در ادامه، این هزینه همراه با یک روند

جدول ۱. قواعد درخت بعد از مرحله هر یک بی‌پایه.

<table>
<thead>
<tr>
<th>(t)</th>
<th>e(t)</th>
<th>نشان</th>
<th>p(t)</th>
<th>انتخاب</th>
<th>کره (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۵۶۴</td>
<td>۵۶۴</td>
<td>۵۶۴</td>
<td>۵۶۴</td>
<td>۵۶۴</td>
</tr>
<tr>
<td>۲</td>
<td>۴۸۹</td>
<td>۴۸۹</td>
<td>۴۸۹</td>
<td>۴۸۹</td>
<td>۴۸۹</td>
</tr>
<tr>
<td>۳</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
</tr>
<tr>
<td>۴</td>
<td>۴۸۶</td>
<td>۴۸۶</td>
<td>۴۸۶</td>
<td>۴۸۶</td>
<td>۴۸۶</td>
</tr>
<tr>
<td>۵</td>
<td>۴۸۴</td>
<td>۴۸۴</td>
<td>۴۸۴</td>
<td>۴۸۴</td>
<td>۴۸۴</td>
</tr>
<tr>
<td>۶</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
</tr>
<tr>
<td>۷</td>
<td>۴۸۰</td>
<td>۴۸۰</td>
<td>۴۸۰</td>
<td>۴۸۰</td>
<td>۴۸۰</td>
</tr>
<tr>
<td>۸</td>
<td>۴۷۸</td>
<td>۴۷۸</td>
<td>۴۷۸</td>
<td>۴۷۸</td>
<td>۴۷۸</td>
</tr>
<tr>
<td>۹</td>
<td>۴۷۶</td>
<td>۴۷۶</td>
<td>۴۷۶</td>
<td>۴۷۶</td>
<td>۴۷۶</td>
</tr>
<tr>
<td>۱۰</td>
<td>۴۷۴</td>
<td>۴۷۴</td>
<td>۴۷۴</td>
<td>۴۷۴</td>
<td>۴۷۴</td>
</tr>
<tr>
<td>۱۱</td>
<td>۴۷۲</td>
<td>۴۷۲</td>
<td>۴۷۲</td>
<td>۴۷۲</td>
<td>۴۷۲</td>
</tr>
<tr>
<td>۱۲</td>
<td>۴۷۰</td>
<td>۴۷۰</td>
<td>۴۷۰</td>
<td>۴۷۰</td>
<td>۴۷۰</td>
</tr>
<tr>
<td>۱۳</td>
<td>۴۶۸</td>
<td>۴۶۸</td>
<td>۴۶۸</td>
<td>۴۶۸</td>
<td>۴۶۸</td>
</tr>
<tr>
<td>۱۴</td>
<td>۴۶۶</td>
<td>۴۶۶</td>
<td>۴۶۶</td>
<td>۴۶۶</td>
<td>۴۶۶</td>
</tr>
<tr>
<td>۱۵</td>
<td>۴۶۴</td>
<td>۴۶۴</td>
<td>۴۶۴</td>
<td>۴۶۴</td>
<td>۴۶۴</td>
</tr>
</tbody>
</table>

همان‌طور که در تصویر مشاهده می‌شود، خط ترسیم شده، هزینه
برآورده به‌ویژه در این اندازه درخیص، را نشان می‌دهد، خط‌خیچین یک
خط‌انداز بی‌سر و دارای از حداقل خط‌ای را می‌کند و مربع
کوکبک بر روی خط‌خیچین هزینه درخیص، را نشان می‌دهد.
می‌کند. درخت کامل شماره ۲۱۶ گره‌پاییِ این هزینه بر
منابع معیار میانگین رعایا برابرِ بزرگ‌ترین‌ها مختلف
محاسبه شده است.

بطور کلی، درخت ۳۲۱ گره دارد که هزینه درخیص به ترتیب که
اندازه درخت رشد می‌کند یعنی مقدار ۳۲۱/۵ یا ۲ گره‌پایی
می‌رسد. کاهش می‌یابد در ادامه، این هزینه همراه با یک روند

جدول ۱. قواعد درخت بعد از مرحله هر یک بی‌پایه.

