استفاده از دستگاه مختصات متعامد محلي در مدل کردن ترک دو بعدی
به روش الامان محدود توسه یافته

على بورکمالي اتارکی و مجید میرزایی

چکیده: "روش الامان محدود توسه‌یافته" یک روش یک‌بعدی برای مدل کردن انواع نابوسیگن‌ها از جمله ترک است که بر مبنای الامان محدود استاندارد است و نتیجه‌ی تبیینی بر منابع نابوسیگنی به حج مشابه استانداردهای موشود. برای مدل کردن ترک در ماده‌اندازی خشکی از نگاه تمامی این اجاد نابوسیگن‌ها در امتداد طول ترک و از دیگری برای اخذ شرایط "کنکین" در الامان نوک ترک استفاده می‌گردد. در نتیجه‌ی اعمال توابع درجه‌ای، گره‌های اطراف الامان نوک ترک و گره‌های طول ترک افزایش می‌باید. که به آن غنی‌سازی گره‌های گفته می‌شود. با این روش ترک به صورت مجازی و مستقل از مش مدل می‌شود و نیاز به استفاده از مش ریز، الامان تکینه در اطراف نوک ترک توسه‌یافته پذیرش داشته می‌شود. یک روش جدید بر مبنای دستگاه مختصات متعامد محلي نوک ترک جهت غنی‌سازی گره‌های یک کار گرفته می‌شود. برای مدل کردن ترک‌های دو بعدی به روش الامان محدود توسه‌یافته، اصول و روشهای جدید در یک نرمال‌یافته تخصصی استفاده شده است که در این مقاله به آن اشاره می‌شود. نتایج حاصل از نرم‌افزار نوشت‌شده بر با اندازه‌ی روشهای جدید، برترک‌هایی به هندسه‌ی مختلف در مقایسه با نتایج روابط تحلیلی دیگر، تطبیق خوبی نشان می‌دهد.

واژه‌های کلیدی: الامان محدود توسه‌یافته، مدل کردن ترک دو بعدی، غنی‌سازی گره‌های، افزایش درجات

1. مقدمه

مدل کردن نابوسیگن‌ها و به ویژه ترک به علت ضرورت آن همیشه از نظر طراحی که با دیگر مکانیک شبکه و تحلیل ترک توسط قطعه، طراحی می‌کرده‌اند از همیشه خاصی برخوردار بوده است. روشهای "الامان محدود" و "الامان مرزی" از مدل‌های قبل برای مدل کردن ترک به کار گرفته شده‌اند و در هر یک از این دو روش نیز پیشرفت‌های حاصله، واکنش‌های شکل‌گذاری متفاوتی این دو روش تطبیق ترک با مشنی‌ها و تغییر مش در هر مرحله از رشد ترک پیش‌بینی می‌شود.

4 Element Free- Mesh Free
5 Partition of Unity

2 Finite Element
3 Boundary Element
نظریه تفکیک پوستگسکی [1] انجام می‌شود به‌عنی اعمال تواوی خاصی که در زمره آنها بهتر بیان می‌شود در اثر بیانه درون الگوی فکری که به‌عنوان نابی‌پوستگسک در محل ترک درون الگومی‌ها به‌عنوان تکانی فرم‌های اطلاعات الگومی‌ها اختصاص یافته می‌شود.

برای تعیین تابع توان بغل جهت آغاز درجات آزادی گرها (انجیزه) می‌توان به برآر ترک بر اساس الگومی می‌تواند گدرک [1] باشد. جهت آغاز اطلاعات الگومی‌ها محدود جهاد شد و اگر ترک نمی‌گردد یک نمایی از الگومی‌ها را از دو نقطه و یک نقطه ترک بیشتر از دو نقطه و یک نقطه ترک بیشتر بکار برده می‌گردد.

البته هر چه بیشتر بغل الطويال مشخص شده در اطلاعات الگومی‌ها محدود برخورداری دو نقطه برخورداری و توان احتمال کننده برخورداری به‌عنوان دو دانش‌دان باشد باید توان اطلاعات الگومی‌ها مشخص شود.

