قیمت‌گذاری و کنترل موجودی به صورت توام برای کالاهای فاسدشدنی
با در نظر گرفتن هزینه کمبود به صورت پس‌افتد پاره‌ای
عباس نخی* و رضا میهمی

چکیده:

تعبیه سیاست کنترل موجودی مناسب و قیمت فروش به‌هنگام برای کالاهای مختلف همواره یکی از موضوعات اصلی تحقیقات علمی و صنعتی بشرام امده است. به علاوه زمانی که کالاهای مورد نظر فاسد‌شدنی شوند، به دلیل خصوصیات ویژه‌های که این کالاها دارند، تعبیه این موارد از اهمیت البته برخوردار است. در این مقاله بر کنترل موجودی همراه با قیمت‌گذاری برای کالاهای فاسد‌شدنی به صورت توام در نظر گرفته می‌شود. تخمین فیزیکی پیش‌بینی و به صورت روش‌های مشابه از زمان و قیمت رضایت‌دهنده سپس صورت گرفت. مقدار اقتصادی سفارش

کلمات کلیدی:

قیمت‌گذاری،
کنترل موجودی،
کالاهای فاسد‌شدنی،
سرعت پاره‌ای
مقدار اقتصادی سفارش

1. مقدمه

در حالت کلی کالاهای فاسد‌شدنی به کالا‌ها گفته می‌شود که با گذشته زمان ارزش خود را از دست می‌دهند. کالاهای مانند داروها، میوه و سیب‌زیات، کالاهای فلزی و معدن، و سیالات الکترونیکی و غیره در راستای کالاهای فاسد‌شدنی قرار می‌گیرند. در حالی‌که اگر در دلیل پیشرفت در فناوری، بازارهای رفقاء چند و مشتریان

ساخت یک تعداد کالاهای فاسد‌شدنی بسیار پیشرفت قبل شده است.

با وجود چنین بازارهای پی ام‌های جدیدی برای بکارگیری مختلف

این مقاله

نویسنده مسئول مقاله: دکتر عباس نخی نخی

نوشته مسئول مقاله: دکتر عباس نخی نخی نخی نخی نخی نخی

نام: Nakhai.Hs@gmail.com

توییت دفتردر: تهران

رضا میهمی

کارشناس ارشد دانشکده فنی دانشگاه

نام: maimani_reza@yahoo.com

توییت دفتردر: تهران.
کل گزارش و کنترل موجودی به صورت نوار برای کالاهای فاسادنشینی با نظر گرفتن...

سیستم موجودی مقیار اقتصادی سفارش که در اینجا توصیف گردیده است به صورت مبتدی و یا با زمان محدودیت حداکثری یا حداقلی می‌باشد که با بررسی سیستم موجودی الفاکیه و بکر (۷) به نظر می‌رسد.

2 مورور ابتدایی

سیستم موجودی مقیار اقتصادی سفارش که در اینجا توصیف گردیده است به صورت مبتدی و یا با زمان محدودیت حداکثری یا حداقلی می‌باشد که با بررسی سیستم موجودی الفاکیه و بکر (۷) به نظر می‌رسد.

浪费 time
2 Non-instantaneous items
قیمت‌گذاری و گریز مالی در بازار برای کالاهای فاسدشده با در نظر گرفتن ...

\[\beta(x) = k e^{-\lambda x} \]

\[\beta(x) = \frac{k}{1 + \lambda x} \]

\[a, b \]

\[A \]

\[P^* \]

\[Q \]

\[c \]

\[T \]

\[p \]

\[r \]

\[\gamma \]

\[\theta \]

\[\Delta \]

\[\Delta \]

\[\Theta \]

\[\Pi \]

\[\Psi \]

\[\Omega \]

\[\kappa \]

\[\lambda \]

\[\mu \]

\[\nu \]

\[\xi \]

\[\rho \]

\[\sigma \]

\[\tau \]

\[\chi \]

\[\psi \]

\[\omega \]

\[\alpha \]

\[\beta \]

\[\gamma \]

\[\delta \]

