A New Algorithm for the Sensivity Analysis of Critical Path in Pert Networks Considering Project Risk

M.T. Taghavifard* & S. Khezri

Mohammad Taghi Taghavifard, Associate Professor, College of Management and Accounting, Allameh Tabatabai University
Shaghayegh Khezri, MS in Industrial Engineering

Keywords

Critical Path, Pert, Sensitivity Analysis, Risk

ABSTRACT

Taking into account the uncertain time duration for each activity in a pert network, we would need to accept the notion that the critical path the project could vary a number of times during its execution. If this variations take place frequently during the project in an unpredictable manner, it could endanger the efficient management of the project and in addition to lengthening the time frame of execution, it would result in financial burden. The objective of this article is to present an algorithm that potentially prevents the occurrence of unpredictable events in the critical path. Using the proposed algorithm, after the identification of risk in each activity and the quantitative and qualitative analyses of the activities, we calculate the respective time durations considering the different events that could carry potential risk for the purpose of risk management. Furthermore, a parameter called MVC identifies an interval and if the related activity duration falls in that interval, the critical path would be changed. Then through the techniques of Engineering Economy and Decision Making, conclusions are drawn to whether allow the critical path to undergo variation under anticipated situation or not.

© 2014 IUST Publication, IJIEPM. Vol. 25, No. 1, All Rights Reserved

* Corresponding author. Mohammad Taghi Taghavifard
Email: dr.taghavifard@gmail.com
الگوریتم جدیدی برای تحلیل حساسیت مسیر بحرانی در شبکه های بحرانی برای هر ریک از عواملی که بر روی زمان و حسایت مسیر بحرانی تأثیر می‌گذارد مورد بررسی قرار گرفته است. در این مقاله، یک الگوریتم جدید برای تحلیل حساسیت مسیر بحرانی در شبکه های بحرانی پرتویقا فرد و شقایق خضري

چکیده:

با پذیرش زمان احتمالی برای هر ریک از عواملی که بر روی زمان و حسایت مسیر بحرانی تأثیر می‌گذارد مورد بررسی قرار گرفته است. در این مقاله، یک الگوریتم جدید برای تحلیل حساسیت مسیر بحرانی در شبکه های بحرانی پرتویقا فرد و شقایق خضري

کلمات کلیدی:

مسیر بحرانی، پرتویقا و تحلیل حساسیت، ریک

1. مقدمه

پرتویقا ها به دلایل مختلف در اجرای مرحلات حساسیت مسیر بحرانی در شبکه های بحرانی پرتویقا فرد و شقایق خضري
الگوریتم جدیدی برای تحلیل حساسیت سیر بحرانی در... محمدتقی تقوی و شقیق خضري

نداشت اگر خوب ترmusicی گی برای اساس جهت پیش بینی و کنترل بحران پیش از وقت، نمی توانند پروژه را به خوبی هدایت نمایند. فوق همانند، نوع بحران در تغییر رخداد ریسک ها و مسیب تریم گی بریو در مورد آن نه تنها زمان هزینه بشری روی بروزه تحمل می نماید، بلکه موجب ایجاد تنش هم و اضطراب در تیم اجرایی بروزه و عدم تمرکز در اتخاذ بهترین تصمیم می گردد.

و ایلین ملاحظات علمی برای دستیابی به روش های برنامه ریزی، در اولین قرن بیستم توزیع دریافت و فردیک تاپور به عمل آمده است. این در دانشمند بروزه برنامه ریزی بروزه و ایجاد متعدد به نشانه‌های اکینک ساعتی مال بروزه و معنوی دود که آن اسکانی‌ها برای بازدهی روش های کاملاً برای برنامه ریزی پروژه‌ها فعال ایجاد شدند.

در سالهای دهم، ۱۹۵۰ در دانشمندان علم تحقیق در عملیات به افراد روش های کاملاً برای برنامه ریزی که فعال شدند.

چندی بعد شرکت تولیدی دیوان یک مهرو تحقیقاتی را مامور بررسی کاربرد این روش های جدید مدیریت در امور بهینه سازی شرکت کرده که کارکنان و کارفرمای این گروه رفتار و کارکنان را در اندازه‌های مختلف را به دست آوردند که

آمار موجود از پروژه‌های نیروی دریایی که در گذشته اجرای استانداردهای تولیدی کم به کار رفته شد. نشانگر این دقیقت بود که همان بازه زمان و پایه ای که برای پروژه ها صرف می شود به پراکنده بودن شرکت به دست آمده است که به طور کلی به انتخاب DOE (Due date) بهتر است که برای زمان هایی که جهت تولید به کار رفته است.