در این مقاله ضمن استفاده از کارهای تحقیقاتی انجام شده در رأس‌شان به‌پشت الگومی محدود برخورداری توان توان این روش برخورداری و احتمال واحد می‌شود. سپس چگونگی الگومی‌های اوره از جهاد اطلاعات الگومی‌ها به‌عنوان ذهنی به‌کار رفته و ایراد اطلاعات الگومی‌ها به‌عنوان ذهنی می‌شود. بنابراین به‌عنوان دیگر توان اطلاعات الگومی‌ها مشخص شود.

\[
H = \begin{cases}
+1 & \text{یک تابع انجام می‌شود [5]} \\
-1 & \text{همانند تست}
\end{cases}
\]
استفاده از دستگاه‌های مختصات محضی در مدل کردن تراکم به‌دست روش‌های محاسباتی توسعه یافته

تفکیک پیوستگی و اعمال تابع مناسب، ایجاد نانوپوستگی مجازی

\[v = \sum_{i=1}^{N} N_i \left(\sum_{j=1}^{M} \psi_j a_j \right) \]
\[u = \sum_{i=1}^{N} N_i \left(\sum_{j=1}^{M} \psi_j c_j \right) \]

در روابط فوق v و u گاواه‌گامی‌های گره به ترتیب در راستای

\[\psi(J) \]

در روش محلی محور X و Y تابع شکل شده در روش‌های استاندارد \(N_i \sqrt{x, y} \) و ضرایب مجهول مربوط با تابع X سی و Y است. \(N_i \) در نهایت توسط روش مربوط \(\beta \) در جهت X و Y می‌شود. در این روش بر اساس و رابطه درجهٔ آزادی گره‌های ازایش‌هایی با توجه به نوع تابع X سی شده در سه قسمت قبل، روابط (3) و (4) به صورت زیر تبدیل می‌شوند:

\[v = \sum_{i=1}^{N} N_i \left[\sum_{j=1}^{M} \psi_j \left(\frac{H_a}{\sqrt{x, y}} + \frac{b_a}{\sqrt{\frac{a}{q}} \frac{a}{q}} \frac{d_a}{\sqrt{\frac{a}{q}}} \right) \right] \]
\[u = \sum_{i=1}^{N} N_i \left[\sum_{j=1}^{M} \psi_j \left(\frac{H_c}{\sqrt{x, y}} + \frac{b_c}{\sqrt{\frac{a}{q}}} \frac{d_c}{\sqrt{\frac{a}{q}}} \right) \right] \]

در روابط فوق v و u گاواه‌گامی‌های گره ای به ترتیب در راستای

\[\beta(J) \]

در سه قسمت قبل E می‌شود. در روش زیرکاله‌گامی به گره‌های ازایش‌هایی با توجه به نوع تابع X سی شده در سه قسمت قبل، روابط (3) و (4) به صورت زیر تبدیل می‌شوند:

\[\phi_0, \epsilon = 14 \]

در شکل (3) نقشه‌بندی المان‌های تراکم خودرو و المان‌های تراکم نیز مشاهده می‌شود که به‌واسطه این تقسیم بندی تعادل ده‌گانه‌ای جایی که برای \(H = 1 \) و \(H \in [0,1] \) است قابل استفاده مورد استفاده قرار گرفته است. \(\phi_0 \) و \(\epsilon \) در شرایط گردهای بیشتر \(\phi_0, \epsilon \) در دو ازایش‌هایی با توجه به نوع تابع X سی شده در سه قسمت قبل، روابط (3) و (4) به صورت زیر تبدیل می‌شوند:

\[A_{sb} = \frac{A_{sb}}{A} \]
\[A_{be} = \frac{A_{be}}{A} \]

در شکل (3) پارامترهای مربوط به غنی‌سازی گره‌های ازایش‌هایی تراکم خودرو واطراف نوری تراکم تغییر نمود.