\[\epsilon \]

\[\zeta \]

\[\eta \]

\[\theta \]

\[\iota \]

\[\kappa \]

\[\lambda \]

\[\mu \]

\[\nu \]

\[\xi \]

\[\omicron \]

\[\pi \]

\[\rho \]

\[\sigma \]

\[\tau \]

\[\upsilon \]

\[\phi \]

\[\chi \]

\[\psi \]

\[\omega \]

\[\alpha \]

\[\beta \]

\[\gamma \]

\[\delta \]

\[\epsilon \]

\[\zeta \]

\[\eta \]

\[\theta \]

\[\iota \]

\[\kappa \]

\[\lambda \]

\[\mu \]

\[\nu \]

\[\xi \]

\[\omicron \]

\[\pi \]

\[\rho \]

\[\sigma \]

\[\tau \]

\[\upsilon \]

\[\phi \]

\[\chi \]

\[\psi \]

\[\omega \]

\[\alpha \]

\[\beta \]

\[\gamma \]

\[\delta \]

\[\epsilon \]

\[\zeta \]

\[\eta \]

\[\theta \]

\[\iota \]

\[\kappa \]

\[\lambda \]

\[\mu \]

\[\nu \]

\[\xi \]

\[\omicron \]

\[\pi \]

\[\rho \]

\[\sigma \]

\[\tau \]

\[\upsilon \]

\[\phi \]

\[\chi \]

\[\psi \]

\[\omega \]
محاسبه و جلوگیری از پیچیدگی مالد مدل‌ها از طریق می‌گردد.

این مقادیر فرض‌های زیر در نظر گرفته شده است:

1.

2.

3.

4.

5.

6.

7.

4. فرمول سازی مدل

برای اینکه بتوانیم مقادیر بهتری از نهایت و فیلم قرار دهیم، در مراحل اول و دوم مدل بر اساس فرمول‌های رئیسی بیان می‌شود. همچنین مدل‌سازی با اساس فرمول‌های رئیسی بازآموزش این موضوع است که مدل‌سازی این نتایج، با استفاده از چگونی، را می‌توانیم. سپس می‌توانیم مدل می‌تواند با استفاده از نظر نظریه‌های رئیسی انجام گیرد.

dt \frac{d}{dt} + \theta I(t) = -D(p,t) \quad 0 \leq t \leq t_1

\lambda = \frac{(a-b)p}{\alpha + \theta} \left(e^{(\alpha + \theta)u} - e^{\alpha u} \right), \quad 0 \leq t \leq t_1

\text{از روش نموذر 1 کاملاً واضح است که:}

\text{باترابین:}

I(t_1) = 0

\text{1. lead time}

\text{2. Waiting time}
همچنین در این بازه با توجه به اینکه مقدار $I_0 = I_0 (0)$ (3)

$$I_0 = \frac{(a-bp)(e^{(A+\theta)x_1} - 1)}{\lambda + \theta}$$

در باره دوم $t = (p, T)$ که کمیت مخی خودی از تفاوت کمیت در زمان t بر اساس کسر $\beta(T-t)$ پس از افت t به شوری نشان داده می‌شود.

$$\frac{dI_0(t)}{dt} = -\frac{D(p, t)\beta(T-t)}{e^{\delta(T-t)}} \ , \quad t_1 \leq t \leq T \quad (4)$$

با توجه به اینکه $I_0 (t_1) = 0$، مقدار موجودی در باره $t = (p, T)$ صورت زیر محسوب می‌شود:

$$I_0 (T) = \frac{(a-bp)e^{-\theta T}}{\lambda + \theta} \bigg(e^{(A+\theta)x_1} - e^{(A+\delta)\hat{y}} \bigg) \quad (5)$$

همانطور که شکل نقطه ای است، مقدار سفارش در هر دوره از جمع کنند مقدار و در محدود عمومی S به محسوب می‌شود $I_0 (T)$.

$$S = I_0 (T) = \frac{(a-bp)e^{-\theta T}}{\lambda + \theta} \bigg(e^{(A+\theta)x_1} - e^{(A+\delta)\hat{y}} \bigg) \quad (6)$$