رویکرد طراحی آزمایش ها (Due date) در زمان کلیک غیر قابل پروژه را نمی تواند کلیک دقیقت به زمان استفاده

و تحقیقات عمیق به دست آمده است که در زمان کلیک غیر قابل پروژه را نمی تواند قابل

1. Gantt Charts
2. Bar Charts
3. Du Pant
کلیات

برای این منظور در شیبک پرت از شخص خبره خوشنامه می‌شود تا برای زمان ااجرای هر فعالیت، سه باورد ارائه دهد. بنابراین شخص خبره با دریافت گرفتن شرایط محیطی حاکم بر پروژه، برای هر فعالیت سه باورد زمانی به نام های باورد خوش بینانه، مقیاس و بدبینانه ارائه می‌دهد به کمپ کارکرد باورده خوش بینانه، محتمل و بدبینانه، ممکنگ و وارای زمان اجرای فعالیت ها محاسبه می‌شود. برای ساده سازی محاسبات، می‌توان از روش رابط ساده زیر استفاده می‌شود:

\[E(t) = \frac{a+b+m}{6} \]

\[\sigma^2 = \frac{(b-a)^2}{36} \]

 ضمناً انتخاب‌ها که به تقریب های اصلی پرت معرف می‌شوند با این فرض می‌شود که با درامه \(a, b, m\) در دامنه \(\text{Grubbs}\) شده است. همچنین، می‌توان این شرایط را بر اساس زونالیت پرتره برابر با 1/3 انتخاب کنیم.

\[\text{Grubbs} = \frac{z}{ \sqrt{2 \ln 2 \gamma} } \]

 به روش‌های مختلف زمان‌گذاری ترتیب‌گذاری پرتره با اندازه‌گیری ترتیب‌گذاری داده و با مقدار نتیج با ترتیب کرد. برای همیشه واریانس نرمال نشان نمی‌دهد.

\[\text{واریانس} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} \]

owania باید ترتیب‌گذاری با داده‌های تغییرات (a, b) فاصله کننده.

\[a \text{ و } b \text{ دارای چگالی احتمال زیر است:} \]

\[f(x) = \frac{(a-x)^{\alpha-1} (x-b)^{\beta-1}}{b(a+b)(x-a)(x-b)} \quad a < x < b, \alpha, \beta > 0 \]
الگوریتم جدیدی برای تحلیل حساسیت مسیر بحرانی در

تحلیل ارزش پولی مورد انتظار

یک تغییر در انتظار (EMV) نوعی مفهوم اماری است که می‌توان به افتاده انتظاری افزایش یا کاهش ممکن‌شدن می‌شود. این تغییر در شرایط عدم قطعیت بکار می‌رود.

ضریب کران ارزش هر یک از تابع ممکن در احتمال به قبول پیوستن آن و جمع کردن آن‌ها ممکن‌شده می‌شود. استفاده منتها در این نوع تحلیل در تحلیل مصرف می‌باشد.

تحلیل درخت تصمیم: تحلیل درخت تصمیم به معنای برای استفاده از نوعی نویز بخشی در انتظار در EMV استفاده می‌شود. شیب از تابع ممکن در EMV بکار می‌رود. در این نوع تحلیل، هزینه هر یک از گزینه‌های ممکن و رابطه هر یک از میزان‌های محاسبه لازم شود. ولی درختم تصمیم می‌باشد. استفاده از تحلیل درخت تصمیم در شرایط عدم قطعیت بکار می‌رود.

مدل سازی و شبکه سازی: در فرآیند شبیه‌سازی از نوعی مدل که در فهرستی یا توصیف شده در شرایط غیرمعنی‌دار در بررسی می‌باشد. استفاده در شیب باید هم‌آموز با تحلیل استفاده از تحلیل مونت‌کارلو آزمایش می‌شود. در یک شیب شبیه سازی، مدل پروژه واریز شده با مقایسه می‌شود که مقادیر ورودی روی متن‌یافته‌های احتمالی مانند بررسی‌های با زمان‌بندی‌های زمان‌بندی باید برای هر یک از تکرارها و هر یک از منجر شده انتخاب می‌شود. یک توزیع احتمال (برای مثال هزینه کل دسته‌بندی) می‌باشد.

3. الگوریتم پیشنهادی:

هدف این مرحله از کلمات شاید توجه سیستم در شبکه بر روی امر در نظر گرفته شده را به توزیع احتمالی بکار می‌رود. این توزیع احتمالی به قبول پیوستن آن و جمع کردن آن‌ها ممکن‌شده می‌شود. استفاده منتها در این نوع تحلیل در تحلیل مصرف می‌باشد.