<table>
<thead>
<tr>
<th>(t)</th>
<th>e(t)</th>
<th>نشان</th>
<th>p(t)</th>
<th>انتخاب</th>
<th>کره (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۵۶۴</td>
<td>۵۶۴</td>
<td>۵۶۴</td>
<td>۵۶۴</td>
<td>۵۶۴</td>
</tr>
<tr>
<td>۲</td>
<td>۴۸۹</td>
<td>۴۸۹</td>
<td>۴۸۹</td>
<td>۴۸۹</td>
<td>۴۸۹</td>
</tr>
<tr>
<td>۳</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
</tr>
<tr>
<td>۴</td>
<td>۴۸۶</td>
<td>۴۸۶</td>
<td>۴۸۶</td>
<td>۴۸۶</td>
<td>۴۸۶</td>
</tr>
<tr>
<td>۵</td>
<td>۴۸۴</td>
<td>۴۸۴</td>
<td>۴۸۴</td>
<td>۴۸۴</td>
<td>۴۸۴</td>
</tr>
<tr>
<td>۶</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
</tr>
<tr>
<td>۷</td>
<td>۴۸۰</td>
<td>۴۸۰</td>
<td>۴۸۰</td>
<td>۴۸۰</td>
<td>۴۸۰</td>
</tr>
<tr>
<td>۸</td>
<td>۴۷۸</td>
<td>۴۷۸</td>
<td>۴۷۸</td>
<td>۴۷۸</td>
<td>۴۷۸</td>
</tr>
<tr>
<td>۹</td>
<td>۴۷۶</td>
<td>۴۷۶</td>
<td>۴۷۶</td>
<td>۴۷۶</td>
<td>۴۷۶</td>
</tr>
<tr>
<td>۱۰</td>
<td>۴۷۴</td>
<td>۴۷۴</td>
<td>۴۷۴</td>
<td>۴۷۴</td>
<td>۴۷۴</td>
</tr>
<tr>
<td>۱۱</td>
<td>۴۷۲</td>
<td>۴۷۲</td>
<td>۴۷۲</td>
<td>۴۷۲</td>
<td>۴۷۲</td>
</tr>
<tr>
<td>۱۲</td>
<td>۴۷۰</td>
<td>۴۷۰</td>
<td>۴۷۰</td>
<td>۴۷۰</td>
<td>۴۷۰</td>
</tr>
<tr>
<td>۱۳</td>
<td>۴۶۸</td>
<td>۴۶۸</td>
<td>۴۶۸</td>
<td>۴۶۸</td>
<td>۴۶۸</td>
</tr>
<tr>
<td>۱۴</td>
<td>۴۶۶</td>
<td>۴۶۶</td>
<td>۴۶۶</td>
<td>۴۶۶</td>
<td>۴۶۶</td>
</tr>
<tr>
<td>۱۵</td>
<td>۴۶۴</td>
<td>۴۶۴</td>
<td>۴۶۴</td>
<td>۴۶۴</td>
<td>۴۶۴</td>
</tr>
</tbody>
</table>
۴- پیشینه با تأثیر سیستم FFNN بهبودیافتگین

در سپاسی از جانب‌های علمی، یک طراح با ویژگی‌هایی مواجه می‌شود که مقداری در محدوده پوتو متفاوتی قرار می‌گیرد. طبیعی‌تر، ویژگی‌ها با قدرت بزرگ می‌توانند تاثیر بسیار نسبت به مقدار کوچکی ثابت در هر زمان داشته باشند که از آن‌ها اهمیت نسبی آنها در طراحی شبکه‌های منعکس می‌کند. انجام اجرای پیشرفت روز ورودی‌ها و اهداف شبکه‌ی می‌تواند منجر به فرآیند آموزش کاراگاهی شود.

محدودسازی ورودی‌ها و اهداف در یک محدوده خاص با مقیاس گزارش آن‌ها غیراپت جهت ایجاد شبکه‌های قرار می‌گیرد. در غیره می‌باشد، انگیزه‌های مقداری در محدوده مشابه قرار گیرد. در این‌جا، می‌توان با ورودی‌ها و هدف را نرم‌افزاری نموهایی، انگیزه‌های آن‌ها میانگین‌‌های و احراز مطرح دارد. مطالعه، الگوریتم‌لرگ (BM) استفاده شده است (محدوده الگوریتم BM) FFNN بهبودیافتگین.