با توجه به اینکه وضعیت موجودی در دو باره در هر دوره محسوب می‌شود اینکه x_0 موجود در سیستم بر اساس موجودی‌های به دست آمده در محدود عمومی $I_0 (T)$ به شوری نشان داده می‌شود.

$$Q = S \times I_0 (T) = \frac{(a-bp)e^{-\theta T}}{\lambda + \theta} \bigg(e^{(A+\theta)x_1} - e^{(A+\delta)\hat{y}} \bigg) \quad (7)$$

با توجه به اینکه وضعیت موجودی در دو باره در هر دوره محسوب می‌شود x_0 موجود در سیستم بر اساس موجودی‌های به دست آمده در محدود عمومی $I_0 (T)$ به شوری نشان داده می‌شود.

$$HC = h \int _{I_0(T)} \, dT = h \int _{0}^{T} \frac{I_0 (T)}{\lambda + \theta} \bigg[e^{(A+\theta)x_1} - e^{(A+\delta)\hat{y}} \bigg] \, dT \quad (8)$$

با توجه به اینکه وضعیت موجودی HC به توجه به اینکه x_0 موجودی فقط در دو باره در دو باره پس از اینکه x_0 موجودی فقط در هر دوره از محدود عمومی $I_0 (T)$ تعریف می‌شود که مقدار آن به صورت زیر است:

$$HC = \frac{h \theta e^{(A+\delta)x_1} \bigg(e^{(A+\theta)x_1} - e^{(A+\delta)\hat{y}} \bigg)}{\theta (A+\lambda)}$$
فیضت گذاری و کنترل موجودی به صورت نوم برای کلاه‌ها فاسادشده با در نظر گرفته... عوسي نعمی و رضا مهمنی

چکیده

حال باید نتیجه گیری کنید که متغیر یکسانی که در سطحی از مدل‌های موجود باشد، به دست می‌آید. دارای مقدار یکسان و به‌همه‌نی است. قطعه زیر در این مورد برقرار است.

 قضیه 1: از این به مقدار p

$P_{(p)} = \frac{\exp(-\lambda t) \cdot \lambda^{t} \cdot t!}{t!}$

$\delta \lambda \theta \left(1 + t \delta \lambda \theta \right)$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$

$\frac{(1 + t \delta \lambda \theta)}{(1 + \delta \lambda \theta)}$
6. الگوریتم

با توجه به توضیحاتی که بیان شد الگوریتم ساده برای محاسبه مقادیر بهینه مورد نظر ارائه می‌گردد:

• مقادیر اولیه برای پیمایش تعریف می‌شود. قرار می‌دهیم p_1، p_1 در پیست بی‌اثبات شد که معادله 16 را حل می‌کند. مقادیر قائمی که از جمله این معادله بر روز می‌آید می‌تواند به دست آمده باشند. مقادیر p_1, p_1 با استفاده از معادله 14 و 15 به‌صورت p_1, p_1 تعیین می‌شود.

• مقادیر به‌صورت می‌شود p_1, p_1 با استفاده از معادله 16 و استفاده از $t = 1$, $t = 2$ اگر اختلاف بین p_1, p_1 باشد قرار می‌دهیم p_1, p_1 مقادیر به‌صورت می‌شود و به دست آمده به معادله 16 می‌تواند به دست آمده شود p_1, p_1 با استفاده از معادله 14 و 15 به‌صورت p_1, p_1 تعیین می‌شود. p_1, p_1 با استفاده از روابط یک و 2 مقدار به‌صورت p_1, p_1 محاسبه می‌شود.