4. دستگاه‌های ارزش پولی مورد انتظار برای هر یک از مراحل پیشنهادی:

$$\frac{a+b}{2}$$

5. که با جایگزینی در معادله بالا و دستگاه‌ها، نتیجه ۴. حاصل می‌شود.

فاراین مدیریت ریسک:

استاندارد PMBOK یکی از بهترین دسترسی به شرکتهای مهندسی صنایع و مدیریت تولید در دنیا می‌باشد. همچنین در بررسی، ترکیبی از دو روش اصلی، بررسی ترنیم، تکنیک‌های مدل‌سازی و تحلیل کمی ریسک، به ترتیب، ارزش‌های تحت‌الحمایت، ارزش‌های تحت‌الحمایت به علت موفقیت در اجرای مطالعات مربوط به پروژه و مهندسین مستند سازی و گزینه‌های بهتر و در نتیجه به‌طور کلی بهترین روش‌ها را تعیین کرده‌اند.

4-1. تکنیک‌های مدل‌سازی و تحلیل کمی ریسک:

3-1. فاراین مدیریت ریسک:

سایر کاربردهای مدل‌سازی و تحلیل کمی ریسک به‌صورت متغیر بهترین آن‌ها برای تولید می‌شود. در این روش، به‌طور کلی بهترین روش‌ها را تعیین کرده‌اند.
الگوریتم جدیدی برای تحلیل حساسیت مسیر بحرانی در...

مجید تقی تقوی و شقایق خضري

در واقع هدف، عدم تغییر مسیر بحرانی نیست بلکه تغییر آن با اگاهی و تجزیه و تحلیل قبیل بوده و قرار گرفتن در وضعیت بحرانی را تحت بیمار مطالعه کاملی می‌دهد.

مراحل الگوریتم بیشتر هدایت را می‌توان به صورت زیر خلاصه کرد:

مرحله اول: شناسایی ریسک‌های موجود و تهیه فهرستی از ریسک‌های متعلق به کمک روش‌های طوفان‌زده، مصالحه، بازتغییر استاند و مدارک پروزه‌های مشارکت و ایجاد فهرست ریسک‌های نمونه

علامت اختصاصی R_{Xn} را به جهت نمایش ریسک n ام قرار می‌دهیم، در نظر گرفتن و هر یک از کارشناسان خبره، نیم مدیر، پروزه و ریسک، ریسک‌های موجود را از طریق طوفان‌زده و مصاحبه مشخص و بایستد مشخص می‌شود. در این روش، می‌توانیم خوب و غیر خوب و تشدیدگر ریسک را در صورت وقوع به جهت دقت تشریح در ارزیابی از تکنیک مدل استفاده کرد تا نظرات به نظرات آفراد مصاحب نظارت و باتوجه به تری دیدکننده شود.

یکی از این ریسک‌ها خاص زمان فعالیت و مسیر ریسک نبوده و به نتیجه بدست آمده استفاده ها و اندازه‌پذیری ریسک‌ها با اولیه بالاتر استفاده نمود. برای کاهش محاسبات در این الگوریتم بهتر است از ریسک‌هایی با اهمیت

با توجه به آنچه در کلیه راه‌های به تخمین‌های مربوط به توسعه با شرح داده شده، مقادیر α و β در فعالیت را با روش گروای 1 ریسک اولیه برای نمونه 1 انجام خواهد داشت. با استفاده از میانگین فعالیت

شکل 1. دو حالت از حالات وقوع ریسک

شکل الف

شکل ب

مرحله سوم: رسم گانت جاری پروزه و بدست آوردن مسیر بحرانی اولیه، با استفاده از ریوکر می‌توان در این‌دسته اولیه بر (با استفاده از میانگین فعالیت \bar{X})

$Grubbs$

نشریه بین المللی مهندسی صنایع و مدیریت تولید، خرداد 1393-جلد 25-شماره 1
مرحله نهم: تعیین میانگین مورد انتظار و تصمیم گیری در مورد تغییر یا عدم تغییر مسیر بحرانی است. در انتیجه رساندن میانگین شده و در فرض نشان داده شد که هر فعالیت هیچ چیزی به زمان فعالیت در این بازه ها و انحرافش از میانگین جمعیت بازه را هدف دارد، فعالیت خود را بازگرداند و تمرکز مجدد بر زمان و زمان فعالیت های دیگری می‌نگردد.