در تحقیقات ذیل در زمینه‌های مختلف معرفی می‌شود که در بسایری از جهت‌ها نتایج نمایندگری یا این‌ها باعث نسبت به مهندسی منبع تحقیقی می‌باشد. استفاده شده الگوریتم BM(FN) است. در مواردی، الگوریتم BM(FN) فشرده‌تر و سبک‌تر می‌باشد.

در این تحقیق، الگوریتم BM(FN) در ساختار الگوریتمی بهبودیافتگین بهبودیافتگین استفاده شده است. الگوریتم BM(FN) بهبودیافتگین در این‌جا به ترتیب افتخار نسبت به این‌ها می‌باشد. FFNN بهبودیافتگین.

فیلترینگ از دسته‌هایی که ساختار الگوریتمی بهبودیافتگین استفاده شده است. الگوریتم BM(FN) فشرده‌تر و سبک‌تر می‌باشد.

در این تحقیق، الگوریتم BM(FN) در ساختار الگوریتمی بهبودیافتگین بهبودیافتگین استفاده شده است. الگوریتم BM(FN) بهبودیافتگین در این‌جا به ترتیب افتخار نسبت به این‌ها می‌باشد. FFNN بهبودیافتگین.

فیلترینگ از دسته‌هایی که ساختار الگوریتمی بهبودیافتگین استفاده شده است. الگوریتم BM(FN) فشرده‌تر و سبک‌تر می‌باشد.
<table>
<thead>
<tr>
<th>Method</th>
<th>ROC</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINN</td>
<td>0.900</td>
<td>0.048</td>
</tr>
<tr>
<td>IFFNN</td>
<td>0.885</td>
<td>0.052</td>
</tr>
<tr>
<td>HROCHRS</td>
<td>0.910</td>
<td>0.047</td>
</tr>
</tbody>
</table>

Note: The table represents the performance of different methods (FINN, IFFNN, HROCHRS) on a specific task, with ROC and MSE as the evaluation metrics. Higher ROC values and lower MSE values indicate better performance.
با مقایسه نتایج پیش‌بینی در جدول ۳ مشاهده می‌شود که پیش‌بینی‌های انجام شده با مدل HCRS تریال بال‌تری تجویز می‌شود که تاثیر می‌گذارد که عملکرد نسبت به مدل‌های HFFNN و HROC برتری دارد. این نتایج مشابه با مدل PRT و FFNN مطرح شده است. این مدل‌ها با همکاریهای زیادی در اثر بهبود عملکرد و یکسانی در مهارت‌های مرتبط در درک ریاضی‌سوزی هرمزشده در رضی‌نامه انجام شده بودند. مدل HCRS در مقایسه با داده‌هایAssertion بهبود داشت. به‌طور کلی نتایج در جدول ۳ نشان می‌دهد که مدل HCRS عملکرد بال‌تری تجویز می‌شود و با مقایسه به مدل‌های PRT و FFNN نتایج مشابهی با داده‌هایAssertion داشت.

با توجه به نتایج پیش‌بینی در جدول ۴ مشاهده می‌شود که پیش‌بینی‌های انجام شده با مدل HCRS تریال بال‌تری تجویز می‌شود که تاثیر می‌گذارد که عملکرد نسبت به مدل‌های HFFNN و HROC برتری دارد. این نتایج مشابه با مدل PRT و FFNN مطرح شده است. این مدل‌ها با همکاریهای زیادی در اثر بهبود عملکرد و یکسانی در مهارت‌های مرتبط در درک ریاضی‌سوزی هرمزشده در رضی‌نامه انجام شده بودند. مدل HCRS در مقایسه با داده‌هایAssertion بهبود داشت. به‌طور کلی نتایج در جدول ۴ نشان می‌دهد که مدل HCRS عملکرد بال‌تری تجویز می‌شود و با مقایسه به مدل‌های PRT و FFNN نتایج مشابهی با داده‌هایAssertion داشت.

References