شکل 2. پارامترهای مربوط به غنی‌سازی گره‌های ازایش‌هایی تراکم خودرو

3. روابط حاکم بر غنی‌سازی گره‌ها

پس از تغییر گره‌های که نیاز به غنی‌سازی دارند و مشخص نمودند، تابع مناسب برای غنی‌سازی آنها پایدار با استفاده از مفاهیم نظریه

\[^1 \text{Stress Intensity Factors} \]
6 Element Strain-displacement matrix

\[
\begin{bmatrix}
\frac{\partial x}{\partial \zeta} & \frac{\partial x}{\partial \eta} \\
\frac{\partial \zeta}{\partial x} & \frac{\partial \zeta}{\partial \eta} \\
\frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \eta}
\end{bmatrix}
\]

(12)

\[A_e = \frac{1}{2} |\text{det } J|\]

(13)

The strain-displacement matrix is given by

\[
\varepsilon = \begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial z}
\end{bmatrix}
\]

(16)

4. Extraction of the Cauchy equation

\[
\Pi = \frac{1}{2} \left[\sigma^i \epsilon^i - \int \epsilon^i f^i dv - \int \epsilon^i T^i ds - \sum u_i^P P_i \right]
\]

(8)

\[
\Pi = \sum f^i \epsilon^i \text{d}A - \sum \mu^i \text{f}^i \text{d}L - \sum \mu^i P_i
\]

(9)

4.1 Plane Strain

\[
\varepsilon_1 = \frac{1}{2} \left[\sigma_1 \epsilon_1 - \int \epsilon_1 f^1 dv - \int \epsilon_1 T^1 ds - \sum u_1^P P_1 \right]
\]

(10)

\[
\Pi = \sum \sigma^i \epsilon^i - \sum (f^i + T^i + P^i)
\]

(11)

\[\kappa = I, A, [B] \begin{bmatrix} D \end{bmatrix} [B]^T\]

(111)

Note: \(\sigma, \epsilon, T, P\) represent stress, strain, traction, and force, respectively. The matrices \(A, B, D\) are defined in the context of the problem.
1.

\(K_s = \sum_{i=1}^{n} K_{s_i} \) \hspace{1cm} (21)

5. اعمال روش الامكان محدود توسعه يافته در برنامه كامپيوتر

اصول روش الامكان محدود توسعه يافته در فضي اهالي قربانیه شد. در اين قسمت چگونگي اعمال این اصول در قابل یک ترميزازمان محدود توسعه يافته به ذام NMEXME2D در یک عدد به علت توضیح داده مي شود. اين ترميزازمان برای تحليل Visual - Fortran مدلالبی به الامكاني مطلقي خطي به بانه 6.5 ارائه شده است. قسمتهای اصلی برمهنه به صورت زیر است:

الف) مدوله بیش از تحليل

1- ورود اطلاعات به برنامه
2- تشخيص موقتی ترسی و الامکان
3- تعیین ماتریس سنتی الامكان و مولفه آن در ماتریس سنتی كل الامکان
ب) مدوله تحلیل

1- حل سیستم معادلات حاصله و تعیین مجهولات گرهای ج) مدوله بیش از تحلیل

1- محاسبه کمپنیهای مورد نیاز جهت تعیین پارامترهای نوک ترک در ادامه اگر از بخش شده فوق مورد بحث و بررسی قرار خواهد گرفت.

ب) اعداد اولی و زیر شده به برنامه

در این قسمت فاصله ورودي كه يا اجاه خاصي تهيه شده به برنامه معرفي مي شود و برنامه يا مي تواند به وژگي ساختاري كه قابل اطلاعاتي از قبلي هدف نيست، تعديد هر، محلات الامکان، محدب غیره با هم ساخته و براي هر که بر خودن به دست مي شيده. همچنین مقدار ترک به دو روش در برنامه قابل تعريف است. روش اول این مخدرات نقطه شروع و گوناگون ترک است و روش دوم مشخص كردن نقطه شروع، طول و زاویه ترک توسط به محور +x مي یابد. برای مشخص كردن ترکها در سه بعدي و ثبت مدل كردن ترکهاي قربانی و نيز امکان تعريف ترکهاي در كنون، تغيير يافته كه بتواند تا گاه ترک را به صورت ورودي در برنامه معرفي نمود.

\[
B_i = \frac{1}{\text{det} J} \begin{pmatrix}
 y_{\mu} & 0 & 0 & y_{\nu} & 0 & 0 & y_{\sigma} & 0 & 0 & 0 \\
 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 & x_{\sigma} & 0 & 0 \\
 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 & x_{\sigma} & 0 \\
 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 & x_{\sigma} \\
 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu}\end{pmatrix}
\] \hspace{1cm} (17)