مرحله دهم: تصمیم‌گیری نهایی با استفاده از روش EMV

ارزش پولی مورد انتظار

در این مرحله با استفاده از تکنیک EMV (ارزش پولی مورد انتظار) ارزش هر مسیر را محاسبه کرد و به هر زمان با درامادوی بودن آن به ترتیب مربوط به مدت میانگین بررسی می‌شود. در رساندن این مقدار به میانگین شده است، میدانی که ارزش پولی مورد انتظار برای مسیر بحرانی است، و در این ماتریکس در اختیار مصرف و معیاره شده است، این میانگین شده است، بازگرداندن به زمان فعالیت در این بازه ها و انحرافش از میانگین جمعیت بازه را هدف دارد و تمرکز مجدد بر زمان و زمان فعالیت های دیگری می‌نگردد.
الگوریتم جدیدی برای تحلیل حساسیت مسیر بحرانی در... محمدتقی تقی فرد و شقایق خضري

شکل ۲. فلوجهات الگوریتم پیشنهادی

برای روش‌شنند مرحله بعدی ابتدا مثال زیر را در نظر بگیرید: پروژه‌ای با اطلاعات زیر داریم:

نشریه بنی‌المالی مهندسی صنایع و مدیریت تولید. خرداد ۱۳۹۳- جلد ۲۵- شماره ۱
جدول 1: جدول فعالیت ها و زمان سه گانه آنها در مثال

<table>
<thead>
<tr>
<th>فعالیت</th>
<th>بیشترین</th>
<th>محتمل</th>
<th>خوش‌بینه (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرحله اول</td>
<td>A</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>مرحله دوم</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>مرحله سوم</td>
<td>C</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>مرحله چهارم</td>
<td>D</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>مرحله پنجم</td>
<td>E</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>مرحله ششم</td>
<td>F</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>مرحله هفتم</td>
<td>G</td>
<td>H</td>
<td>G</td>
</tr>
<tr>
<td>مرحله هشتم</td>
<td>H</td>
<td>I</td>
<td>H</td>
</tr>
<tr>
<td>مرحله نهم</td>
<td>I</td>
<td>J</td>
<td>I</td>
</tr>
<tr>
<td>مرحله دهم</td>
<td>J</td>
<td>K</td>
<td>J</td>
</tr>
<tr>
<td>مرحله نهم</td>
<td>K</td>
<td>L</td>
<td>K</td>
</tr>
<tr>
<td>مرحله دوم</td>
<td>L</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>مرحله سوم</td>
<td>M</td>
<td>N</td>
<td>M</td>
</tr>
<tr>
<td>مرحله چهارم</td>
<td>N</td>
<td>O</td>
<td>N</td>
</tr>
</tbody>
</table>

به عنوان مثال زمانی که در ریسک مهم برای فعالیت X مصادب کردن، شوید. با هم‌جیدن از آن راه نخواهد داد. با ایجاد یکی از آنها به وقوع می‌پیوندد و با هر دو هم اتفاق خواهد افتاد. پس از این مرحله، احتمال بروز هر یک از این حالات محاسبه می‌شود. به منظور این هدف لازم است ابتدا کارشناس و افراد سلطه بر پروژه و تجربیات موجود احتمال وقوع هر یک از ریسک‌های شناسایی برای هر فعالیت و نیز زمان های سه گانه هر فعالیت در صورت وقوع هر یک از این حالات محاسبه را تخمین بزنند. که در این صورت با استفاده از اصل اشکال و با فرض مستقل بودن ریسک‌ها در هر فعالیت، احتمال وقوع هر یک از حالات محاسبه می‌شود.

سپس با مشخص کردن حالتی که بیشترین احتمال وقوع را دارد، محتمل طبقه‌بندی زمان‌الا یا برابر می‌باشد. ویرایش زمان کل فعالیت در نظر می‌گیریم همچنین حد بالا و پایین زمان فعالیت را نیز می‌توان برای مجموعه‌ی بیشترین و مشابه از ورود ماهان احتمال برای وقوع آن احتمال به محدوده در نظر گرفت.

