طرح‌یک سیستم کنترل فرااینده تولید برای زنجیره تامین چندمرحله‌ای و تک‌محصولی

امکان‌ها، تحصیر
* و علی‌رهبری

چکیده:
در سیستم‌های کنترل فرااینده تولید، که بر اساس اصول JIT (Just-In-Time) طراحی می‌شوند، فرض بر این است که کالاهایی تولید شده در هر یک از مرحله‌های تولید، به مزیتی و در زمانی برای مرحله بعدی ارسال گردند. همچنین این سیستم در این ارائه به عنوان یک سیستم کنترل فرااینده تولید شده در هر یک از مرحله‌های تولیدی مورد استفاده قرار می‌گیرد. با این حال، در سیستم‌های کنترل فرااینده، با توجه به اینکه در سیستم‌های کنترل فرااینده تولیدی مکان‌ها، مراحل تولید، و نیز کالاهای موجود در سیستم‌های کنترل فرااینده مارکزی هر یک از مرحلات کاری در یک زنجیره نیازمند یک سیستم محصولی مجزا هستند. صحت مختلط اینکه هر زنجیره نیازمند یک سیستم محصولی مجزا هستند. بطور کلی نشان می‌دهد که کاربرد استفاده سیستم‌های طراحی شده در این مقاله، سطح محصول و زنجیره در کل زنجیره را نسبت به سیستم‌های موجود کاناد، مورد استفاده در تحقیق Wang (2004) به‌طور کلی نشان می‌دهد.
نشره بين المليء مهندس صباح و مدرب تأليف

١٥٥

المحرر: حسام النشار

١٥٥

طراحي يك سيستم كنترل فرآيند توليد برآي زنجيره نايم ندنرهلايي و تكنولوجيا...
در این میان، استراتژی کانبان، مواجه با استقبال زیادی از سوی محققان و مهندسین جایگزین شده و ناشی از زیادی در محل سازی و طراحی تکنیک‌های حل مسائل کانبان شده است.

1.۲-جنبش‌های تأمین-
بکارگیری کانبان برای کنترل تولید سیستم تکمیل‌چاله‌ای، اولین بار توسط پروژه Monden (۱۹۸۳) و Wang & Wang (۱۹۹۱) کانبان را در دولت پیکربندی تولیدی (کی ایستگاه- پکیج‌پذیر- جنگ ایستگاه) استفاده کردند. [۵] تمرکز اصلی تحقیقات، عمدتاً حول سطح کاربرد کانبان در شرایط مختلف سیستم تولیدی شامل گرفت. از آن خلاصه و همکاری Nakamura (۱۹۹۹) در کانبان در راه حل سیستم تولیدی بودند. در این سیستم تولیدی در کانبان را به یک سیستم چندمرحله‌ای با تولید محدود توسعه دادند [۶]. Seliaman & Ahmad (۲۰۰۸) در کانبان را به یک زنجیره سرمت‌سازی با تولید محدود توسعه ملاحظه کردند [۷]. Sarker & Wang (۲۰۰۴) در کانبان را به یک سیستم چندمرحله‌ای با تولید محدود توسعه دادند [۸]. Abdou & Dutta (۱۹۸۳) در کانبان را به یک سیستم چندمرحله‌ای با تولید محدود توسعه دادند [۹]. Reda (۱۹۷۸) در کانبان را به یک سیستم چندمرحله‌ای با تولید محدود توسعه دادند [۱۰].}