اگرگرده \(i \) در طیع تابع پیما واحد داشته باشد در حالی دو به دو 4 درجه آزادی خواهند داشت و سپس آن در ماتریس [B] به صورت زیر خواهد بود [15].

\[
B_i = \frac{1}{\text{det} J} \begin{pmatrix}
 y_{\mu} & 0 & 0 & y_{\nu} & 0 & 0 & y_{\sigma} & 0 & 0 & 0 \\
 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 & x_{\sigma} & 0 & 0 \\
 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 & x_{\sigma} & 0 \\
 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 & x_{\sigma} \\
 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu}\end{pmatrix}
\] \hspace{1cm} (18)

ب) اعداد اولی و زیر شده به برنامه

\[
a_i = \sqrt{\frac{\theta}{2}}, b_i = \sqrt{\frac{\theta}{2}}, c_i = \sqrt{\frac{\theta}{2}}, d_i = \sqrt{\frac{\theta}{2}}, e_i = \sqrt{\frac{\theta}{2}}
\]

\[
A = \begin{pmatrix}
 y_{\mu} & 0 & 0 & y_{\nu} & 0 & 0 & y_{\sigma} & 0 & 0 & 0 \\
 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 & x_{\sigma} & 0 & 0 \\
 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 & x_{\sigma} & 0 \\
 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 & x_{\sigma} \\
 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu}\end{pmatrix}
\]

ب) اعداد اولی و زیر شده به برنامه

\[
B_i = \frac{1}{\text{det} J} \begin{pmatrix}
 y_{\mu} & 0 & 0 & y_{\nu} & 0 & 0 & y_{\sigma} & 0 & 0 & 0 \\
 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 & x_{\sigma} & 0 & 0 \\
 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 & x_{\sigma} & 0 \\
 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 & x_{\sigma} \\
 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 & x_{\nu} \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu} & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{\mu}\end{pmatrix}
\]
تشخیص موضوعیت نسبی ترک و الموانع

جهت تشخیص موضوعیت نسبی ترک و الموانع آن، استفاده از مدل سطحی یا مدل سطحی یکسانی (Level Sets) و (الگوی مشارکتی انتقالی) در مرجع [12] ارائه شده است.

در این بخش از برنامه معنوی می‌توان که آیا ترک به صورت کامل بخشهای اصلی یا اجزای اصلی است و یا کل ترک دور از آن باشد. بنابراین مناسب برای گردهای محلی اطراف نشانی می‌رسد و در جرای آزادی گزینه‌های آفتابی می‌باشد. در این مقاله، روش جدید دستگاه معنویت استفاده می‌شود [15]. در این روش، میزان تغییر از آن محور $\phi = 0$ عمومی بر روش راستگرد تعیین می‌شود.

شکل 2. دستگاه معنویت محلی ترک ترک

مطلق شکل 4 نشان گردهای بالایی محور $\phi = 0$، $\phi > 0$ دارای $\phi < 0$ و گردهای پایین محور، $\phi > 0$. دارای $\phi < 0$ و گردهای سمت چپ $\phi = 0$ و گردهای سمت راست دارای $\phi > 0$ می‌باشد. بنابراین معنویت ϕ از گردهای اطراف هر مان یکسان خواهد بود که در نتیجه تأثیر ترک در داخل همان محور می‌گیرد. در نتیجه نتایج آن ترک در این موقعیت می‌تواند ترکی گردهای اطراف زنده داشته باشد. در آن محور آزادی از آن نسبت تابع نکنی می‌شود و در جرای آزادی آن به 10 افزایش می‌یابد [15].

شکل 3 موضعیت دستگاه معنویت (\(\phi', \psi')\) \(\phi', \psi')\) مطلق شکل 4 نشان گردهای بالایی محور $\phi = 0$، $\phi > 0$ دارای $\phi < 0$ و گردهای پایین محور، $\phi > 0$. دارای $\phi < 0$ و گردهای سمت چپ $\phi = 0$ و گردهای سمت راست دارای $\phi > 0$ می‌باشد. بنابراین معنویت ϕ از گردهای اطراف هر مان یکسان خواهد بود که در نتیجه تأثیر ترک در داخل همان محور می‌گیرد. در نتیجه نتایج آن ترک در این موقعیت می‌تواند ترکی گردهای اطراف زنده داشته باشد. در آن محور آزادی از آن نسبت تابع نکنی می‌شود و در جرای آزادی آن به 10 افزایش می‌یابد [15].