به عنوان مثال مانند آنچه در جدول 2 مشاهده می‌شود، قسمتی که از این احتمالات وقوع هر R_{A-1} را 7.5 و احتمال وقوع هر R_{A} را 7.5 تخمین زده اند. این صورت احتمال اینکه هیچکدام از ریسک‌ها به وقوع نپیونددند، برای استفاده در نظر گرفته می‌شود.
الگوریتم جدیدی برای تحلیل حساسیت مسیر بحرانی در... محمد تقی تقوی فرد و شقایق خضري

\[
P(\emptyset) = P(R_{A-1} \cap R_{A-2}) = P(R_{A-1}) \cdot P(R_{A-2}) = 0.3 \times 0.4 = 0.12 \\
P(R_{A-1}) = P(R_{A-1} \cap R_{A-2}) = P(R_{A-2}) = 0.7 \times 0.4 = 0.28 \\
P(R_{A-2}) = P(R_{A-2} \cap R_{A-1}) = P(R_{A-1}) = 0.6 \times 0.3 = 0.18 \\
P(R_{A-1} \cap R_{A-2}) = P(R_{A-1}) \cdot P(R_{A-2}) = 0.7 \times 0.6 = 0.42
\]

جدول ۲. تخمین زمان فعالیت‌ها در مثال

<table>
<thead>
<tr>
<th>فعالیت</th>
<th>زمان فعالیت در صورت بروز ریسک شناسایی شده</th>
<th>احتمال بروز ریسک‌های شناسایی شده</th>
<th>حالات محتمل</th>
<th>فعالیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>۱۰ (۱۷، ۱۹)</td>
<td>۰.۱۲</td>
<td>∅</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>۸۰ (۹۰، ۱۰۰)</td>
<td>۰.۱۲</td>
<td>∅</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>۲۰ (۳۰، ۴۵)</td>
<td>۰.۱۲</td>
<td>∅</td>
<td>M</td>
</tr>
</tbody>
</table>

از اندازه‌گیری که احتمال وقوع‌های دو ریسک با هم تابعی نیست، با حالات دیگر بیشتر است، محتمل ترین زمان آن به عنوان محتوم ترین زمان فعالیت A در نظر گرفته می‌شود. می‌توان از روش‌های دیگر هیوراستیک نیز جهت بدست آوردن محتمل ترین زمان فعالیت استفاده نمود.

مرحله سوم:

شکل ۳. گانت چارت مثال

نشریه بین‌المللی مهندسی صنایع و مدیریت تولید، خرداد ۱۳۹۳- جلد ۲۵- شماره ۱
الگوریتم جدیدی برای تحلیل حساسیت مسیر بحرانی در
بر اساس میانگین زمان فعالیت‌ها مسیر بحرانی می‌باشد.

همانطور که مشاهده می‌شود مسیر MS-A-B-D-E-G-J

مرحله چهارم:

شکل 4. گانت چارت مثال با در نظر گرفتن خط فرضی

و بازه [100، 210] برای فعالیت C به این الگوریتم مشخص می‌شود. مسیر بحرانی A-B-C-N-O به این الگوریتم تغییر A-B-D-E-G-J از می‌یابد.

مرحله هفتم:

این ریسک‌ها از لحاظ ریسک فعالیت‌ها که در ابتدا زمان فعالیت‌ها بر اساس آن تعیین می‌شود استوار است. می‌توان به ریسک‌هایی که فعالیت‌ها در این مرحله معرفی شده توسط خط فرضی محاسبه می‌شود. در مثال بالا دو فعالیت M و C به ریسکی مقدار که می‌توانند بحرانی شوند برای هر یک از این دو فعالیت با ارزیابی MVC ارزیابی می‌شود.

در این مرحله با انجام C، در ابتدا زمان مطالعه انجام می‌شود. در مثال [45] می‌توان انجام فعالیت C در 100 روز و برای انجام فعالیت B در 31.16 روز است.

جدول 3. جدول محاسبه پارامترهای فعالیت‌ها در مرحله هشتم الگوریتم

<table>
<thead>
<tr>
<th>Task name</th>
<th>Time Estimates a</th>
<th>Time Estimates m</th>
<th>Time Estimates b</th>
<th>Duration (Beta)</th>
<th>Slack (Total)</th>
<th>Symmetric (Grubb’s estimates)</th>
<th>Grubb’s estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>17</td>
<td>19</td>
<td>16.17d</td>
<td>0d</td>
<td>No</td>
<td>4.635574</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>16</td>
<td>30</td>
<td>18.17d</td>
<td>0d</td>
<td>No</td>
<td>3.940938</td>
</tr>
</tbody>
</table>
الگوریتم جدیدی برای تحلیل حساسیت مسیر بحرانی در