...
جدول 1. طبقبندی مطالعات پیشین درباره زنجیره تامین - تحت کنترل کانبان

<table>
<thead>
<tr>
<th>تفسیری مطالعات</th>
<th>نوع مطالعه</th>
<th>تشخیص (شیب‌سازی)</th>
<th>مدل‌های تعیین (اینگاری)</th>
<th>فضاهای تصمیم‌گیری</th>
<th>عده</th>
<th>تک مرحله‌ای</th>
<th>جدید</th>
<th>محقق</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reda [10]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1987</td>
</tr>
<tr>
<td>Miyazaki et al. [17]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1988</td>
</tr>
<tr>
<td>Seidmann [18]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1988</td>
</tr>
<tr>
<td>Deleersnyder et al. [21]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1994</td>
</tr>
<tr>
<td>Askin et al. [22]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1993</td>
</tr>
<tr>
<td>Yanagawa et al. [6]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1994</td>
</tr>
<tr>
<td>Albino et al. [23]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1995</td>
</tr>
<tr>
<td>Mascolo et al. [24]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1996</td>
</tr>
<tr>
<td>Sarker &amp; Balan [26]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1996</td>
</tr>
<tr>
<td>Watanabe &amp; Hiraki [27]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1998</td>
</tr>
<tr>
<td>Andijani [29]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1998</td>
</tr>
<tr>
<td>Markham et al. [3]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1998</td>
</tr>
<tr>
<td>Sarker &amp; Balan [31]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1998</td>
</tr>
<tr>
<td>Sarker &amp; Balan [32]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1999</td>
</tr>
<tr>
<td>Parji &amp; Sarker [33]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1999</td>
</tr>
<tr>
<td>Panayiotou &amp; Cassandras [34]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1999</td>
</tr>
<tr>
<td>Abdul-Nour et al. [13]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1999</td>
</tr>
<tr>
<td>Seki &amp; Hoshino [35]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1999</td>
</tr>
<tr>
<td>Herer &amp; Shalom [36]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>Tardif &amp; Maaseidvaag [37]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
</tr>
<tr>
<td>Shahabudeen et al [38]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>2002</td>
</tr>
<tr>
<td>Lovell [39]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>2002</td>
</tr>
<tr>
<td>et al. [40]Boucherie</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>2002</td>
</tr>
<tr>
<td>Azadeh et al. [15]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
</tr>
<tr>
<td>Al-Tahat &amp; Mukattash [41]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>2007</td>
</tr>
<tr>
<td>Yavuz &amp; Tufekci [42]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>2007</td>
</tr>
<tr>
<td>Banerjeee [43]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
</tr>
<tr>
<td>Hao &amp; Shen [45]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
</tr>
</tbody>
</table>
2-3-گروه‌ی نتیجه‌گیری

gروه‌ی نتیجه‌گیری یک گزاره‌ی جستجوی تصمیم‌گیری است که در حل
مسائل بهینه‌سازی و با مصرف دسته‌بندی‌های توزیعی به
بهینه‌سازی تصمیم‌گیری‌ها می‌پردازد.

ارایه مورد استفاده واقع می‌شود.

۱-2-گروه‌ی نتیجه‌گیری

gروه‌ی نتیجه‌گیری به مطلوب فاقد جواب، از قوی‌ترین تکنیک
بی‌پروازیکی تحلیل‌گرده و روش یکی از جواب‌های اولیه، به
امید بسته اوردن جواب‌های بهتر، قانون یافته بهترین را
به شرح ذیل [۴۵] \(\text{\textit{یارکی}}\) کد داده شده. با توجه به

۱-1-گروه‌ی نتیجه‌گیری

gروه‌ی نتیجه‌گیری در مدل‌هایی که تأثیر ارائه شده تا
مطالعه در ان حال می‌باشد.

۴-3-گروه‌ی نتیجه‌گیری

gروه‌ی نتیجه‌گیری در مدل‌هایی که تأثیر ارائه شده تا
مطالعه در ان حال می‌باشد.

۴-2-گروه‌ی نتیجه‌گیری

gروه‌ی نتیجه‌گیری در مدل‌هایی که تأثیر ارائه شده تا
مطالعه در ان حال می‌باشد.

۴-1-گروه‌ی نتیجه‌گیری

gروه‌ی نتیجه‌گیری در مدل‌هایی که تأثیر ارائه شده تا
مطالعه در ان حال می‌باشد.