شکل 4. دستگاه معنویت محلی ترک ترک

مطلق شکل 6 نشان گردهای بالایی محور $\phi = 0$، $\phi > 0$ دارای $\phi < 0$ و گردهای پایین محور، $\phi > 0$. دارای $\phi < 0$ و گردهای سمت چپ $\phi = 0$ و گردهای سمت راست دارای $\phi > 0$ می‌باشد. بنابراین معنویت ϕ از گردهای اطراف هر مان یکسان خواهد بود که در نتیجه تأثیر ترک در داخل همان محور می‌گیرد. در نتیجه نتایج آن ترک در این موقعیت می‌تواند ترکی گردهای اطراف زنده داشته باشد. در آن محور آزادی از آن نسبت تابع نکنی می‌شود و در جرای آزادی آن به 10 افزایش می‌یابد [15].

شکل 5. بررسی علامت و ψ در گردهای اطراف المان‌های ترک خودر

میکم است دو یا چند المان به طور همزمان شرط ارائه چندن و دارای شرایط در پرگینده احتمال نمود ترک باشد که در جنین شرایطی برای تشخیص دقیق موضوعیت نوک ترک مطلوب شکل 6 پیش از آن مسلی گردهای مشترکی در منطقه نشان دهنده نسبت به آن می‌باشد. در راستای خط اولین دو نمود مشترک باشند. سپس مقدار ϕ' در نتیجه قیاس، جزئی و یکی از هماهنگی گردهای سیستم هر یک از الگوهای در دستگاه جدید ماحصلا می‌باشد. علامت ϕ' نمود ترک با الگوی مربوط به یکی از الگوهای سیستم هر یک از الگوهای خواهد بود که در نتیجه نمود ترک در داخل همان المان کرده می‌گردد. در نتیجه نتایج آن ترک در این موقعیت می‌تواند ترکی گردهای اطراف آن نسبت تابع نکنی می‌شود و در جرای آزادی آن به 10 افزایش می‌یابد [15].
استفاده از دستگاه مختصات متغیر محیط در مدل کردن برق در بی‌دی از روش محدود توصیف یافته

این ماتریس در ماتریس سنتی عمومی ارتباطی بین شماره درجه آزادی محیط هر گره از ماتریس و شماره درجه آزادی عمومی همان گره از ماتریس می‌شود.

البته جهت بهره‌برداری بهتر از دستگاه براساس روابط 16 و 17، ماتریس کل برای [B] ارائه گردیده که در این ماتریس تمام پارامترهای مربوط به غنی‌سازی به شکل پایه‌ای واجد و غنی‌سازی از طریق تناسب به صورت همزمان یک‌سان می‌گردد. شده است. بی‌شک که در برنامه نوشته تاکید تمام گره‌ها تعریف می‌شود. این رابطه به غنی‌سازی ناشی از پارامتر مربوط به صفر تعیین می‌گردد و در نتیجه اثر از آن در ماتریس [B] حذف می‌شود.

در گام پایان سطح دستگاه مختصات بر اساس روش ماتریس محدود [K] توسعه یافته به فرم کلی [F] به دست می‌آید. ماتریس سنتی یک مدل است که می‌توان یک ماتریس مجزاها گره‌ای است که در آن محصولات مربوط به درجه آزادی استاندارد (جایگاه در جهت هر گره) و جهت ار از درجه مربوط به غنی‌سازی هر گره (در صورت وجود) به صورت مشخص شده در هر گره [F] است. به دست می‌آید.

1 Penalty Approach
2 Gaussian Elimination Method

شکل 7 نمایش دو دستگاه مختصات متغیر محیط برای یک ترک

در این قسمت پی از یافتن نقطه برخورد ترک با اضلاع المان، تخمین‌برداری انجام می‌شود سپس با استفاده از رابطه (17) سطح مبنای بوجود آمده در هر ترک با معادله ناحیه رایگان سطح مجموعه المانی گره در مرجع [6] نسبت به غنی‌سازی مورد نظر به عدم غنی‌سازی تعیین می‌گردد.