نحوه جدول ۳. جدول محاسبه پارامترهای فعالیت‌ها در مرحله هشتم الگوریتم

<table>
<thead>
<tr>
<th>Task name</th>
<th>Time Estimates</th>
<th>Duration</th>
<th>Total Slack</th>
<th>Symmetric</th>
<th>Grubbs estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>m</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>90d</td>
<td>2d</td>
</tr>
<tr>
<td>D</td>
<td>30</td>
<td>32</td>
<td>50</td>
<td>34.67d</td>
<td>0d</td>
</tr>
<tr>
<td>E</td>
<td>11</td>
<td>18</td>
<td>21</td>
<td>17.33d</td>
<td>0d</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>15</td>
<td>24</td>
<td>15d</td>
<td>10.83d</td>
</tr>
<tr>
<td>G</td>
<td>8</td>
<td>20</td>
<td>30</td>
<td>19.67d</td>
<td>0d</td>
</tr>
<tr>
<td>H</td>
<td>7</td>
<td>18</td>
<td>23</td>
<td>17d</td>
<td>3.33d</td>
</tr>
<tr>
<td>I</td>
<td>9</td>
<td>10</td>
<td>20</td>
<td>11.5d</td>
<td>13.5d</td>
</tr>
<tr>
<td>J</td>
<td>9</td>
<td>19</td>
<td>37</td>
<td>20.33d</td>
<td>0d</td>
</tr>
<tr>
<td>K</td>
<td>3</td>
<td>15</td>
<td>22</td>
<td>14.17d</td>
<td>10.83d</td>
</tr>
<tr>
<td>L</td>
<td>7</td>
<td>16</td>
<td>18</td>
<td>14.83d</td>
<td>5.5d</td>
</tr>
<tr>
<td>M</td>
<td>20</td>
<td>30</td>
<td>45</td>
<td>30.83d</td>
<td>0.33d</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>35</td>
<td>39</td>
<td>34d</td>
<td>0.33d</td>
</tr>
<tr>
<td>O</td>
<td>20</td>
<td>28</td>
<td>29</td>
<td>26.83d</td>
<td>0.33d</td>
</tr>
</tbody>
</table>

حال احتمال اینکه زمان فعالیت M در باره [31, 16, 45] قرار گیرد را محاسبه می‌کنیم:

\[\alpha = 20, b = 45, \beta = 4.44, \alpha = 3.4, M\]

می‌باشد لذا داریم:

\[\mathbb{P}(31.16 < T_M < 45) = F(45) - F(31.16) = 0.54 \times 0.46 = \beta = 4\]

و نیز داریز توزیع نیا با 4 \(\alpha = 4\) و M می‌باشد لذا داریم:

\[\mathbb{P}(92 < T_C < 100) = F(100) - F(92) = 1 - 0.71 = 0.29\]

جدول 4. جدول محاسبه احتمال رخداد هر فعالیت در مراحل نزدیک‌ترین عمق‌های در مرحله هشتم الگوریتم

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\mathbb{P}(T_M = x) = \mathbb{P}(x - 1 < T_M \leq x))</th>
<th>(\mathbb{P}(T_C = x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>(\mathbb{P}(T_M = 32) = \mathbb{P}(31 < T_M \leq 32))</td>
<td>0.085</td>
</tr>
<tr>
<td>33</td>
<td>(\mathbb{P}(T_M = 33) = \mathbb{P}(32 < T_M \leq 33))</td>
<td>0.080</td>
</tr>
<tr>
<td>34</td>
<td>(\mathbb{P}(T_M = 34) = \mathbb{P}(33 < T_M \leq 34))</td>
<td>0.072</td>
</tr>
<tr>
<td>35</td>
<td>(\mathbb{P}(T_M = 35) = \mathbb{P}(34 < T_M \leq 35))</td>
<td>0.063</td>
</tr>
<tr>
<td>36</td>
<td>(\mathbb{P}(T_M = 36) = \mathbb{P}(35 < T_M \leq 36))</td>
<td>0.052</td>
</tr>
<tr>
<td>37</td>
<td>(\mathbb{P}(T_M = 37) = \mathbb{P}(36 < T_M \leq 37))</td>
<td>0.041</td>
</tr>
<tr>
<td>38</td>
<td>(\mathbb{P}(T_M = 38) = \mathbb{P}(37 < T_M \leq 38))</td>
<td>0.031</td>
</tr>
</tbody>
</table>
الگوریتم جدیدی برای تحلیل حساسیت مسیر بحرانی در...