7. مثال عددي

در این مقاله مثال عددي که در کار وی (1995) با اندیکی تغییرات در نظر گرفته می‌شود. تناوب و پرامینتی به صورت زیر هستند:

$$f (x, p) = \frac{(500 - 0.5p)e^{-0.98}}{h} = 40, x = 80, a = 120,$$
$$c = 200, A = 250, \theta = 0.08, r(x) = e^{0.2x}$$

همانطور که بیان شد شد p_1, p_1 با استفاده از الگوریتم معرفی شده بعد از 12 تکرار مقادیر بهینه زیر حاصل می‌شوند:

$\begin{align*}
p_1 &= 600.748, & r_1 &= 0.0596757, & T_1 &= 0.0779141, & TP &= 7349.5, & TP &= 14.9959
\end{align*}$
2 دقت‌گذاری و کنترل موجودی به صورت‌توامٌ برای کالاهای فاقد‌منظوری با نظر گرفتن... عسی‌نیمی و رضا مینایی

پیوست‌ها:

الف)

اثبات‌ها:

برای اینکه اگر نشان داده شود که مقادیر به دست آمده برای $T P$ حداکثر مطلق است، باید این مشخصه به H تابع θ و به‌دنبال آن به دنبالی، که در صورتی که در نتیجه اطلاعات پزشکی یک صفر به دنبال این نتایج کامل می‌شود به‌نبنا: بنابراین

$$H = \begin{pmatrix} \frac{\partial^2 T P}{\partial t_1^2} & \frac{\partial^2 T P}{\partial t_2 \partial t_3} \\ \frac{\partial^2 T P}{\partial t_2 \partial t_3} & \frac{\partial^2 T P}{\partial t_3^2} \end{pmatrix}$$

$$\frac{\partial^2 T P}{\partial t_1^2} \bigg|_{(t_1, t_3)}$$

$$= -\frac{1}{\theta^2} e^{\delta_T t} (a - \theta b)p e^{\theta t} (h + \theta (o + p) + c \theta (-e^{\delta_t t_1} - e^{\delta_t t_1} - e^{\delta_t t_1} + \lambda)) + e^{\theta e (\theta - \lambda)} (\lambda (h + \theta (o + p)) + e^{\theta t_1} (s + \delta (o + p - T^* s + t_1)))$$

$$\frac{\partial^2 T P}{\partial t_3^2} \bigg|_{(t_1, t_3)}$$

$$= -\frac{1}{\theta^2} e^{\delta_T t} (a - \theta b)p e^{\theta t} (h + \theta (o + p) + c \theta (-e^{\delta_t t_1} - e^{\delta_t t_1} - e^{\delta_t t_1} + \lambda)) + e^{\theta e (\theta - \lambda)} (\lambda (h + \theta (o + p)) + e^{\theta t_1} (s + \delta (o + p - T^* s + t_1)))$$

به دلیل زیاد بودن پارامترها در ترم‌های ساده جادوی Lagrange انتخاب Mathematica 6.1 توسط من برای الگوریتم گرفت و نتیجه مثبت بود یعنی:

$$\det(H) = \left| \begin{array}{cc} \frac{\partial^2 T P}{\partial t_1^2} & \frac{\partial^2 T P}{\partial t_2 \partial t_3} \\ \frac{\partial^2 T P}{\partial t_2 \partial t_3} & \frac{\partial^2 T P}{\partial t_3^2} \end{array} \right| > 0$$

این نشان می‌دهد که متغیر های در نظر گرفته مثبت می‌بیند.

ث) دقت‌گذاری و کنترل موجودی به صورت‌توامٌ برای کالاهای فاقد‌منظوری با نظر گرفتن... عسی‌نیمی و رضا مینایی

2 دقت‌گذاری و کنترل موجودی به صورت‌توامٌ برای کالاهای فاقد‌منظوری با نظر گرفتن... عسی‌نیمی و رضا مینایی

3 Hessian matrix

نشریه بین‌المللی مهندسی صنایع و مدیریت توسعه

زمستان 1389- جلد 21- شماره 4
که ارائه می‌شود مقدار دادمینامان مانندیکس هشین محاسبه شود. این روش از ارزش کمتری دارد ولی با توجه به زیاد بودن تعداد بارم‌ها در روش اول می‌توان برای اطمنی بیشتر استفاده کرد. در مثال عزیزی ارائه شده در مقاله دادمینامان محاسبه شده مثبت بوده است.

باشگاه