پس از تیزی وضعیت گره‌ها و افزایش تعداد درجات آزاد آنها به معنی روش مناسب برای غنی‌سازی پارامترهای لازم مشخص می‌شود. برای گره‌های ۰ درجه آزادی ارگ مقدار ۴ ضریب [H] در غیر نیت‌پردازی - ۱ خواهد بود و برای بقیه گره‌ها [H] ضریب می‌شود. با استفاده از رابطه ۱۸ غنی‌سازی مناسب برای گره‌های ۴ درجه آزادی را انجام داده می‌شود. برای گره‌های ۱۰ درجه آزادی دیگر یک ناقش فاصله [2 فاصله] صفر بر اساس این اعداد در جریان کردن می‌شود در یک انجام برای یک گره به معنای نشان داده می‌شود و در این قسمت تعیین درجه آزادی گره‌های پارامترهای مورد ناز جهت غنی‌سازی آنها مشخص می‌گردد.

5-4 تحلیل دستگاه مختصات حاصله و تعبیه م الجولات

در این روش جایگذاری گره های مجزا دستگاه مختصات حاصله یک ماتریس سنتی از غنی‌سازی به ماتریس [K] می‌باشد که این ماتریس [F] محاسبات انجام می‌گردد.

5-5 محاسبه کمیتهای مورد نیاز جهت تعيين پارامترهای

نک ترک

در این قسمت ضرایب مجزا به دست آمده در قسمت قبل درون روابط (5) و (6) قرار داده می‌شود و جایگذاری گره‌های درجه مثبت مجزا به تویی یک محاسبه داده شده که در پایان این قسمت این ضرایب معول شده.

1 Penalty Approach
2 Gaussian Elimination Method

5-3 تعبیه ماتریس سنتی برای یک ترک

در این یافتن نقطه برخورد ترک با اضلاع قسمت ۱۷ از ماتریس [B] از طریق روابط ۱۷ تا ۱۸ و ۱۹ نسبت به سیستم و سیستم از طریق رابطه ۱۱ در ماتریس سنتی برای یک ترک مشخص می‌گردد.
قرار گرفته‌اند تحت تأثیر ضرایب مجهول حاصله و نوع تابع عضویت جابجایی‌پذیران تغییر می‌کند و بنابراین مقادیر درجه مقاومت شده است به‌عبارت دیگر همان‌طور که قبل اشاره شد تک و نایب‌‌ویژگی‌های در روش جبران محدود توسعه یافته بصر مرجای مدل می‌باشد.

از طریق رابطه \(\varepsilon = [B]U \) تابع به دست آورده می‌شود که در آن \(U \) ضرایب مجهول معلوم شده مربوط به المان مورد نظر می‌باشد. سپس از طریق رابطه \(\sigma = [D][\varepsilon] \) تنش و کرنش تابع از نیروی‌های مربوط به المان مطلق است که در المان محدد کلسیم نیز به همین صورت می‌باشد.

[۱۶] (Constant Strain Triangles)

برای تعیین ضرایب شدت تنش نوک ترک به استفاده از اجاقی نقاط اطراف ترک در دو نقطه مختلف و با استفاده از ان نقاط نیاز می‌باشد. البته در صورت استفاده از اجاقی جابجایی‌پذیرا، ضرایب شدت تنش \(K_H, K_P \) با دقت مشخص می‌شود رابط ضرایب تشن و تشن اجاقی نقطه‌ای اطراف ترک به صورت زیر است.

\[
\begin{align*}
\sigma &= \frac{K_H}{2\mu} \left[\cos \frac{\theta}{2} - \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} \right] \\
\tau &= \frac{K_P}{2\mu} \left[\sin \frac{\theta}{2} - \frac{\cos \frac{\theta}{2}}{\cos \frac{\theta}{2}} \right]
\end{align*}
\]

در رابط فوق \(\nu = \frac{v}{u} \) و جابجایی نقطه‌ای اطراف ترک به ترتب در جهت \(x \) و \(y \) داشته و \(r \) این نقطه نقطه تشن ترک \(K_H, K_P \) ضرایب تشن مربوط به جهت \(\nu \)

\[
\kappa = \frac{3 - 4\nu}{1 + \nu}, \quad \text{Plane Strain}
\]

\[
\kappa = \frac{3 - \nu}{1 + \nu}, \quad \text{Plane Stress}
\]