محمدتقی توکی و شقایق خضري

نشانه‌ی بین المللی مهندسی صنایع و مدیریت تولید، خرداد 1393-جلد 25-شماره 1

جدول ۵: جدول تصمیم گیری مثال طرح شده با استفاده از الگوریتم ارائه شده

<table>
<thead>
<tr>
<th>x</th>
<th>P(Tm=x)</th>
<th>جریمه در روز کل هزینه اضافه افتتاح ریسک</th>
<th>کل هزینه اضافه انتقال ریسک</th>
<th>کل هزینه اضافه*</th>
<th>کل حرجمه × p(Tm=x)</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.085</td>
<td>100,000,000</td>
<td>5,000,000</td>
<td>8,522,279</td>
<td>426,414</td>
<td>12,948,755</td>
</tr>
<tr>
<td>33</td>
<td>0.080</td>
<td>200,000,000</td>
<td>10,000,000</td>
<td>15,980,767</td>
<td>799,038</td>
<td>23,770,805</td>
</tr>
<tr>
<td>34</td>
<td>0.072</td>
<td>300,000,000</td>
<td>15,000,000</td>
<td>21,649,335</td>
<td>1,082,467</td>
<td>32,731,802</td>
</tr>
<tr>
<td>35</td>
<td>0.063</td>
<td>400,000,000</td>
<td>20,000,000</td>
<td>25,067,029</td>
<td>1,253,351</td>
<td>36,320,380</td>
</tr>
<tr>
<td>36</td>
<td>0.052</td>
<td>500,000,000</td>
<td>25,000,000</td>
<td>26,073,910</td>
<td>1,303,695</td>
<td>37,377,605</td>
</tr>
<tr>
<td>37</td>
<td>0.041</td>
<td>600,000,000</td>
<td>30,000,000</td>
<td>24,812,618</td>
<td>1,240,631</td>
<td>36,053,249</td>
</tr>
<tr>
<td>38</td>
<td>0.031</td>
<td>700,000,000</td>
<td>35,000,000</td>
<td>21,696,267</td>
<td>1,084,813</td>
<td>32,781,080</td>
</tr>
<tr>
<td>39</td>
<td>0.022</td>
<td>800,000,000</td>
<td>40,000,000</td>
<td>17,344,919</td>
<td>867,246</td>
<td>26,212,155</td>
</tr>
<tr>
<td>40</td>
<td>0.014</td>
<td>900,000,000</td>
<td>45,000,000</td>
<td>12,494,599</td>
<td>624,730</td>
<td>19,149,329</td>
</tr>
<tr>
<td>41</td>
<td>0.008</td>
<td>1,000,000,000</td>
<td>50,000,000</td>
<td>7,885,005</td>
<td>394,250</td>
<td>11,279,255</td>
</tr>
<tr>
<td>42</td>
<td>0.004</td>
<td>1,100,000,000</td>
<td>55,000,000</td>
<td>4,138,912</td>
<td>206,746</td>
<td>6,365,658</td>
</tr>
<tr>
<td>43</td>
<td>0.001</td>
<td>1,200,000,000</td>
<td>60,000,000</td>
<td>1,618,707</td>
<td>80,935</td>
<td>1,799,642</td>
</tr>
<tr>
<td>44</td>
<td>0.0003</td>
<td>1,300,000,000</td>
<td>65,000,000</td>
<td>365,439</td>
<td>18,272</td>
<td>393,711</td>
</tr>
<tr>
<td>45</td>
<td>0.00001</td>
<td>1,400,000,000</td>
<td>70,000,000</td>
<td>20,720</td>
<td>1,036</td>
<td>21,756</td>
</tr>
</tbody>
</table>

* MIN (Cکاهش(Cایتم(Cانگین)
الگوریتم جدیدی برای تحلیل حساسیت مسیر بحرانی در...

محمدتقی تقوی فرد و شقایق خضري

۷۰

در این قسمت بحث یافته می‌توان از یکی از تکنیک‌های مدل سازی و تحلیل کمی سیستم‌که در قسمت قبل شرح داده شده استفاده نمود. آن‌ال閒انویهای تصمیم‌گیری و مدل‌های آن در جدول زیر نشان داده شده است. در صورتی که ارزش هریک از معمل‌ها برای مدیران پروژه مشاوت باشند می‌توان ویژه‌های مختلفی را برای

جدول ۶ جدول مرحله نهایی تصمیم‌گیری در مثال

<table>
<thead>
<tr>
<th></th>
<th>W = 0.25</th>
<th>W = 0.25</th>
<th>W = 0.3</th>
<th>W = 0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هزینه اضافی</td>
<td>۱۸۷,۶۶۶,۵۰۶</td>
<td>۹,۳۸۳,۳۲۵</td>
<td>۰</td>
<td>۱۰,۰۰۰,۰۰۰</td>
</tr>
<tr>
<td>تحمیل شده</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هزینه کاهشی</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جریمه</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اثر ریسک</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اعتبار شرکت</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| A۱ | | | | |
| A۲ | | | | |

ولی ضریبٰهای هر چند کوچک بوده این نام و در نتیجه آن ایجاد کاری شرکت وارد سازند که اعتبار شرکت کمی کمتر از هزینه های بیشتر که ممکن است اثر ورقه ریسک به پروژه تحمیل گردد.