۳-4-گروه‌ی نتیجه‌گیری

gروه‌ی نتیجه‌گیری در مدل‌هایی که تأثیر ارائه شده تا
مطالعه در انحال می‌باشد.
از آنجا که هر عملیات جدیدی روی قطعات ارسالی صورت نگرفته است، هزینه نگهداری واحد آن‌ها در اینبار قبل از مرکز کاری 1 + i برای هزینه نگهداری واحد آن‌ها در اینبار بعد از مرکز کاری 1 و همان هزینه نگهداری واحد در مرحله i می‌باشد. نمودار (1) موجویی قطعات نیم‌ساخته در اینبار قبل از مرکز کاری 1 + i را نشان می‌دهد. با توجه به نمودار، متوسط سطح موجویی برای استفاده از
\[ I_{\text{ave}} = \frac{1}{2} Q_s (k_{\text{ave}} - m_{\text{ave}} + 1) \tag{1} \]

هزینه نگهداری قطعات نیم‌ساخته در اینبار قبل از مرکز کاری 1 + i که همان هزینه انتخابی مجاز در مرحله i می‌باشد طبق فرمول زیر محاسبه خواهد شد:
\[ \text{Allowed Holding Cost, } H_{\text{wi}} = \frac{1}{2} Q_s (k_{\text{wi}} - m_{\text{wi}} + 1) \tag{2} \]

همین‌طور کل انتخاب‌های مجاز در مرحله میانی میانگین توزیعی از طریق جمع هزینه‌های انتخابی در تکنک مراحل محاسبه شده و برای باعث تغییر می‌باشد.
\[ \text{Total AHC} = \sum_{i=1}^{N} \text{Cost}_i \tag{3} \]

2-5. مدل سایر اجرای هزینه در کل زنجیره
این قسمت از هزینه که در روش کنترل کلیات موجویی توزیع ذیل در نظر گرفته می‌شود بر مبایل مدل Sarker & Wang (2004) و به صورت زیر فرمول شده است:
\[ C_{\text{Kanban–Controlled Supply Chain}} = C_f + \sum_{i=1}^{N} C_{\text{wi}} + C_f \tag{4} \]

\[ C_f = A_s \frac{D}{Q_f} + H_f \frac{Q_f}{2} \tag{5} \]

\[ C_{\text{wi}} = A_w \frac{D}{Q_w} + A_{\text{wi}} \frac{D}{Q_{\text{wi}}} + \frac{H_{\text{wi}}}{2} (k_{\text{wi}} + m_{\text{wi}}) (m_{\text{wi}} + 1) \tag{6} \]

\[ C_f = A_f \frac{D}{Q_f} + A_{\text{fi}} \frac{D}{Q_{\text{fi}}} + \frac{H_{\text{fi}}}{2} (n - m_{\text{fi}} + 1) \tag{7} \]

1. جدول ۲: تعیین پارامترهای مدل

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>تعریف</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>نرخ تغییر</td>
</tr>
<tr>
<td>P_i</td>
<td>نرخ تغییر مجزا</td>
</tr>
<tr>
<td>H_i</td>
<td>هزینه نگهداری مجزا</td>
</tr>
<tr>
<td>H_{wi}</td>
<td>هزینه نگهداری قطعات نیم‌ساخته در مرکز کاری</td>
</tr>
<tr>
<td>A_i</td>
<td>هزینه نگهداری محصول نهایی</td>
</tr>
<tr>
<td>A_{wi}</td>
<td>هزینه نگهداری محصول ارسالی</td>
</tr>
<tr>
<td>A_{fi}</td>
<td>هزینه نگهداری محصول نهایی در مرکز کاری</td>
</tr>
<tr>
<td>n</td>
<td>تعداد ارسال‌های ارسالی</td>
</tr>
<tr>
<td>( k )</td>
<td>تعداد غلظت قطعات نیم‌ساخته در مرحله</td>
</tr>
</tbody>
</table>