برای مثال جابجایی در جهت \(x \) و \(y \) \((\nu, \nu)\) نقطه‌ای اطراف نوک ترک مطلق شکل \(A \) از یک اجاقی نقطه داخل المان که نقطه در آن واقع است استفاده می‌شود. این با داشتن مختصات نقطه مورد نظر و مختصات گره‌های اطراف المان، توانایی نقطه مورد نظر به دست آورده می‌شود \(N_{x}, N_{y} \) سپس طبق رابطه شکل زیر جابجایی گره‌هایی اطراف المان به نقطه مورد نظر منتقل می‌شود.
بررسی نمونه‌های سنگ چکنی شده‌دوم نوع مدل با
مکانیزم شدید و زیاد ایجاد شده است. بررسی این مدل در نام
روش مهندسی توسعه داده شده مدل با استفاده از رابطه جالبی‌های نقطه‌ای فضایی
که در این حالت رابطه جالبی‌های دو تکه و دو تکه بر اساس
از یک یا دو ذره یک یا دو تکه جالبی‌های عمودی یک یا دو تکه بین
جابجایی‌های عمودی یک یا دو تکه شبههای تحت سطح، یک دستگاه یا
سیستم به صورت زیر حاصل می‌گردد (ریشه‌نامه ۳۱) که
در تمام نمونه‌های سنگ، پارک‌پیکی و شیرایت مزی تابی در نظر
گرفته می‌شود. توسط بررسی در این مدل می‌شود از رابطه بررسی
شده شناو و قابل استفاده برای یک در این مدل
تغییرات در مدل‌های مختلف و مفاهیم آن با تغییر حاصل از روابط
حل دقیق موجب در کتابی مرجع [۱۶ و ۱۸] تجربه‌گری به عمل
خواهد امداد. شکل ۹ مشخصات هندسی، پارک‌پیکی و شیرایت
مدل‌های مختلف را نشان می‌دهد. توان تحلیل در همه موارد از نو
تش صفحاتی در نظر گرفته شده است.

\[\left(\begin{array}{c} A + Br \end{array} \right) \left(\begin{array}{c} \sqrt{2} \end{array} \right) \leq \left(\begin{array}{c} \sqrt{2} \end{array} \right) \leq \left(\begin{array}{c} A + Br \end{array} \right) \]

\[\left(\begin{array}{c} C + Dr \end{array} \right) \left(\begin{array}{c} \sqrt{2} \end{array} \right) \leq \left(\begin{array}{c} \sqrt{2} \end{array} \right) \leq \left(\begin{array}{c} C + Dr \end{array} \right) \]

\[K_r = \frac{\mu}{1 + \kappa} \]

\[K_m = \frac{\mu}{1 + \kappa} \]

۷ تحلیل عدیدی جنگ‌سازی ترکدار دو بعدی

۸ پردازش شدت تنش در ترکدار در تحلیل سازه‌های ترکدار از
امید زیادی برخوردار است. این روند در این حالت سطح‌های مختلف
ترک با ابعاد مختلف در صفحه‌های ابعاد، پارک‌پیکی و شیرایت مزی
مشخص به صورت محدود توسعه یافته و توسط می‌توان
توصیف نشان دهنده شده تنش ترک‌دار در مدل‌های مختلف را نشان می‌دهد. توان تحلیل در همه موارد
ارزش از کتابی مرجع است. استریوگرافی پدیده می
شود و در مورد دقت جویایش در شیرایت مخلوط برای
مراجع شماره [۱۶ و ۱۸] استریوگرافی شده است.

در تمام حالت‌ها صفحاتی به طول ۱۰۰ حساح و ۳۰ حساح
پس از پردازش ترک‌دار یک چهار در راستای طول برای
۱۰۰۰ MPa ضریب پویا ۰.۳ انتخاب شده است. جهت

\[\sqrt{V} = 200 \, \text{GPa}\]
نمودار 1. بیشترین اندازه بزرگ نرمال شده برای ترک مزی یک طرفه بر حسب طول ترک

نمودار 3. بیشترین اندازه بزرگ نرمال شده برای ترک مزی یک طرفه بر حسب طول ترک

نمودار 4. منحنی‌های تغییرات K_I نرمال شده برای ترک مزی یک طرفه بر حسب طول ترک

نمودار 2. منحنی‌های تغییرات K_I نرمال شده برای ترک مزی یک طرفه بر حسب طول ترک نرمال شده را برای مدالی بامان درشت و ریز به روشی 3 نقطه و 3 نقطه نشان می‌دهد که نتایج مشابه نمودار 2 می‌باشد و با ریز نرمال الانها و انتحاب روش 3 نقطه دقت درجات آزادی مدل، نتایج دقیقتر می‌باشد.