مرحله دهم

حال در انجام با استفاده از تکنیک EMV (ارزش پولی مورد انتظار) داریم:

\[
L(A_1) = 0.25 \times 187,666,506 + 0.25 \times 9,383,325 + 0.2 \times 10,000,000 = 51,262,458
\]

\[
L(A_2) = 0.3 \times 200,000,000 + 0.2 \times -15,000,000 = 57,000,000
\]

\[
EMV(1) = 51,262,458 - 23,580,731 = 27,681,727
\]

\[
EMV(2) = 57,000,000 - 30,780,000 = 26,220,000
\]

در نتیجه موردن اول انتخاب خواهد شد زیرا هزینه کمتری را تحمیل خواهد کرد. بنابراین با وجود مشابه لازم، رها کردن و اجازه عوض شدن مسیر بهرایت بر لازم رها کردن جهت ممکن از تغییرات نهایی تجربه و استراتژی مناسب، استراتژی پذیرش ریسک خواهد بود. در صورتی که شرایط تصمیم‌گیری در بالا رای یافته باعث شدن مسیر بهرایت دهد، یکی از استراتژی‌های اجباری، کاهش یا انتقال بیشتر به هزینه ای که بپرتو در تحمیل خواهد کرد و مدت زمانی که از فعالیت منجر گردید خواهد کرد، انتخاب می‌شود. این کار برای همه فعالیت‌ها تا

\[
M = (20.30,45)
\]

\[
P(31.16 < T_W < 45) = 46%
\]

با استفاده از توزیع‌نها داریم:

\[
P(A_1) = 46%
\]

\[
P(A_2) = 54%
\]

همانطور که در بالا محاسبه شده، اگرچه که احتمال تغییر مسیر بهرایت ۲۱% می‌باشد، با لحاظ کردن احتمال وقوع در هزینه‌های بالا خواهند داشت.
5. پیشنهاد برای تحقیقات آتی

از آنجایی که تحقیق زمان فعالیت‌ها در گراف گراف سیستم ریسک‌ها بسیار به نظر انتخاب و است. به پیشنهاد راهی که به تحقیق دقیق در محاسبه و حساسیت اندازه‌گیری که در اینجا نماید، بسیار حساس هسته‌ای می‌باشد. که در بخش یکی از آن‌ها که در صورت تغییر ریسک مشترک می‌باشد. همگی از آنجایی که در صورتی که گذشته بودن شکل بین‌المللی شکل یافته فعالیت‌های مجازی و مقایسه آن با مشابه آن می‌باشد، ارائه برگه‌ای نرم‌افزاری که تغییر جهت تسهیل کار و کاهش زمان تحلیل سیستم تناول خواهند بود. یکی از مزایای الگوریتم را باتوجه به تنوع آن و نیز تغییر مدنیان و دیدگاه ارائه شده با توجه به این دیدگاه را جهت تصمیم گیری نهایی در آن مراحل انتخاب و نتایج کامل تری را در این زمینه، به عنوان مثال توان علوه بر تصمیم‌گیری بر اساس هنری، زمان و کیفیت موارد مانند محدودیت‌ها ویژه نیز لحاظ نمود.

6. نتیجه‌گیری

پیشنهاد برای محاسبه میانگین اندازه‌گیری از این آزمایش که با توجه به شرکت در این زمینه، به عنوان یکی از آن‌ها که در صورتی که گذشته بودن شکل بین‌المللی شکل یافته فعالیت‌های مجازی و مقایسه آن با مشابه آن می‌باشد، ارائه برگه‌ای نرم‌افزاری که تغییر جهت تسهیل کار و کاهش زمان تحلیل سیستم تناول خواهند بود. یکی از مزایای الگوریتم را باتوجه به تنوع آن و نیز تغییر مدنیان و دیدگاه ارائه شده با توجه به این دیدگاه را جهت تصمیم گیری نهایی در آن مراحل انتخاب و نتایج کامل تری را در این زمینه، به عنوان مثال توان علوه بر تصمیم‌گیری بر اساس هنری، زمان و کیفیت موارد مانند محدودیت‌ها ویژه نیز لحاظ نمود.

7. مراجع

الگوریتم جدیدی برای تحلیل حساسیت مسیر بحرانی در ...

محمدتیم تقوی فرد و شقایق خضري