2. جدول ۲-۱: تغییر‌های تصمیم مدل

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تعریف</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>تعداد تمام محصولات نهایی در یک دوره</td>
</tr>
<tr>
<td>Q_w</td>
<td>حجم مابین‌العملیاتی محصول ارسالی</td>
</tr>
<tr>
<td>Q_{wi}</td>
<td>حجم محصول قطعات نیم‌ساخته در مرحله</td>
</tr>
<tr>
<td>A_{wi}</td>
<td>حجم محصول قطعات نهایی</td>
</tr>
<tr>
<td>n_w</td>
<td>تعداد ارسال‌های ارسالی قطعات نیم‌ساخته در مرحله</td>
</tr>
<tr>
<td>( k_i )</td>
<td>تعداد غلظت قطعات نیم‌ساخته در مرحله</td>
</tr>
<tr>
<td>( T )</td>
<td>تعداد در یک دوره</td>
</tr>
</tbody>
</table>

3. شکل ۲-۱: جریان قطعات نیم‌ساخته و کانال بردایش در مرحله i

4. شکل ۲: حریم قطعات نیم‌ساخته از انتخاب مراسل در مرحله i

در مرحله i به محض ارسال قطعات نیم‌ساخته از انتخاب مرکز کاری 1 + i، هیچ‌گونه هزینه نگهداری در مرکز کاری 1 برای محصول ارسالی‌شده محاسبه می‌شود. چنانچه به هر دلیلی خود اعمال بیشتری می‌شود و می‌تواند در این مرحله ممکن باشد، انتخاب محصولات ارسالی در انتخاب قبل از مرکز کاری 1 + i باید بر اساس انتخاب‌های نهایی گردید.
با استفاده از عبارات زیر:

\[ Q = n_0 Q_0, \]
\[ Q = k_i Q_{mi}, \]
\[ Q = nQ_f, \]
\[ m_i = D_i k_i, \]
\[ m_{+1} = m_{mi} k_{mi}, \]
\[ m_{N+1} = \frac{D}{n} k_{N+1}, \]
\[ m_{N+1} = \frac{n}{k_N} D, \]

با استفاده از عبارات فوق و سادسازی آن‌ها، جواب‌های داشت:

\[
TC_{SC} = D \left( A_i Q_i + \sum_{i=1}^{N} \left( \frac{A_{mi}}{Q_{mi}} + \frac{A_{f}}{Q_{f}} \right) + \frac{1}{2} \left( H_i Q_i + 2 \sum H_{wi} Q_{wi} + H_f Q_f \right) \right) + \\
\frac{1}{2} \left( \sum_{i=1}^{N} H_{wi} Q_{wi} \left( k_i + k_{mi} \right) - \left( m_i + m_{mi} \right) \right) + \\
H_{wN} Q_{wN} \left( k_N + n \right) - \left( m_N - m_{N+1} \right) + \\
H_f Q_f \left( n - m_{N+1} \right) \right)
\]

نمودار ۱: موجودی قطعات تیم‌ساخته در انبار قبل از مرکز کاری ۱ \( i \) (انباشت مجاز در مرحله \( \rho \))

جدول ۴. پارامترهای مثال عدی - یک زنجیره کاهش مصرف مبتنی بر کنترل کانبان

<table>
<thead>
<tr>
<th>هزینه نهایی (سالفلد)</th>
<th>هزینه نهایی تولید (سالفلد)</th>
<th>تعداد نسل‌ها</th>
<th>قیمت (سالفلد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( H_r = 45 )</td>
<td>( A_i = 110 )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( H_{w1} = 30 )</td>
<td>( A_{wi} = 100 )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( H_{w2} = 45 )</td>
<td>( A_{w2} = 80 )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( H_{w3} = 25 )</td>
<td>( A_{w3} = 120 )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( H_{w4} = 35 )</td>
<td>( A_{w4} = 100 )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۵. پارامترهای الگوریتم ژنتیک

<table>
<thead>
<tr>
<th>هزینه کل این واریانت (دلار)</th>
<th>Mutation</th>
<th>Crossover</th>
<th>احتمال</th>
<th>احتمال ادای جمعیت در هر نسل</th>
<th>تعداد نسل‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.897</td>
<td>0.1</td>
<td>0.9</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>72.868</td>
<td>0.15</td>
<td>0.85</td>
<td>100</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>73.112</td>
<td>0.1</td>
<td>0.9</td>
<td>100</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>73.257</td>
<td>0.15</td>
<td>0.85</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