نمودارهای زیر براساس نتایج حاصل از محاسبه MEXFEM2D و روابط موجود در کتاب‌هایی مرجع [16] و [18] رسم شده که مورد بحث و بررسی قرار می‌گیرد. نمودارهای 1 و 2 مربوط به اندازه‌گیری برای ترک مزی یک طرفه و نمودارهای 3 و 4 مربوط به اندازه‌گیری برای ترک مزی دو طرفه در محدوده 0.95 تا 1.3 و 1.0 تا 1.3 و 1.25 تا 1.3 و 1.0 تا 1.3 هستند.

نتایج دقیقتر و براکنگی کمتر می‌باشد. در نهایت نرمال‌شده به کار گرفته شده باید به شرایط مفاد در ارتباط تحلیلی تکمیل شده‌اند. نمودار 1 تغییرات بیشترین اندازه بزرگ نرمال شده برای ترک مزی یک طرفه بر حسب طول ترک را نشان می‌دهد که به شکل مواردی متفاوت می‌باشد. نمودارهای 2 و 3 نشان می‌دهد که نتایج متفاوت هستند.

نتایج حاصل از محاسبه MEXFEM2D در حد قابل قبولی است (کمتر از 4 درصد خط اصلی در مدل با مان درشت و حاکم 2 درصد خط اصلی در مدل با مان درشت) با ریز نرمال انها دقت افزایش می‌یابد و همین‌گونه با افزایش طول ترک و زیاد شدن درجات آزادی مدل، نتایج دقیقتر می‌باشد.
نمونه ۵ بیشترین اندام‌بندی با دیواره شدن نرمال شده برای ترکیبی افقی بر حسب طول ترک مدل‌کردن مدل‌کردن

کردن مدل‌کردن در مدل‌کردن مدل‌کردن مدل‌کردن مدل‌کردن

کردن مدل‌کردن در مدل‌کردن مدل‌کردن مدل‌کردن

کردن MEXFEM2D

طول ترك دقيق می‌شود. افزایش دقت بیشتری نیز در دقت نتایج با طول ترک کونه می‌گردد. در نتیجه با توجه به اینکه در ترک با طول کم به طور نسبی دقت جایگاه‌بندی گره‌ها کم بود، با این اثبات دو دام اجرا به ایده بکشاک دو بیشتر و پرکارکندی کمتر در نتایج می‌شود.

فهرست علائم

<table>
<thead>
<tr>
<th>نماد</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>سطح کل مجموعه‌ی لامینا</td>
</tr>
<tr>
<td>P,P1</td>
<td>پیوسته‌نامه‌ی مولکولی ترک</td>
</tr>
<tr>
<td>Γ</td>
<td>فاصله‌ی گره تا نوک (mm)</td>
</tr>
<tr>
<td>r</td>
<td>ترک نیم‌کره‌ی گره ترک</td>
</tr>
<tr>
<td>T</td>
<td>سطح لامینا</td>
</tr>
<tr>
<td>r</td>
<td>ترک نیم‌کره‌ای باین ترک</td>
</tr>
<tr>
<td>Γ</td>
<td>مولکول ترک در حل مختل</td>
</tr>
<tr>
<td>a</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>t1,t2</td>
<td>ضریب مجهولین مولکولی</td>
</tr>
<tr>
<td>U</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>b</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>c</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>d</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>e</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>f</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>g</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>θ</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>φ</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>ψ</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>π</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>Σ</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>Ω</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>μ</td>
<td>ضریب مجهولین طولانی</td>
</tr>
<tr>
<td>Ν</td>
<td>ضریب مجهولین طولانی</td>
</tr>
</tbody>
</table>

مراجع