نشریه بین المللی مهندسی صنایع و مدیریت تولید، جلد ۲۱- شماره ۴

زمینه ۱۳۹۹-۱

امدراضا تحسیری و علی رضوی
همیشه کل زنجیره به صورت معادله (10) بدست خواهد آمد.

\[ TC_{sc} = \frac{D}{Q} \left( A_n n_0 + \sum_{i=1}^{N} A_n + \sum_{i=1}^{N} A_n k_i + n A_f \right) + \frac{Q}{2} \left( \frac{H_f}{n_0} + 2 \sum_{i=1}^{N} H_{ri} \frac{H_i}{k_i} \right) \]

\[ + \frac{Q}{2} \left( \sum_{i=1}^{N} H_{ri} \left( \frac{k_i}{k_f} \left( 1 - \frac{D}{P_{ri}} \right) + \left( 1 - \frac{D}{P_i} \right) \right) \right) \]

\[ + \frac{Q}{2} \left( \sum_{i=1}^{N} H_{ri} \left( \frac{n}{k_f} \left( 1 - \frac{D}{P_{ri}} \right) \right) \right) \]

\[ + H_f \left( 1 - \frac{D}{P_{ri}} \right) \]

نحوه بین المللی مهندسی صنایع و مدیریت تولید

زمینه 1389 - جلد 21 - شماره 2

ترکیب برنامه‌ای عدد صحیح با یک هدف غیرخطی است از نوع NP-hard بوده و بدلیل پیچیدگی، استفاده از الگوریتم‌های جستجوی فوق و بهینه‌سازی از یک حلقه، تا زمان مسیرانی زیادی است. این زمان با برگ‌زنی درفیانس وابسته به مسیر و بحث در پایان‌رسانی تا زمان حرکتی نین نیاز است که این الگوریتی را در جهد بهدیداری دو مرحله یا کارآیی مناسب استفاده سه مرحله از الگوریتم گزینه‌گری نیست که در این مقاله را با استفاده گورد. در این الگوریتم از تکنیک‌های استفاده شده و به متغیر اعمال مقدار Crossover یکی از روزها به صورت تصادفی انتخاب و مقدار ان غیرتیاده داده شده است. همچنین از روزه روتل در تولید مجموع جواب بهتر و از روش انتخاب برای منظور حفظ جواب بهتر در هر تولید نسل استفاده شده است. به متغیر تولید مجموع جواب به منظور ارائه شده است (امکان‌پذیری) و حدودیت‌ها و زیر زیر در تولید مجموع جواب به منظور ان را متفاوت با معادله شماره (10) در جدول (6) آزاده شده است.

\[ Q \geq 0, \quad \text{Integer} \quad n_0, n \geq 0, \quad \text{Integer} \quad k_i \geq 0, \quad \text{Integer} \quad \text{for } i = 1 \text{ to } N \]

\[ Q \leq D, \quad n_0 \leq Q, \quad n \leq Q \]

\[ k_i \leq Q \quad \text{for } i = 1 \text{ to } N \]

پارامترهای الگوریتم زنگی دوباره مورد استفاده، در جدول (5) و روند همگرایی الگوریتم زنگی در هنگام جواب حاصل، در نمودار (3) نشان داده شده است. مقداری متغیرهای رابطه در بهترین جواب استفاده شده است (28 تابع) (2004 Sarker & Wang)، بدست آمده است و در بهترین جواب به انها مطابق با معادله شماره (10) در جدول (6) آزاده شده است.

جدول 6 جواب استفاده از الگوریتم زنگی در مقایسه با

<table>
<thead>
<tr>
<th></th>
<th>Jawab GA</th>
<th>Jawab GA</th>
<th>Sarker &amp; Wang</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>901</td>
<td>901</td>
<td>Sarker &amp; Wang</td>
</tr>
<tr>
<td>900</td>
<td>900</td>
<td>900</td>
<td>Sarker &amp; Wang</td>
</tr>
</tbody>
</table>

1. Roulette Wheel
2. Elite Selection
Algorithm to Dynamically Adjust the Number of Kanbans in Stochastic Processing Times and Variable Demand Environment.


